imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XBee/XBee-PRO S2C 802.15.4

Radio Frequency (RF) Module

User Guide

Revision history-90001500

Revision	Date	Description
D	April 2017	Added Japan certification data for the S2C TH and S2C SMT devices.
E	June 2017	Modified regulatory and certification information as required by RED (Radio Equipment Directive).
F	February 2018	Added Brazil certification information.
G	May 2018	Added note on range estimation. Changed IC to ISED.
Н	June 2018	Changes to the Active Scan command.

Trademarks and copyright

Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United States and other countries worldwide. All other trademarks mentioned in this document are the property of their respective owners.

© 2018 Digi International Inc. All rights reserved.

Disclaimers

Information in this document is subject to change without notice and does not represent a commitment on the part of Digi International. Digi provides this document "as is," without warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or the program(s) described in this manual at any time.

Warranty

To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Send comments

Documentation feedback: To provide feedback on this document, send your comments to techcomm@digi.com.

Customer support

Digi Technical Support: Digi offers multiple technical support plans and service packages to help our customers get the most out of their Digi product. For information on Technical Support plans and pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Contents

XBee/XBee-PRO S2C 802.15.4 RF Module User Guide

Applicable infinware and hardware	Applicable firmware and hardware		10
-----------------------------------	----------------------------------	--	----

Technical specifications

Performance specifications	
Power requirements	
General specifications	
Regulatory conformity summary	
Serial communication specifications	
UART pin assignments	
SPI pin assignments	
GPIO specifications	
1	

Hardware

Antenna options	
Mechanical drawings	17
Mounting considerations	
Pin signals	
Notes	
Design notes	
Power supply design	
Board layout	
Antenna performance	
Keepout area	
RF pad version	

Configure the XBee/XBee-PRO S2C 802.15.4 RF Module

Software libraries	. 29
Configure the device using XCTU	
Over-the-air (OTA) firmware update	
XBee Network Assistant	

Modes

Serial modes	32
Transparent operating mode	

API operating mode	
Command mode	
Transceiver modes	35
Idle mode	
Transmit mode	
Receive mode	35

Operation

Addressing	37
Send packets to a specific device	
Addressing modes	
Encryption	
Maximum payload	39
Maximum payload rules	39
Maximum payload summary tables	39
Work with Legacy devices	
Networking	
MAC Mode configuration	41
XBee retries configuration	42
Transmit status based on MAC mode and XBee retries configurations	42
Peer-to-peer networks	
Master/slave networks	43
Clear Channel Assessment (CCA)	43
CCA operations	
Serial interface	
Select a serial port	18
UART data flow	
Flow control	
SPI operation	
SPI signals	
SPI parameters	
SPI and API mode	
Full duplex operation	
Slave mode characteristics	
I/O support Digital I/O line support	35 EA
Analog input	
On demand I/O sampling	
Periodic I/O sampling	
Change Detect I/O sampling	
Wakeup I/O sampling	
Sample rate (interval)	
I/O line passing	
Output control	
Sleep support	
Sleep modes	
Sleep parameters	
Sleep current	
Sleep pins	61
Direct and indirect transmission	61
Node discovery	
Node discovery	62
Node discovery in compatibility mode	63
Directed node discovery	63

Directed node discovery in compatibility mode	63
Destination Node	63
Remote configuration commands	
Send a remote command	64
Apply changes on remote devices	64
Remote command responses	.64

