mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Virtex-6 FPGA Data Sheet: DC and Switching Characteristics

DS152 (v3.4) January 12, 2012

Product Specification

Virtex-6 FPGA Electrical Characteristics

Virtex®-6 FPGAs are available in -3, -2, -1, and -1L speed grades, with -3 having the highest performance. Virtex-6 FPGA DC and AC characteristics are specified in commercial, extended, industrial, and military temperature ranges. Unless noted, the Virtex-6Q FPGA DC and AC characteristics are equivalent to the commercial specifications. Except for the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices are available in the extended, industrial, or military temperature ranges.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

Available device and package combinations can be found at:

- DS150: Virtex-6 Family Overview
- <u>DS155</u>: Defense-Grade Virtex-6Q Family Overview

This Virtex-6 FPGA data sheet, part of an overall set of documentation on the Virtex-6 FPGAs, is available on the Xilinx website at: http://www.xilinx.com/support/documentation/virtex-6.htm.

Virtex-6 FPGA DC Characteristics

Table 1: Absolute Maximum Ratings (1)

Symbol	Description		Units
V	Internal supply voltage relative to GND	–0.5 to 1.1	V
▲ CCINT	For -1L devices: Internal supply voltage relative to GND	–0.5 to 1.0	V
V _{CCAUX}	Auxiliary supply voltage relative to GND	–0.5 to 3.0	V
V _{CCO}	Output drivers supply voltage relative to GND	-0.5 to 3.0	V
V _{BATT}	Key memory battery backup supply	–0.5 to 3.0	V
V _{FS}	External voltage supply for eFUSE programming ⁽²⁾	–0.5 to 3.0	V
V _{REF}	Input reference voltage	-0.5 to 3.0	V
V _{IN} ⁽³⁾	2.5V or below I/O input voltage relative to GND ⁽⁴⁾ (user and dedicated I/Os)	–0.5 to V _{CCO} + 0.5	V
V _{TS}	Voltage applied to 3-state 2.5V or below output ⁽⁴⁾ (user and dedicated I/Os)	–0.5 to V _{CCO} + 0.5	V
T _{STG}	Storage temperature (ambient)	-65 to 150	°C
T _{SOL}	Maximum soldering temperature ⁽⁵⁾	+220	°C
Тj	Maximum junction temperature ⁽⁵⁾	+125	°C

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

- 2. When not programming eFUSE, connect V_{FS} to GND.
- 3. 2.5V I/O absolute maximum limit applied to DC and AC signals.
- 4. For I/O operation, refer to UG361: Virtex-6 FPGA SelectIO Resources User Guide.
- 5. For soldering guidelines and thermal considerations, see UG365: Virtex-6 FPGA Packaging and Pinout Specification.

© 2009–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Zynq, Artix, Kintex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Symbol	Description	Min	Мах	Units
	Internal supply voltage relative to GND for all devices except -1L devices.	0.95	1.05	V
V _{CCINT}	For -1L commercial temperature range devices: internal supply voltage relative to GND, $T_j = 0^{\circ}C$ to +85°C	0.87	0.93	V
	For -1L industrial temperature range devices: internal supply voltage relative to GND, $T_j = -40^{\circ}C$ to $+100^{\circ}C$	0.91	0.97	V
V _{CCAUX}	Auxiliary supply voltage relative to GND	2.375	2.625	V
V _{CCO} ⁽¹⁾⁽²⁾⁽³⁾	Supply voltage relative to GND	1.14	2.625	V
V	2.5V supply voltage relative to GND	GND – 0.20	2.625	V
VIN	2.5V and below supply voltage relative to GND	GND – 0.20	V _{CCO} + 0.2	V
I _{IN} ⁽⁵⁾	Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode.	-	10	mA
V _{BATT} ⁽⁶⁾	Battery voltage relative to GND	1.0	2.5	V
V _{FS} ⁽⁷⁾	External voltage supply for eFUSE programming	2.375	2.625	V
	Junction temperature operating range for commercial (C) temperature devices	0	85	°C
т	Junction temperature operating range for extended (E) temperature devices	0	100	°C
l j	Junction temperature operating range for industrial (I) temperature devices	-40	100	°C
	Junction temperature operating range for military (M) temperature devices	-55	125	°C

Table 2: Recommended Operating Conditions

Notes:

1. Configuration data is retained even if $V_{\mbox{\scriptsize CCO}}$ drops to 0V.

2. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, and 2.5V.

