mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XC6371/XC6372 Series

PWM,PWM/PFM Controlled Step-up DC/DC Converters

☆GreenOperation Compatible

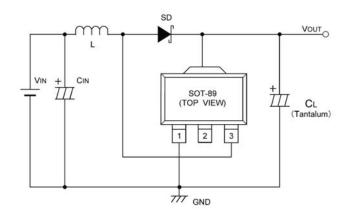
ETR0402 005

■GENERAL DESCRIPTION

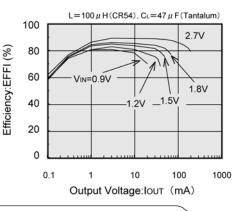
The XC6371/XC6372 series is a group of PWM controlled and PWM/PFM controlled step-up DC/DC converters. The built-in 1.4Ω switching transistor type enables a step-up circuit to be configured using only three components, a coil, a diode, and a capacitor.

Output voltage can be selectable in the range from 2.0V to 7.0V in increments of 0.01V (accuracy: \pm 2.5%). Oscillation frequency is also selectable from 50kHz, 100kHz, and 180kHz (accuracy: \pm 15%) for the XC6371 and the XC6372 series. Soft-start time is internally set and offers protection against in-rush currents when the power is switched on and prevents voltage overshoot. Packages with CE (chip enable) pin are also available which can reduce the IC power consumption during during stand-by mode.

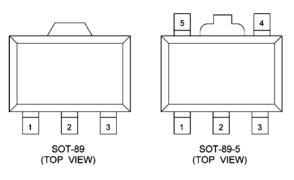
The XC6371 series is the standard PWM controlled products. The control of the XC6372 series switches from PWM to PFM control during light loads when automatically switching is selected and the series is highly efficient from light loads to large output currents.

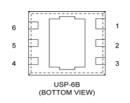

■ APPLICATIONS

- Smart phones / Mobile phones
- Note PCs / Tablet PCs
- Digital still cameras / Camcorders
- Mobile devices / terminals


Operation Start Voltage Range	: 0.9V~10V
Output Voltage Range	: 2.0V~7.0V (0.1V increments)
Highly Accurate	: ±2.5%
Oscillation Frequency	: 50kHz, 100kHz, 180kHz (±15%)
Maximum Output Currents	: 100mA(TYP.) @ VIN=3.0V, VOUT=5.0V *
Highly Efficient	: 85%(TYP.) @ VIN=3.0V, VOUT=5.0V *
Built-in switching transis	stor.
CE pin type (XC6371C, X	(C6372C)
Phase compensation an	d soft start-up circuits built-in
CMOS Low Power Const	umption
Packages	: SOT-89, SOT-89-5, USP-6B
Environmentally Friendly	y: EU RoHS Compliant, Pb Free
* Performance depends or	n external components and PCB layout.

■ TYPICAL APPLICATION CIRCUIT




■ TYPICAL PERFORMANCE CHARACTERISTICS

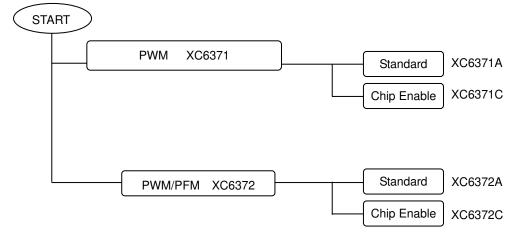
XC6371A301

■ PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the pin No.1.

■ PIN ASSIGNMENT

XC6371/XC6372A


PIN NU	JMBER	PIN NAME	FUNCTION
SOT-89	USP-6B		FUNCTION
1	6	Vss	Ground
2	1	Vout	Output Voltage Monitor/IC Internal Power Supply
3	4	Lx	Switch
_	2, 3, 5	NC	No Connection

XC6371/XC6372C

PIN N	UMBER	PIN NAME	FUNCTION
SOT-89-5	USP-6B		FUNCTION
5	6	Vss	Ground
2	1	Vout	Output Voltage Monitor/IC Internal Power Supply
4	4	Lx	Switch
3	3	CE	Chip Enable
1	2, 5	NC	No Connection