AT commands

Special commands	66
WR (Write)	66
RE (Restore Defaults)	66
FR (Software Reset)	
Networking and security commands	66
C8 (802.15.4 Compatibility)	66
CH (Operating Channel)	68
ID (Network ID)	
DH (Destination Address High)	69
DL (Destination Address Low)	69
MY (Source Address)	69
SH (Serial Number High)	70
SL (Serial Number Low)	
MM (MAC Mode)	70
RR (XBee Retries)	71
RN (Random Delay Slots)	71
ND (Network Discovery)	72
NT (Node Discover Timeout)	72
NO (Node Discovery Options)	73
DN (Discover Node)	73
CE (Coordinator Enable)	
SC (Scan Channels)	74
SD (Scan Duration)	75
A1 (End Device Association)	76
A2 (Coordinator Association)	
Al (Association Indication)	
DA (Force Disassociation)	78
FP (Force Poll)	78
AS (Active Scan)	78
ED (Energy Detect)	79
EE (Encryption Enable)	79
KY (AES Encryption Key)	80
NI (Node Identifier)	80
RF interfacing commands	
PL (TX Power Level)	81
PM (Power Mode)	82
CA (CCA Threshold)	
Sleep commands	82
SM (Sleep Mode)	
ST (Time before Sleep)	83
SP (Cyclic Sleep Period)	83
DP (Disassociated Cyclic Sleep Period)	84
SO (Sleep Options)	84
Serial interfacing commands	85
BD (Interface Data Rate)	
NB (Parity)	86

RO (Packetization Timeout)	
D7 (DIO7/CTS)	87
D6 (DIO6/RTS)	87
AP (API Enable)	87
I/O settings commands	88
D0 (DIO0/AD0)	88
D1 (DIO1/AD1)	88
D2 (DIO2/AD2)	
D3 (DIO3/AD3)	
D4 (DIO4)	
D5 (DIO5/ASSOCIATED_INDICATOR)	
D8 (DIO8/SLEEP_REQUEST)	
P0 (RSSI/PWM0 Configuration)	
P1 (PWM1 Configuration)	
P2 (SPI_MISO)	
M0 (PWM0 Duty Cycle)	
M1 (PWM1 Duty Cycle)	
P5 (SPI_MISO)	
P6 (SPI_MOSI Configuration)	
P7 (SPI_SSEL)	
P8 (DIO18/SPI_SCLK)	
P9 (SPI_ATTN) PR (Pull-up/Down Resistor Enable)	95
PD (Pull Up/Down Direction)	
IU (I/O Output Enable)	
IT (Samples before TX)	
IS (Force Sample)	
IO (Digital Output Level)	
IC (DIO Change Detect)	
IR (Sample Rate)	
RP (RSSI PWM Timer)	
I/O line passing commands	
IA (I/O Input Address)	
T0 (D0 Timeout)	
T1 (D1 Output Timeout)	
T2 (D2 Output Timeout)	
T3 (D3 Output Timeout)	
T4 (D4 Output Timeout)	
T5 (D5 Output Timeout)	
T6 (D6 Output Timeout)	100
T7 (D7 Output Timeout)	100
PT (PWM Output Timeout)	100
Diagnostic commands	101
VR (Firmware Version)	101
VL (Version Long)	101
HV (Hardware Version)	
DB (Last Packet RSSI)	
EC (CCA Failures)	
EA (ACK Failures)	
DD (Device Type Identifier)	
Command mode options	
CT (Command mode Timeout)	102
CN (Exit Command mode)	
AC (Apply Changes)	
GT (Guard Times)	

CC (Command Character)		104	4
------------------------	--	-----	---

Operate in API mode

API mode overview	106
API frame specifications	106
API operation (AP parameter = 1)	106
API operation-with escaped characters (AP parameter = 2)	106
Start delimiter	107
Length	107
Frame data	107
Checksum	
Calculate and verify checksums	108
Escaped characters in API frames	
Frame descriptions	
TX Request: 64-bit address frame - 0x00	110
TX Request: 16-bit address - 0x01	
AT Command frame - 0x08	. 112
AT Command - Queue Parameter Value frame - 0x09	114
Remote AT Command Request frame - 0x17	
RX Packet: 64-bit Address frame - 0x80	
Receive Packet: 16-bit address frame - 0x81	117
RX (Receive) Packet: 64-bit address IO frame- 0x82	
RX Packet: 16-bit address I/O frame - 0x83	120
AT Command Response frame - 0x88	
TX Status frame - 0x89	
Modem Status frame - 0x8A	126
Remote Command Response frame - 0x97	127