3. The configuration supply voltage V_{CC_CONFIG} is also known as V_{CCO_0} .

4. All voltages are relative to ground.

5. A total of 100 mA per bank should not be exceeded.

6. V_{BATT} is required only when using bitstream encryption. If battery is not used, connect V_{BATT} to either ground or V_{CCAUX} .

7. During eFUSE programming, V_{FS} must be within the recommended operating range and $T_j = +15^{\circ}$ C to $+85^{\circ}$ C. Otherwise, V_{FS} can be connected to GND.

Symbol	Description	Min	Тур	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	-	—	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	2.0	-	_	V
I _{REF}	V _{REF} leakage current per pin	-	-	10	μA
١L	Input or output leakage current per pin (sample-tested)	-	-	10	μA
C _{IN} ⁽³⁾	Die input capacitance at the pad	-	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	20	-	80	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.8V$	8	-	40	μA
^I RPU	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.5V$	5	-	30	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.2V$	1	-	20	μA
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 2.5V	3	-	80	μA
IBATT	Battery supply current	-	-	150	nA
n	Temperature diode ideality factor	-	1.0002	-	n
r	Series resistance	-	5	_	Ω

Table 3: DC Characteristics Over Recommended Operating Conditions (1)(2)

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. Maximum value specified for worst case process at 25°C.

3. This measurement represents the die capacitance at the pad, not including the package.

Important Note

Typical values for quiescent supply current are specified at nominal voltage, 85°C junction temperatures (T_j) . Xilinx recommends analyzing static power consumption at $T_j = 85$ °C because the majority of designs operate near the high end of the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 devices. Use the XPowerTM Estimator (XPE) spreadsheet tool (download at <u>http://www.xilinx.com/power</u>) to calculate static power consumption for conditions other than those specified in Table 4.

Table	4:	Typical	Quiescent	Supply	Current
-------	----	---------	-----------	--------	---------

Symbol	Description	Device	Speed and Temperature Grade						Unito
Symbol	Description	Device	-3 (C)	-2 (C, E, & I)	-1 (C & I)	-1 (I & M) ⁽²⁾	-1L (C)	-1L (I) <mark>(1)</mark>	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XC6VLX75T	927	927	927	N/A	656	741	mA
	supply current	XC6VLX130T	1563	1563	1563	N/A	1102	1245	mA
		XC6VLX195T	2059	2059	2059	N/A	1441	1628	mA
		XC6VLX240T	2478	2478	2478	N/A	1733	1957	mA
		XC6VLX365T	3001	3001	3001	N/A	2092	2363	mA
		XC6VLX550T ⁽³⁾	N/A	4515	4515	N/A	3147	3555	mA
		XC6VLX760 ⁽³⁾	N/A	5094	5094	N/A	3471	3921	mA
		XC6VSX315T	3476	3476	3476	N/A	2409	2721	mA
		XC6VSX475T ⁽³⁾	N/A	5227	5227	N/A	3622	4091	mA
		XC6VHX250T	2906	2906	2906	N/A	N/A	N/A	mA
		XC6VHX255T	2746	2746	2746	N/A	N/A	N/A	mA
		XC6VHX380T ⁽⁴⁾	4160	4160	4160	N/A	N/A	N/A	mA
		XC6VHX565T ⁽⁵⁾	N/A	5207	5207	N/A	N/A	N/A	mA
		XQ6VLX130T	N/A	1563	N/A	1563	N/A	1245	mA
		XQ6VLX240T	N/A	2478	N/A	2478	N/A	1957	mA
		XQ6VLX550T ⁽⁷⁾	N/A	N/A	N/A	4515	N/A	3555	mA
		XQ6VSX315T	N/A	3476	N/A	3476	N/A	2721	mA
		XQ6VSX475T ⁽⁷⁾	N/A	N/A	N/A	5227	N/A	4091	mA