■ PRODUCT CLASSIFICATION

Selection Guide

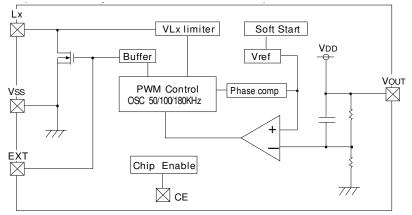
Ordering Information

 $XC6371(1)(2)(3)(4)(5)(6)(-7)^{(*1)}$: PWM controlled XC6372123456-7(*1) : PWM/PFM switching control

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION		
1	Type of	А	3-pin DC/DC converter with built-in switching transistor		
U	DC/DC Converter	С	Stand-by capability with built-in switching transistor		
23	Output Voltage	Integer	e.g. Vouт=3.5V→②=3, ③=5		
		0	50kHz		
4	Oscillation Frequency	1	100kHz		
		2	180kHz		
					SOT-89 (XC6371/72 A type)
			SOT-89-5 (XC6371/72 C type)		
56-7	Packages	PR-G	SOT-89 (XC6371/72 A type)		
Taping Type (*2)	FN-Q	SOT-89-5 (XC6371/72 C type)			
		DR	USP-6B		
		DR-G	USP-6B		

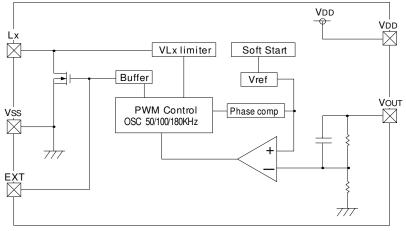
(*1)

The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully EU


RoHS compliant. $^{(*2)}$

The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: (5)R-(7), Reverse orientation: (5)L-(7))

■BLOCK DIAGRAMS


XC6371/XC6372A, C

(The Vout pin serves also as VDD)

Note: The CE pin is only used with the XC6371C.

XC6371/72/73E

Note: Built-in transistor type units use the Lx pin.

■ABSOLUTE MAXIMUM RATINGS

				Ta=25°C
PARAMET	PARAMETER		RATINGS	UNITS
Vout Input V	oltage	Vout	12	V
Lx pin Volta	age	VLX	12	V
Lx pin Curr	rent	ILX	400	mA
CE Input Vo	CE Input Voltage		12	V
Power Dissipation	SOT-89, SOT-89-5	Pd	500	mW
	USP-6B		100	
VDD Input Voltage		Vdd	12	V
Operating Temperature Range		Topr	-30~+80	C°
Storage Temperat	ure Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

XC6371/72A501 VOUT=5.0V, FOSC=100kHZ Ta=25°C						=25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	Vout		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10	-	-	V
Operation Start Voltage	Vst1	External Components Connected, IOUT=1mA	-	-	0.90	V
Oscillation Start Voltage	VST2	No external components. Apply voltage to Vouτ Lx : 10kΩ pull-up to 5V	-	-	0.80	V
No Load Input Current	lin	VIN=VOUT \times 0.8, IOUT=0mA ^(*1)	-	12.8	25.7	μA
Supply Current 1	IDD1	Same as Vsт2, Apply output voltage × 0.95 to Vout	-	80.2	133.8	μA
Supply Current 2	IDD2	Same as Vsт2, Apply output voltage × 1.1 to Vout	-	8.2	16.5	μA
Lx Switch-On Resistance	Rswon	Same as IDD1, VLX=0.4V	-	1.4	2.4	Ω
Lx Leak Current	Ilxl	No external components. VOUT=VLX=10V	-	-	1.0	μA
Oscillation Frequency	FOSC	Same as IDD1. Measuring of Lx waveform	85	100	115	kHz
Maximum Duty Ratio	MAXDTY	Same as IDD1. Measuring of Lx waveform	80	87	92	%
PFM Duty Ratio (*4)	PFMDTY	Same as IDD1. Measuring of Lx waveform	10	17	25	%
Lx Limit Voltage	VLXLMT	Same as IDD1. Apply output voltage to Lx, Voltage required to produce FOSC × 2	0.7	-	1.3	V
Efficiency	EFFI		-	85	-	%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

NOTE: Unless otherwise stated, VIN=VOUT × 0.6, IOUT=50mA. See Typical Application Circuits, Circuit1

*1: The Schottky diode (SD) must be type MA735, with reverse current (IR)<1.0 µ A at reverse voltage (VR)=10.0V.(XC6372A)

*2: "Supply Current 1" is the supply current while the oscillator is continuously oscillating. In actual operation the oscillator periodically operates which results in less average power consumption. The current actually provided by an external VIN source is represented by "No Load Input Current (IIN)".