Regulatory information

United States (FCC)	129
OEM labeling requirements	129
FCC notices	
FCC-approved antennas (2.4 GHz)	
RF exposure	143
Europe (CE)	
Maximum power and frequency specifications	143
OEM labeling requirements	143
Listen Before Talk requirement	
Declarations of conformity	
Antennas	
ISED (Innovation, Science and Economic Development Canada)	145
Labeling requirements	145
For XBee S2C surface-mount	145
For XBee-PRO S2C surface-mount	145
For XBee S2C through-hole	
For XBee-PRO S2C through-hole	
Transmitters for detachable antennas	145
Detachable antenna	146
Australia (RCM)	146
South Korea	
ANATEL (Brazil)	150

Load 802.15.4 firmware on ZB devices

Background	. 153
Load 802.15.4 firmware	. 153

Migrate from XBee through-hole to surface-mount devices

Pin mapping	156
Mount the devices	157

PCB design and manufacturing

Recommended solder reflow cycle 16 Recommended footprint and keepout 16	50
Flux and cleaning	
Rework	

XBee/XBee-PRO S2C 802.15.4 RF Module User Guide

XBee/XBee-PRO S2C 802.15.4 RF Modules are embedded solutions providing wireless end-point connectivity to devices. These devices use the IEEE 802.15.4 networking protocol for fast point-to-multipoint or peer-to-peer networking. They are designed for high-throughput applications requiring low latency and predictable communication timing.

There are two footprints for the XBee/XBee-PRO S2C 802.15.4 RF Module hardware: through-hole (TH) and surface-mount (SMT). TH devices include a 20-pin header and require the placement of two 1x10 sockets on the carrier board for mounting the device. SMT devices include 37 pads. They are placed directly on the carrier board, which means they do not require holes or sockets for mounting.

The TH version may be useful for prototyping and production, but we recommend SMT for high-volume applications, as the component can be placed automatically by a pick-and-place machine and you save the cost of a socket on each board.

The XBee/XBee-PRO S2C 802.15.4 RF Module supports the needs of low-cost, low-power wireless sensor networks. The devices require minimal power and provide reliable delivery of data between devices. The devices operate within the ISM 2.4 GHz frequency band.

The XBee/XBee-PRO S2C 802.15.4 RF Module uses S2C hardware and the Silicon Labs EM357 chipset. As the name suggests, the 802.15.4 module is over-the-air compatible with our Legacy 802.15.4 module (S1 hardware), and the TH versions of the new product are also form factor compatible with designs that use the Legacy module.

Note OTA capability is only available when MM (Mac Mode) = 0 or 3

Applicable firmware and hardware10

Applicable firmware and hardware

This manual supports the following firmware:

- 802.15.4 version 20xx
- It supports the following hardware:
 - XB24C TH
 - XB24C SMT
 - XBP24C TH
 - XBP24C SMT

Technical specifications

Performance specifications	12
Power requirements	
General specifications	
Regulatory conformity summary	
Serial communication specifications	
GPIO specifications	

Performance specifications

The following table describes the performance specifications for the devices.

Note Range figure estimates are based on free-air terrain with limited sources of interference. Actual range will vary based on transmitting power, orientation of transmitter and receiver, height of transmitting antenna, height of receiving antenna, weather conditions, interference sources in the area, and terrain between receiver and transmitter, including indoor and outdoor structures such as walls, trees, buildings, hills, and mountains.