Symbol	Description	Dovico	Speed and Temperature Grade						Unite
Symbol	Description	Device	-3 (C)	-2 (C, E, & I)	-1 (C & I)	-1 (I & M) ⁽²⁾	-1L (C)	-1L (I) <mark>(1)</mark>	Units
Iccoq	Quiescent V _{CCO}	XC6VLX75T	1	1	1	N/A	1	1	mA
	supply current	XC6VLX130T	1	1	1	N/A	1	1	mA
		XC6VLX195T	1	1	1	N/A	1	1	mA
		XC6VLX240T	2	2	2	N/A	2	2	mA
		XC6VLX365T	2	2	2	N/A	2	2	mA
		XC6VLX550T ⁽³⁾	N/A	3	3	N/A	3	3	mA
		XC6VLX760 ⁽³⁾	N/A	3	3	N/A	3	3	mA
		XC6VSX315T	2	2	2	N/A	2	2	mA
		XC6VSX475T ⁽³⁾	N/A	2	2	N/A	2	2	mA
		XC6VHX250T	1	1	1	N/A	N/A	N/A	mA
		XC6VHX255T	1	1	1	N/A	N/A	N/A	mA
		XC6VHX380T ⁽⁴⁾	2	2	2	N/A	N/A	N/A	mA
		XC6VHX565T ⁽⁵⁾	N/A	2	2	N/A	N/A	N/A	mA
		XQ6VLX130T	N/A	1	N/A	1	N/A	1	mA
		XQ6VLX240T	N/A	2	N/A	2	N/A	2	mA
		XQ6VLX550T ⁽⁷⁾	N/A	N/A	N/A	3	N/A	3	mA
		XQ6VSX315T	N/A	2	N/A	2	N/A	2	mA
		XQ6VSX475T ⁽⁷⁾	N/A	N/A	N/A	2	N/A	2	mA

Table 4: Typical Quiescent Supply Current (Cont'd)

Symbol	Description	Daviaa	Speed and Temperature Grade						Unito
Symbol	Description	Device	-3 (C)	-2 (C, E, & I)	-1 (C & I)	-1 (I & M) ⁽²⁾	-1L (C)	-1L (I) <mark>(1)</mark>	Units
I _{CCAUXQ}	Quiescent V _{CCAUX}	XC6VLX75T	45	45	45	N/A	45	45	mA
	supply current	XC6VLX130T	75	75	75	N/A	75	75	mA
		XC6VLX195T	113	113	113	N/A	113	113	mA
		XC6VLX240T	135	135	135	N/A	135	135	mA
		XC6VLX365T	191	191	191	N/A	191	191	mA
		XC6VLX550T ⁽³⁾	N/A	286	286	N/A	286	286	mA
		XC6VLX760 ⁽³⁾	N/A	387	387	N/A	387	387	mA
		XC6VSX315T	186	186	186	N/A	186	186	mA
		XC6VSX475T ⁽³⁾	N/A	279	279	N/A	279	279	mA
		XC6VHX250T	152	152	152	N/A	N/A	N/A	mA
		XC6VHX255T	152	152	152	N/A	N/A	N/A	mA
		XC6VHX380T ⁽⁴⁾	227	227	227	N/A	N/A	N/A	mA
		XC6VHX565T ⁽⁵⁾	N/A	315	315	N/A	N/A	N/A	mA
		XQ6VLX130T ⁽⁶⁾	N/A	75	N/A	75	N/A	75	mA
		XQ6VLX240T ⁽⁶⁾	N/A	135	N/A	135	N/A	135	mA
		XQ6VLX550T ⁽⁷⁾	N/A	N/A	N/A	286	N/A	286	mA
		XQ6VSX315T ⁽⁶⁾	N/A	186	N/A	186	N/A	186	mA
		XQ6VSX475T ⁽⁷⁾	N/A	N/A	N/A	279	N/A	279	mA

Table 4: Typical Quiescent Supply Current (Cont'd)

Notes:

- Typical values are specified at nominal voltage, 85°C junction temperatures (T_j). -1 and -2 industrial (I) grade devices have the same typical values as commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values. -1L industrial temperature range devices have the values specified in this column.
- 2. Use the XPE tool to calculate 125°C values for -1M temperature range devices.
- 3. The -2E extended temperature range ($T_j = 0^{\circ}C$ to +100°C) is only available in these devices. The -2I temperature range ($T_j = -40^{\circ}C$ to +100°C) is available for all other devices except the XC6VHX565T.
- 4. The XC6VHX380T is available with both -2E and -2I temperature ranges.
- 5. The XC6VHX565T is only available in the following temperature ranges: -1C, -1I, -2C, and -2E.
- 6. The XQ6VLX130T, XQ6VLX240T, and XQ6VSX315T are available in -2I, -1I, -1M, and -1LI temperature ranges.
- 7. The XQ6VLX550T and the XQ6VSX475T are only available in -1I and -1LI temperature ranges.
- 8. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 9. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPE or XPower Analyzer (XPA) tools.

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on sequence and ramp rate of the power supply.

The recommended power-on sequence for Virtex-6 devices is V_{CCINT} , V_{CCAUX} , and V_{CCO} to meet the power-up current requirements listed in Table 5. V_{CCINT} can be powered up or down at any time, but power up current specifications can vary from Table 5. The device will have no physical damage or reliability concerns if V_{CCINT} , V_{CCAUX} , and V_{CCO} sequence cannot be followed.