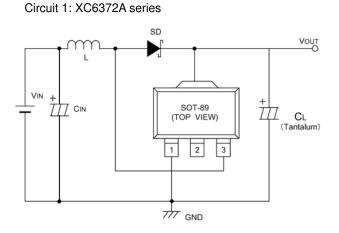
*3: When PWM operates at PWM Mode.

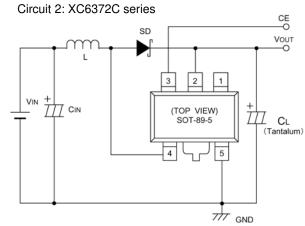
*4: When PFM operates at PFM Mode.(XC6372A)

■ ELECTRICAL CHARACTERISTICS (Continued)

XC6371/72C501	2C501 VOUT=5.0V, FOSC=100kHz					Ta=25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	Vout		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10	-	-	V
Operation Start Voltage	Vst1	External Components Connected, IOUT=1mA	-	-	0.90	V
Operation Start Voltage	VST2	No external components. Apply voltage to VOUT, Lx : $10k \Omega$ pull-up to 5V	-	-	0.80	V
No Load Input Current	lin	VIN=VOUT \times 0.8, IOUT=0mA ^(*1)	-	12.8	25.7	μA
Supply Current 1	IDD1	Same as VsT2, Apply output voltage × 0.95 to Vout	-	80.2	133.8	μA
Supply Current 2	IDD2	Same as Vst2, Apply output voltage × 1.1 to Vout	-	8.2	16.5	μA
Lx Switch-On Resistance	Rswon	Same as IDD1, VLx=0.4V	-	1.4	2.4	Ω
Lx Leak Current	Ilxl	No external components, VOUT =VLX=10V	-	-	1.0	μA
Oscillation Frequency	FOSC	Same as IDD1, Measuring of Lx waveform	85	100	115	kHZ
Maximum Duty Ratio	MAXDTY	Same as IDD1, Measuring of Lx waveform	80	87	92	%
PFM Duty Ratio (*4)	PFMDTY	Same as IDD1, Measuring of Lx waveform	10	17	25	%
Stand-by Current	ISTB	Same as IDD1	-	-	0.5	μA
CE "High" Voltage	VCEH	Same as IDD1, Lx Oscillation start	0.75	-	-	V
CE "Low" Voltage	VCEL	Same as IDD1, Lx Oscillation stop	-	-	0.20	V
CE "High" Current	Ісен	Same as IDD1, VCE=VOUT × 0.95	-	-	0.25	μA
CE "Low" Current	ICEL	Same as IDD1, VCE=0V	-	-	-0.25	μA
Lx Limit Voltage	VLxLMT	Same as IDD1, Apply output voltage to Lx, Voltage required to produce FOSC × 2	0.7	-	1.3	V
Efficiency	EFFI		-	85	-	%
Slow-Start Time	Tss		4.0	10.0	20.0	ms

NOTE: Unless otherwise stated, connect CE to Vout, VIN=Vout × 0.6, Iout=50mA. See Typical Application Circuits, Circuit 2.


*1: The Schottky diode (SD) must be type MA735, with reverse current (IR)<1.0 µ A at reverse voltage (VR)=10.0V.(XC6372C)


*2: "Supply Current 1" is the supply current while the oscillator is continuously oscillating. In actual operation the oscillator periodically operates which results in less average power consumption. The current actually provided by an external VIN source is represented by "No Load Input Current (IIN)".

- *3: When PWM operates at PWM Mode.
- *4: When PFM operates at PFM Mode.(XC6372C)

TOIREX 7/17

■TYPICAL APPRICATION CIRCUITS

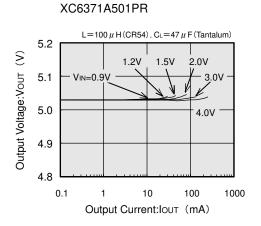
L : 100 μ H (SUMIDA, CR54)

SD : MA2Q735 (Schottky diode; MATSUSHITA)

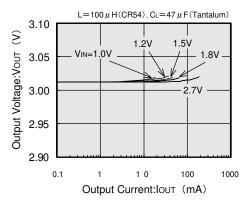
CL : 16V 47 μ F (Tantalum capacitor, NICHICHEMI MCE)