Specification	XBee value	XBee-PRO value
Indoor / urban range	Up to 200 ft (60 m)	Up to 300 ft. (90 m)
Outdoor RF line-of-sight range	Up to 4000 ft (1200 m)	Up to 2 miles (3200 m)
Transmit power output (software selectable)	6.3 mW (8 dBm), Boost mode ¹ 3.1 mW (5 dBm), Normal mode Channel 26 max power is 0.3 mW (-5 dBm)	63 mW (18 dBm) ²
RF data rate	250,000 b/s	250,000 b/s
Maximum data throughput	Up to 96,000 b/s	Up to 96,000 b/s
UART interface data rate	1200 b/s to 250,000 b/s	1200 b/s to 250,000 b/s
SPI data rate	Up to 5 Mb/s (burst)	Up to 5 Mb/s (burst)
Receiver sensitivity	-102 dBm, Boost mode -100 dBm, Normal mode	-101 dBm

Power requirements

The following table describes the power requirements for the XBee/XBee-PRO S2C 802.15.4 RF Module.

Specification	ХВее	XBee-PRO
Supply voltage	2.1 - 3.6 V	2.7 - 3.6 V
Transmit current (typical, VCC = 3.3 V)	45 mA (8 dBm, Boost mode) 33 mA (5 dBm, Normal mode)	120 mA (18 dBm)
Idle / receive current (typical, VCC = 3.3 V)	31 mA (Boost mode) 28 mA (Normal mode)	31 mA
Power-down current	<1 uA @ 25C	<1 uA @ 25C

1Boost mode enabled by default; see PM (Power Mode).

2See Regulatory information for region-specific certification requirements.

General specifications

The following table describes the general specifications for the devices.

Specification	ХВее	XBee-PRO
Operating frequency	ISM 2.4 GHz	
Supported channels	11 - 26	12 - 23
Form factor	TH: 2.438 x 2.761 cm (0.960 x 1.087 in) SMT: 2.199 x 3.4 x 0.305 cm (0.866 x 1.33 x 0.120 in)	TH: 2.438 x 3.294 cm (0.960 x 1.297 in) SMT: 2.199 x 3.4 x 0.305 cm (0.866 x 1.33 x 0.120 in)
Operating temperature	-40 to 85 °C (industrial)	
Antenna options	TH: PCB antenna, U.FL connector, RPSMA connector, or integrated wire SMT: RF pad, PCB antenna, or U.FL connector	

Regulatory conformity summary

This table describes the agency approvals for the devices.

Country	XBee (surface-mount)	XBee- PRO (surface- mount)	XBee (through- hole)	XBee-PRO (through- hole)
United States (FCC Part 15.247)	FCC ID: MCQ-XBS2C	FCC ID: MCQ- PS2CSM	FCC ID: MCQ-S2CTH	FCC ID: MCQ-PS2CTH
Innovation, Science and Economic Development Canada (ISED)	IC: 1846A-XBS2C	IC: 1846A- PS2CSM	IC: 1846A-S2CTH	IC: 1846A- PS2CTH
FCC/IC test transmit power output range	-26 to +8 dBm	-0.7 to +19.4 dBm	-26 to +8 dBm	+1 to +19 dBm
Europe (CE)	Yes	-	Yes	-
Australia	RCM	RCM	RCM	RCM
Japan	R201WW10215369		R210- 105563	
South Korea	MSIP-CRM-DIG- XBee-S2C		MSIP-CRM- DIG-XBee-S2C- TH	
RoHS	Compliant			

Serial communication specifications

The XBee/XBee-PRO S2C 802.15.4 RF Module supports both Universal Asynchronous Receiver / Transmitter (UART) and Serial Peripheral Interface (SPI) serial connections.

UART pin assignments

The SC1 (Serial Communication Port 1) of the Ember 357 is connected to the UART port. The following table provides the UART pin assignments.

Specifications	Module pin number	
UART pins	XBee (surface-mount)	XBee (through-hole)
DOUT	3	2
DIN / CONFIG	4	3
CTS / DIO7	25	12
RTS / DIO6	29	16

SPI pin assignments

The SC2 (Serial Communication Port 2) of the Ember 357 is connected to the SPI port.