If the recommended power-up sequence cannot be followed and the I/Os must remain 3-stated throughout configuration, then V_{CCAUX} must be powered prior to V_{CCO} or V_{CCAUX} and V_{CCO} must be powered by the same supply. Similarly, for powerdown, the reverse V_{CCAUX} and V_{CCO} sequence is recommended if the I/Os are to remain 3-stated.

The GTH transceiver supplies must be powered using a MGTHAVCC, MGTHAVCCRX, MGTHAVCCPLL, and MGTHAVTT sequence. There are no sequencing requirement for these supplies with respect to the other FPGA supply voltages. For more detail see Table 27: *GTH Transceiver Power Supply Sequencing*. There are no sequencing requirements for the GTX transceivers power supplies.

Table 5 shows the minimum current, in addition to I_{CCQ} , that are required by Virtex-6 devices for proper power-on and configuration. If the current minimums shown in Table 4 and Table 5 are met, the device powers on after all three supplies have passed through their power-on reset threshold voltages. The FPGA must be configured after applying V_{CCINT} , V_{CCAUX} , and V_{CCO} for the appropriate configuration banks. Once initialized and configured, use the XPE tools to estimate current drain on these supplies.

Device				Units
	Тур(т)	Тур(т)	Тур(т)	
XC6VLX75T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 10	I _{CCOQ} + 30 mA per bank	mA
XC6VLX130T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 10	I _{CCOQ} + 30 mA per bank	mA
XC6VLX195T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VLX240T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VLX365T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VLX550T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VLX760	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VSX315T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VSX475T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 50	I _{CCOQ} + 30 mA per bank	mA
XC6VHX250T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VHX255T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VHX380T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XC6VHX565T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 40	I _{CCOQ} + 30 mA per bank	mA
XQ6VLX130T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 100	I _{CCOQ} + 30 mA per bank	mA
XQ6VLX240T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 100	I _{CCOQ} + 30 mA per bank	mA
XQ6VLX550T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 100	I _{CCOQ} + 30 mA per bank	mA
XQ6VSX315T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 100	I _{CCOQ} + 40 mA per bank	mA
XQ6VSX475T	See I _{CCINTQ} in Table 4	I _{CCAUXQ} + 100	I _{CCOQ} + 40 mA per bank	mA

Table 5: Power-On Current for Virtex-6 Devices

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. Use the XPower Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.

Table 6:	Power	Supply	Ramp	Time
----------	-------	--------	------	------

Symbol	Description	Ramp Time	Units
V _{CCINT}	Internal supply voltage relative to GND	0.20 to 50.0	ms
V _{CCO}	Output drivers supply voltage relative to GND	0.20 to 50.0	ms
V _{CCAUX}	Auxiliary supply voltage relative to GND	0.20 to 50.0	ms

SelectIO[™] DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

1/O Standard	V _{IL}		V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{ОН}
i/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
LVCMOS25, LVDCI25	-0.3	0.7	1.7	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	Note(3)	Note(3)
LVCMOS18, LVDCI18	-0.3	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.3	0.45	V _{CCO} – 0.45	Note(4)	Note(4)
LVCMOS15, LVDCI15	-0.3	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.3	25% V _{CCO}	75% V _{CCO}	Note(4)	Note(4)
LVCMOS12	-0.3	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.3	25% V _{CCO}	75% V _{CCO}	Note(5)	Note(5)
HSTL I_12	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	25% V _{CCO}	75% V _{CCO}	6.3	6.3
HSTL I ⁽²⁾	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	8	-8
HSTL II ⁽²⁾	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	$V_{CCO} - 0.4$	16	-16
HSTL III ⁽²⁾	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	0.4	V _{CCO} – 0.4	24	-8
DIFF HSTL I ⁽²⁾	-0.3	50% V _{CCO} - 0.1	50% V _{CCO} + 0.1	V _{CCO} + 0.3	-	-	-	-
DIFF HSTL II ⁽²⁾	-0.3	50% V _{CCO} – 0.1	50% V _{CCO} + 0.1	V _{CCO} + 0.3	-	-	-	-
SSTL2 I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCO} + 0.3	V _{TT} – 0.61	V _{TT} + 0.61	8.1	-8.1
SSTL2 II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCO} + 0.3	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
DIFF SSTL2 I	-0.3	50% V _{CCO} – 0.15	50% V _{CCO} + 0.15	V _{CCO} + 0.3	_	_	_	-
DIFF SSTL2 II	-0.3	50% V _{CCO} – 0.15	50% V _{CCO} + 0.15	V _{CCO} + 0.3	_	_	-	-
SSTL18 I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.3	V _{TT} – 0.47	V _{TT} + 0.47	6.7	-6.7
SSTL18 II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.3	V _{TT} – 0.60	V _{TT} + 0.60	13.4	-13.4
DIFF SSTL18 I	-0.3	50% V _{CCO} – 0.125	50% V _{CCO} + 0.125	V _{CCO} + 0.3	_	_	-	-
DIFF SSTL18 II	-0.3	50% V _{CCO} – 0.125	50% V _{CCO} + 0.125	V _{CCO} + 0.3	-	_	-	-
SSTL15	-0.3	V _{REF} – 0.1	V _{REF} + 0.1	V _{CCO} + 0.3	V _{TT} – 0.175	V _{TT} + 0.175	14.3	14.3