CIN : 16V 220 μ F (Aluminium Electrolytic Capacitor)

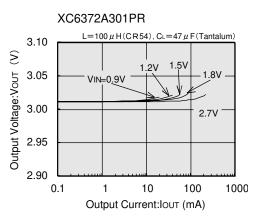
L : 100 μ H (CR54, SUMIDA)

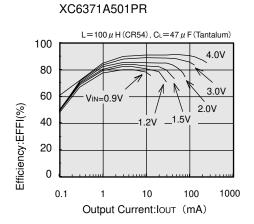

SD : MA2Q735 (Schottky Diode; MATUSHITA)

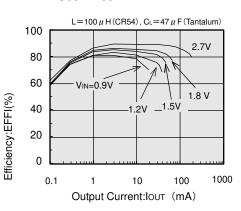
CL $: 16V 47 \,\mu$ F (Tantalum Capacitor, NICHICHEMI MCE)

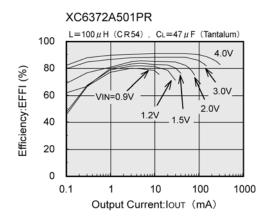

 C_{IN} : 16V 220 μ F (Aluminium Electrolytic Capacitor)

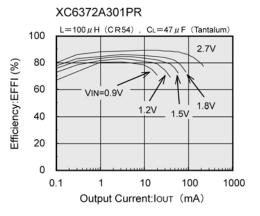
■ TYPICAL PERFORMANCE CHARACTERISTICS


(1) Output Voltage vs. Output Current

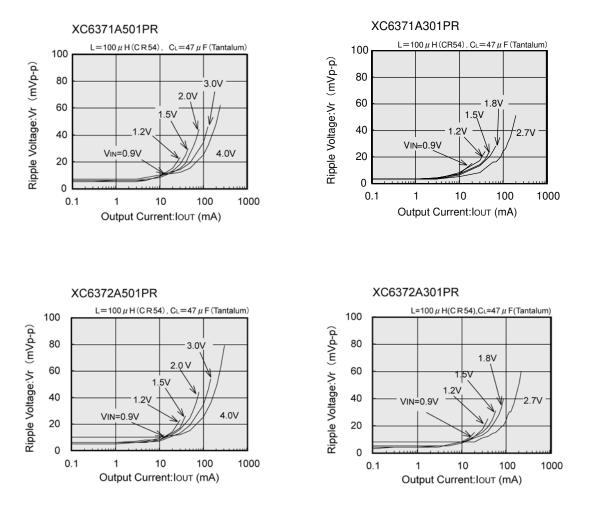

XC6371A301PR

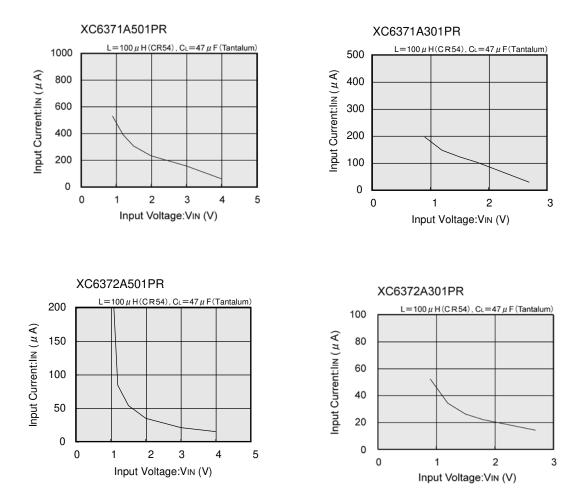



XC6372A501PR L=100 μ H(CR54), CL=47 μ F(Tantalum) 5.2 Output Voltage:Vour (V) 1.5V 1.2V 2.0V 5.1 VIN=0.9V 3.0V 5.0 4.0V 4.9 4.8 1000 0.1 10 100 1 Output Current:IOUT (mA)