Specifications	ations Module pin number	
SPI pins	XBee (surface-mount)	XBee (through-hole)
SPI_SCLK	14	18
SPI_SSEL	15	17
SPI_MOSI	16	11
SPI_MISO	17	4
SPI_ATTN	12	19

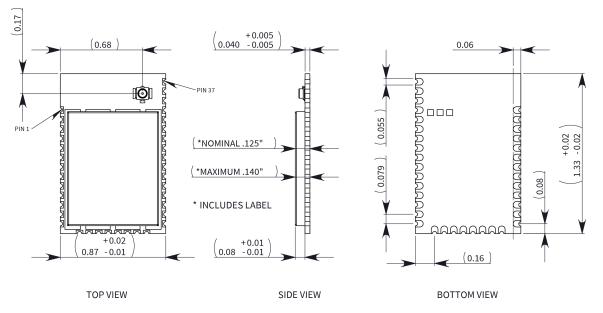
GPIO specifications

XBee/XBee-PRO S2C 802.15.4 RF Modules have 15 General Purpose Input / Output (GPIO) ports available. The exact list depends on the device configuration, as some GPIO pads are used for purposes such as serial communication.

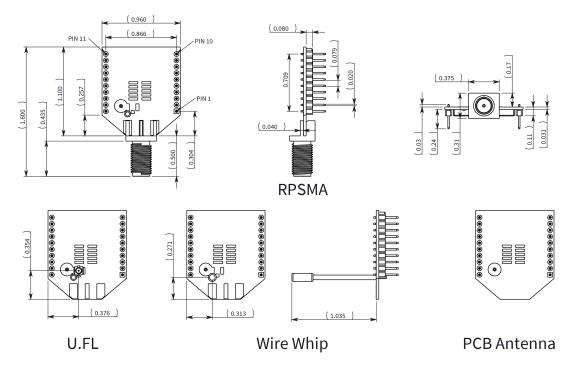
GPIO Electrical Specification	Value
Low Schmitt switching threshold	0.42 - 0.5 x VCC
High Schmitt switching threshold	0.62 - 0.8 x VCC
Input current for logic 0	-0.5 µA

GPIO Electrical Specification	Value
Input current for logic 1	0.5 µA
Input pull-up resistor value	29 kΩ
Input pull-down resistor value	29 kΩ
Output voltage for logic 0	0.18 x VCC (maximum)
Output voltage for logic 1	0.82 x VCC (minimum)
Output source/sink current for pad numbers 3, 4, 5, 10, 12, 14, 15, 16, 17, 25, 26, 28, 29, 30, and 32 on the SMT modules	4 mA
Output source/sink current for pin numbers 2, 3, 4, 9, 12, 13, 15, 16, 17, and 19 on the TH modules	4 mA
Output source/sink current for pad numbers 7, 8, 24, 31, and 33 on the SMT modules	8 mA
Output source/sink current for pin numbers 6, 7, 11, 18, and 20 on the TH modules	8 mA
Total output current (for GPIO pads)	40 mA

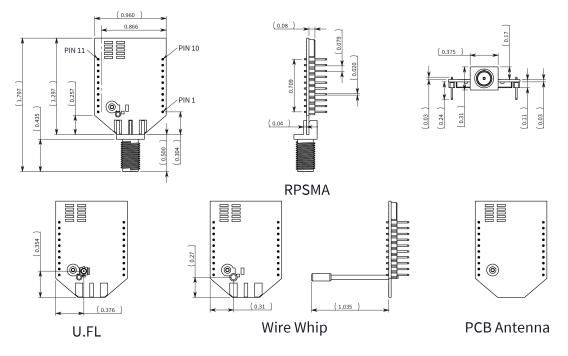
Hardware


Antenna options	17
Mechanical drawings	17
Mounting considerations	18
Pin signals	
Design notes	

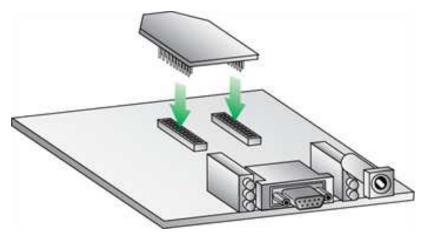
Antenna options


The ranges specified are typical for the integrated whip (1.5 dBi) and dipole (2.1 dBi) antennas. The printed circuit board (PCB) antenna option provides advantages in its form factor; however, it typically yields shorter range than the whip and dipole antenna options when transmitting outdoors. For more information, see XBee and XBee-PRO OEM RF Module Antenna Considerations Application Note.

