

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

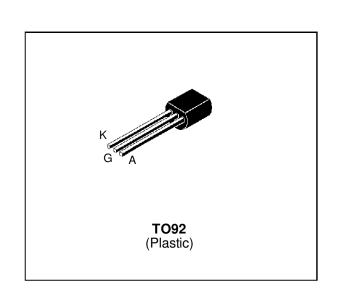
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

X02xxxA


SENSITIVE GATE SCR

FEATURES

- I_{T(RMS)} = 1.25A
- $V_{DRM} = 200V \text{ to } 800V$
- Low I_{GT} < 200 μ A

The X02xxxA series of SCRs uses a high performance TOP GLASS PNPN technology. These parts are intended for general purpose applications where low gate sensitivity is required.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{T(RMS)}	RMS on-state current (180° conduction angle)			А
I _{T(AV)}	Mean on-state current (180° conduction angle)		0.8	Α
I _{TSM}	Non repetitive surge peak on-state current $(T_j \text{ initial} = 25^{\circ}\text{C})$ $tp = 10 \text{ n}$		25	Α
			22.5	
I ² t	I ² t Value for fusing tp = 10 ms		2.5	A ² s
dI/dt	Critical rate of rise of on-state current $I_G = 10 \text{ mA}$ $di_G/dt = 0.1 \text{ A/}\mu\text{s}$.	30	A/μs	
T _{stg} T _j	Storage and operating junction temperature	- 40, + 150 - 40, + 125	°C	
TI	Maximum lead temperature for soldering dur 2mm from case	260	°C	

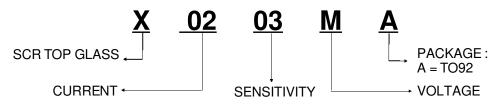
Symbol	Parameter		Unit			
		В	D	М	N	
V _{DRM} V _{RRM}	Repetitive peak off-state voltage $T_j = 125^{\circ}C$ $R_{GK} = 1K\Omega$	200	400	600	800	V

January 1995 1/5

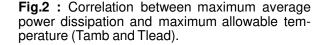
X02xxxA

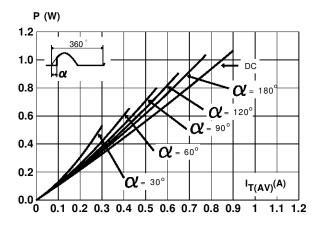
THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
Rth(j-a)	Junction to ambient	150	°C/W
Rth(j-l)	Junction to leads for DC	60	°C/W


GATE CHARACTERISTICS (maximum values)

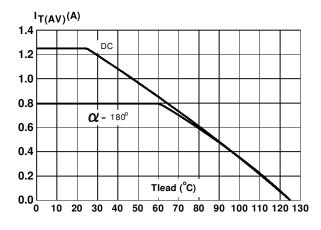
 $P_{G~(AV)} = 0.2~W \quad P_{GM} = 3~W~(tp = 20~\mu s) \qquad I_{GM} = 1.2~A~(tp = 20~\mu s)$

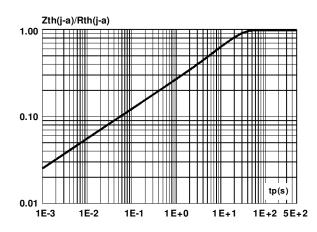

ELECTRICAL CHARACTERISTICS


Symbol	Test Conditions			,	Unit				
Syllibol				02	03	05			
I _{GT}	$V_D=12V$ (DC) $R_L=140\Omega$	Tj= 25°C	MIN	20 20			μА		
	MAX		200	200	50				
V _{GT}	$V_D=12V$ (DC) $R_L=140\Omega$	Tj= 25°C	MAX	0.8			V		
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 k\Omega$ $R_{GK} = 1 K\Omega$	Tj= 125°C	MIN	0.1			V		
V _{RGM}	I _{RG} =10μA	Tj= 25°C	MIN	8			٧		
tgd	V_{D} = V_{DRM} I_{TM} = 3 x $I_{T(AV)}$ dI_{G}/dt = 0.1A/ μ s I_{G} = 10mA	Tj= 25°C	TYP	0.5			μs		
lн	I_T = 50mA R_{GK} = 1 $K\Omega$	Tj= 25°C	MAX	5			mA		
ΙL	I_{G} =1mA R_{GK} = 1 $K\Omega$	Tj= 25°C	MAX	6			mA		
V _{TM}	I _{TM} = 2.5A tp= 380μs	Tj= 25°C	MAX	1.45			1.45		٧
IDRM	V _D = V _{DRM} R _{GK} = 1 KΩ				μΑ				
I _{RRM} V _R = V _{RRM}		Tj= 110°C	MAX	200			μΑ		
dV/dt	$V_D=67\%V_{DRM}$ R _{GK} = 1 K Ω	Tj= 110°C	TYP	15 20 15		15	V/µs		
tq	I_{TM} = 3 x $I_{T(AV)}$ V_{R} =35V dI/dt =10A/μs tp =100μs dV/dt =2V/μs V_{D} = 67% V_{DRM} R_{GK} = 1 $K\Omega$	Tj= 110°C	MAX	100			μs		

ORDERING INFORMATION

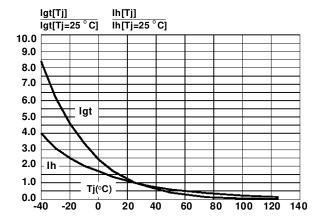
Fig.1: Maximum average power dissipation versus average on-state current.





P (W) Tlead (°C) 1.2 50 Rth(j-l) 1.0 70 8.0 Rth(j-a) 0.6 90 0.4 110 0.2 Tamb (°C) 0.0 40 140 20 60 80 100 120

Fig.3: Average on-state current versus lead temperature.


Fig.4: Relative variation of thermal impedance junction to ambient versus pulse duration.

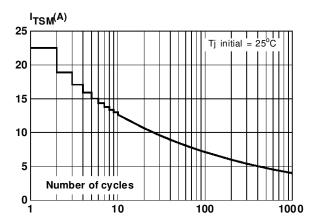
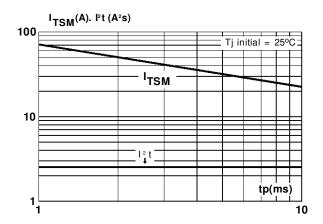


Fig.5: Relative variation of gate trigger current and holding current versus junction temperature.


Fig.6: Non repetitive surge peak on-state current versus number of cycles.

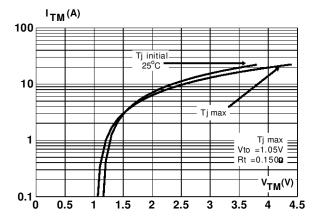
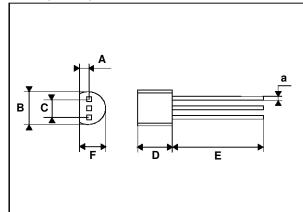


Fig.7: Non repetitive surge peak on-state current for a sinusoidal pulse with width : $tp \le 10ms$, and corresponding value of l^2t .


 $\textbf{Fig.8:} On\text{-}state\, characteristics\, (maximum\, values).$

PACKAGE MECHANICAL DATA

TO92 (Plastic)

	DIMENSIONS						
REF.	Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Мах.	
Α	1.35			0.053			
В			4.7			0.185	
O	2.54			0.100			
D		4.4	4.8		0.173	0.189	
Е		12.7			0.500		
F			3.7			0.146	
а			0.45			0.017	

Marking: Type number Weight: 0.2 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THO MSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