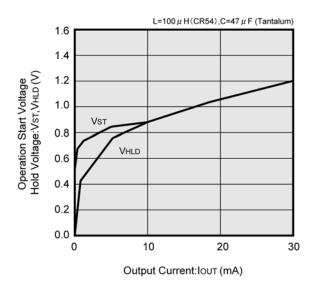
(2) Efficiency vs. Output Current



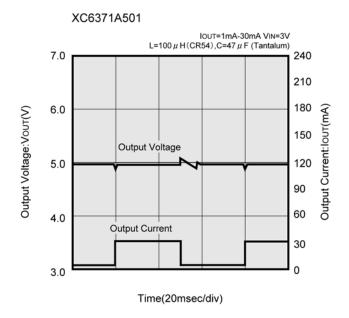


XC6371A301PR

(3) Ripple Voltage vs. Output Current



(4) No Load Input Current vs. Input Voltage

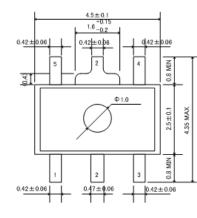


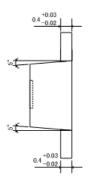
(5) Operation Start Voltage / Hold Voltage vs. Output Current

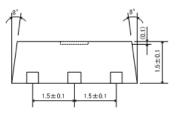
XC6371A501

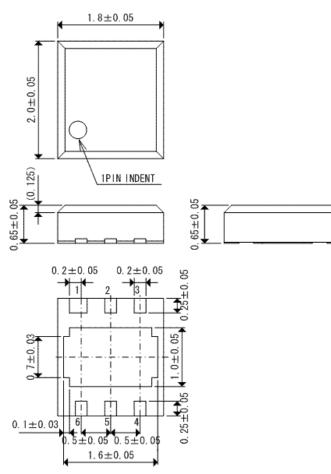


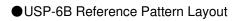
(6) Load Transient Response

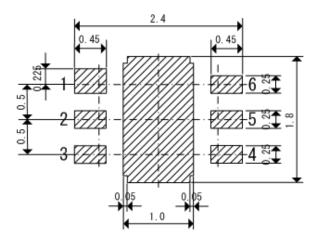


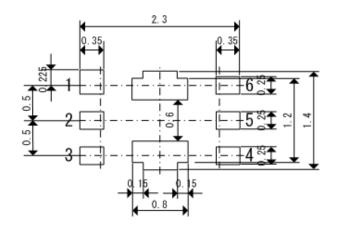

■ PACKAGING INFORMATION


●SOT-89

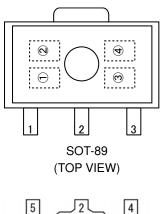

●SOT-89-5

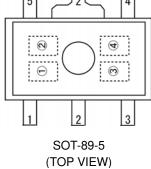



●USP-6B


TOIREX 13/17

■ PACKAGING INFORMATION (Continued)


●USP-6B Reference Metal Mask Design



■MARKING RULE

[XC6371/XC6372]

●SOT-89, SOT-89-5

① represents product series

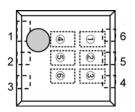
MARK	PRODUCT SERIES	MARK	PRODUCT SERIES
A	XC6371A	1	XC6372A
Ā	XC6371C	1	XC6372C

2 represents integer of output voltage and oscillation frequency

OUTPUT VOLTAGE (V)	OSCILLATION FREQUENCY				
	50kHz	100kHz	180kHz		
1.x	В	1	1		
2.x	С	2	2		
3.x	F	3	3		
4.x	E	4	4		
5.x	F	5	5		
6.x	Н	6	6		
7.x	K	7	7		

③ represents decimal number of output voltage and oscillation frequency

OUTPUT VOLTAGE (V)	OSCILLATION FREQUENCY					
OUTFUT VOLIAGE (V)	50kHz	100kHz	180kHz			
x.0	0	0	А			
x.1	1	1	В			
x.2	2	2	С			
x.3	3	3	D			
x.4	4	4	E			
x.5	5	5	F			
x.6	6	6	Н			
x.7	7	7	K			
x.8	8	8	L			
x.9	9	9	М			


④ represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded).

■MARKING RULE (Continued)

[XC6371/XC6372] (Continued)

●USP-6B

USP-6B (TOP VIEW)

① represents product series

MARK	PRODUCT SERIES
5	XC6371xxxxDx
2	XC6372xxxxDx

2 represents product classification

MARK	PRODUCT SERIES
A	XC6371A
С	XC6371C

3 epresents output voltage (ex.)

MARK		
3	4	OUTPUT VOLTAGE (V)
3	3	3.3
5	0	5.0

(5) represents oscillation frequency

MARK	OSCILLATION FREQUENCY (kHz)
0	50
1	100
2	180

(6) represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded) Note: No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.

(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)

- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.