Mechanical drawings


The following mechanical drawings of the XBee/XBee-PRO S2C 802.15.4 RF Module show all dimensions in inches. The first drawing shows the surface-mount device (antenna options not shown).

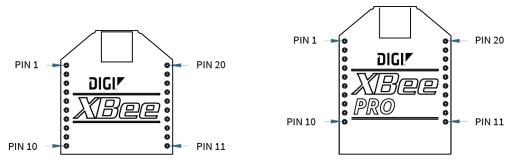
The following drawings show the standard (non-PRO) through-hole device.


The following drawings show the XBee-PRO through-hole device.

Mounting considerations

We design the through-hole module to mount into a receptacle so that you do not have to solder the module when you mount it to a board. The development kits may contain RS-232 and USB interface boards that use two 20-pin receptacles to receive modules.

The following illustration shows the module mounting into the receptacle on the RS-232 interface board.


Century Interconnect and Samtec manufacture the 2 x 10 pin 2 mm spacing receptacles on Digi development boards. Several other manufacturers provide comparable mounting solutions; we currently use the following receptacles:

- Through-hole single-row receptacles: Samtec part number: MMS-110-01-L-SV (or equivalent)
- Surface-mount double-row receptacles: Century Interconnect part number: CPRMSL20-D-0-1 (or equivalent)
- Surface-mount single-row receptacles: Samtec part number: SMM-110-02-SM-S

Note We recommend that you print an outline of the module on the board to indicate the correct orientation for mounting the module.

Pin signals

The following image shows the pin numbers; it shows the device's top sides, the shields are on the bottom.

The following table shows the pin assignments for the through-hole device. In the table, low-asserted signals have a horizontal line above signal name.

Pin	Name	Direction	Description
1	VCC	-	Power supply
2	DOUT	Output	UART data out
3	DIN/CONFIG	Input	UART data In
4	SPI_MISO	Output	Serial Peripheral Interface (SPI) Data Out
5	RESET	Input	Module reset (reset pulse must be at least 200 ns). This must be driven as an open drain/collector. The device drives this line low when a reset occurs. Never drive this line high.
6	PWM0/RSSI PWM	Output	PWM output 0 / RX signal strength indicator
7	PWM1	Output	PWM output 1
8	[Reserved]	-	Do not connect
9	DI8/ <u>SLE</u> EP_ RQ/DTR	Input	Pin sleep control line or digital input 8
10	GND	-	Ground
11	DIO4/SPI_MOSI	Both	Digital I/O 4 / SPI Data In
12	DIO7/CTS	Both	Digital I/O 7 / Clear-to-send flow control
13	ON/SLEEP	Output	Device sleep status indicator
14	V _{REF}	-	Feature not supported on this device. Used on other XBee devices for analog voltage reference.
15	DIO5/ASSOC	Both	Digital I/O 5 / Associated indicator
16	DIO6/RTS	Both	Digital I/O 6 / Request-to-send flow control
17	DIO3/AD3/SPI_ SSEL	Both	Digital I/O 3 / Analog input 3 / SPI select
18	DIO2/AD2/SPI_ CLK	Both	Digital I/O 2 / Analog input 2 / SPI clock
19	DIO1/AD1/SPI_ ATTN	Both	Digital I/O 1 / Analog input 1 / SPI Attention
20	DIO0/AD0	Both	Digital I/O 0 / Analog input 0

The following table shows the pin assignments for the surface-mount device.

Pin	Name	Direction	Function
1	GND	-	Ground
2	VCC	-	Power supply

Pin	Name	Direction	Function
3	DOUT	Output	UART data out
4	DIN/CONFIG	Input	UART data in
5	[Reserved]	Output	Do not connect
6	RESET	Input	Module reset (reset pulse must be at least 200 ns). This must be driven as an open drain/collector. The device drives this line low when a reset occurs. Never drive this line high.
7	PWM0/RSSI PWM	Output	PWM output 0 / RX signal strength indicator
8	PWM1	Output	PWM output 1
9	[Reserved]	-	Do not connect
10	DI8/SLEEP_RQ/DTR	Input	Pin sleep control line or digital input 8
11	GND	-	Ground
12	SPI_ ATTN/BOOTMODE	Output	SPI Attention. Do not tie low on reset.
13	GND	-	Ground
14	SPI_CLK	Input	SPI clock
15	SPI_SSEL	Input	SPI select
16	SPI_MOSI	Input	SPI Data In
17	SPI_MISO	Output	SPI Data Out
18	[Reserved]	-	Do not connect
19	[Reserved]	-	Do not connect
20	[Reserved]	-	Do not connect
21	[Reserved]	-	Do not connect
22	GND	-	Ground
23	[Reserved]	-	Do not connect
24	DIO4	Both	Digital I/O 4
25	DIO7/CTS	Both	Digital I/O 7 / Clear-to-send flow control
26	ON/SLEEP	Output	Device sleep status indicator
27	V _{REF}	-	Feature not supported on this device. Used on other XBee devices for analog voltage reference.
28	DIO5/ASSOC	Both	Digital I/O 5 / Associated indicator

Pin	Name	Direction	Function
29	DIO6/RTS	Both	Digital I/O 6 / Request-to-send flow control
30	DIO3/AD3	Both	Digital I/O 3 / Analog input 3
31	DIO2/AD2	Both	Digital I/O 2 / Analog input 2
32	DIO1/AD1	Both	Digital I/O 1 / Analog input 1
33	DIO0/AD0	Both	Digital I/O 0 / Analog input 0
34	[Reserved]	-	Do not connect
35	GND	-	Ground
36	RF	Both	RF connection
37	[Reserved]	-	Do not connect

Notes

Minimum connections: VCC, GND, DOUT and DIN.

Minimum connections for updating firmware: VCC, GND, DIN, DOUT, RTS and DTR.

The table specifies signal direction with respect to the device.

The device includes a 50 $k\Omega$ pull-up resistor attached to RESET.

Use the **PR** (Pull-up/Down Resistor Enable) command to configure several of the input pull-ups.

You can connect other pins to external circuitry for convenience of operation including the Associate LED pin (pin 15). The Associate LED flashes differently depending on the state of the device. Leave any unused pins disconnected.

Design notes

The following guidelines help to ensure a robust design.

Power supply design

A poor power supply can lead to poor device performance, especially if you do not keep the supply voltage within tolerance or if it is excessively noisy. To help reduce noise, place a 1.0 μ F and 8.2 pF capacitor as near as possible to pin 1 on the PCB. If you are using a switching regulator for the power supply, switch the frequencies above 500 kHz. Limit the power supply ripple to a maximum 100 mV peak to peak.

Board layout

We design XBee devices to be self sufficient and have minimal sensitivity to nearby processors, crystals or other printed circuit board (PCB) components. Keep power and ground traces thicker than signal traces and make sure that they are able to comfortably support the maximum current specifications. There are no other special PCB design considerations to integrate XBee devices, with the exception of antennas.

Antenna performance

Antenna location is important for optimal performance. The following suggestions help you achieve optimal antenna performance. Point the antenna up vertically (upright). Antennas radiate and receive the best signal perpendicular to the direction they point, so a vertical antenna's omnidirectional radiation pattern is strongest across the horizon.

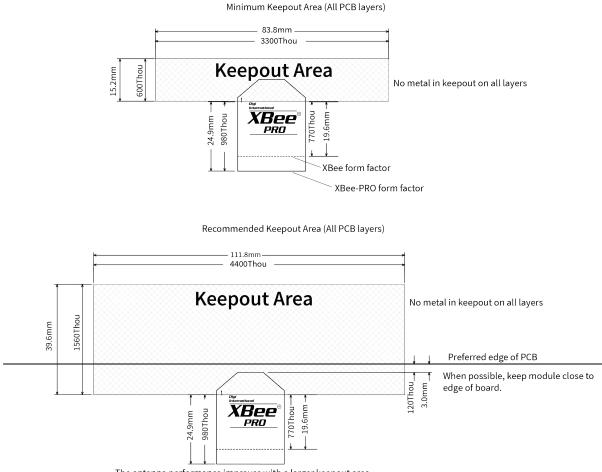
Position the antennas away from metal objects whenever possible. Metal objects between the transmitter and receiver can block the radiation path or reduce the transmission distance. Objects that are often overlooked include:

- metal poles
- metal studs
- structure beams
- concrete, which is usually reinforced with metal rods

If you place the device inside a metal enclosure, use an external antenna. Common objects that have metal enclosures include:

- vehicles
- elevators
- ventilation ducts
- refrigerators
- microwave ovens
- batteries
- tall electrolytic capacitors

Do not place XBee devices with the chip or integrated PCB antenna inside a metal enclosure.

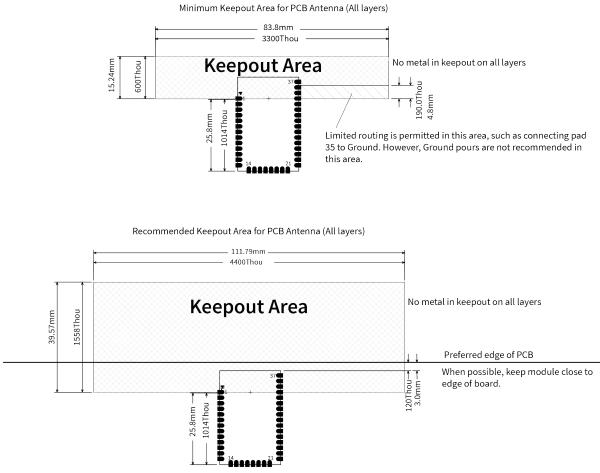

Do not place any ground planes or metal objects above or below the antenna.

For the best results, mount the device at the edge of the host PCB. Ensure that the ground, power, and signal planes are vacant immediately below the antenna section.

Keepout area

We recommend that you allow a "keepout" area, which the following drawings show.

Through-hole keepout



The antenna performance improves with a larger keepout area

Notes

- 1. We recommend non-metal enclosures. For metal enclosures, use an external antenna.
- 2. Keep metal chassis or mounting structures in the keepout area at least 2.54 cm (1 in) from the antenna.
- 3. Maximize the distance between the antenna and metal objects that might be mounted in the keepout area.
- These keepout area guidelines do not apply for wire whip antennas or external RF connectors.
 Wire whip antennas radiate best over the center of a ground plane.

Surface-mount keepout

The antenna performance improves with a larger keepout area

RF pad version

The RF pad is a soldered antenna connection on the surface-mount device. The RF signal travels from pin 36 on the module to the antenna through a single ended RF transmission line on the PCB. This line should have a controlled impedance of 50 Ω .

For the transmission line, we recommend either a microstrip or coplanar waveguide trace on the PCB. We provide a microstrip example below, because it is simpler to design and generally requires less area on the host PCB than coplanar waveguide.

We do not recommend using a stripline RF trace because that requires routing the RF trace to an inner PCB layer, and via transitions can introduce matching and performance problems.

The following figure shows a layout example of a microstrip connecting an RF pad module to a through-hole RPSMA RF connector.

• The top two layers of the PCB have a controlled thickness dielectric material in between. The second layer has a ground plane which runs underneath the entire RF pad area. This ground plane is a distance *d*, the thickness of the dielectric, below the top layer.