Table 7: SelectIO DC Input and Output Levels

Notes:

- 1. Tested according to relevant specifications.
- 2. Applies to both 1.5V and 1.8V HSTL.
- 3. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.
- 4. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
- 5. Supported drive strengths of 2, 4, 6, or 8 mA.
- 6. For detailed interface specific DC voltage levels, see UG361: Virtex-6 FPGA SelectIO Resources User Guide.

HT DC Specifications (HT_25)

Table 8: HT DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.38	2.5	2.63	V
V _{OD}	Differential Output Voltage for XC devices	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	480	600	885	mV
	Differential Output Voltage for XQ devices		480	600	930	mV
ΔV_{OD}	Change in V _{OD} Magnitude		-15	_	15	mV
V _{OCM}	Output Common Mode Voltage	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	440	600	760	mV
ΔV_{OCM}	Change in V _{OCM} Magnitude		-15	-	15	mV
V _{ID}	Input Differential Voltage		200	600	1000	mV
ΔV_{ID}	Change in V _{ID} Magnitude		-15	_	15	mV
V _{ICM}	Input Common Mode Voltage		440	600	780	mV
ΔV_{ICM}	Change in V _{ICM} Magnitude		-15	-	15	mV

LVDS DC Specifications (LVDS_25)

Table 9: LVDS DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.38	2.5	2.63	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	-	-	1.675	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.825	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	$R_T = 100 \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage for XC devices	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.075	1.250	1.425	V
	Output Common-Mode Voltage for XQ devices		1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage (Q $-\overline{Q}$), Q = High ($\overline{Q} - Q$), \overline{Q} = High		100	350	600	mV
V _{ICM}	Input Common-Mode Voltage		0.3	1.2	2.2	V

Extended LVDS DC Specifications (LVDSEXT_25)

Table 10: Extended LVDS DC Specifications

Symbol	DC Parameter	Parameter Conditions			Max	Units
V _{CCO}	Supply Voltage		2.38	2.5	2.63	V
V _{OH}	Output High Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	_	-	1.785	V
V _{OL}	Output Low Voltage for Q and \overline{Q}	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.715	-	-	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, $Q = High (\overline{Q} - Q), \overline{Q} = High$ for XC devices	$R_T = 100 \Omega$ across Q and \overline{Q} signals	350	-	840	mV
	Differential Output Voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High for XQ devices		350	_	850	mV
V _{OCM}	Output Common-Mode Voltage for XC devices	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.075	1.250	1.425	V
	Output Common-Mode Voltage for XQ devices		1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage (Q – \overline{Q}), Q = High (\overline{Q} – Q), \overline{Q} = High	Common-mode input voltage = 1.25V	100	-	1000	mV
V _{ICM}	Input Common-Mode Voltage	Differential input voltage = $\pm 350 \text{ mV}$	0.3	1.2	2.2	V

LVPECL DC Specifications (LVPECL_25)

These values are valid when driving a 100Ω differential load only, i.e., a 100Ω resistor between the two receiver pins. The V_{OH} levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 11 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see <u>UG361</u>: *Virtex-6 FPGA SelectIO Resources User Guide*.

Table 11: LVPECL DC Specifications

Symbol	DC Parameter	Min	Тур	Мах	Units
V _{OH}	Output High Voltage	V _{CC} – 1.025	1.545	V _{CC} – 0.88	V
V _{OL}	Output Low Voltage	V _{CC} – 1.81	0.795	V _{CC} – 1.62	V
V _{ICM}	Input Common-Mode Voltage	0.6	_	2.2	V
V _{IDIFF}	Differential Input Voltage ⁽¹⁾⁽²⁾	0.100	-	1.5	V

Notes:

- 1. Recommended input maximum voltage not to exceed V_{CCAUX} + 0.2V.
- 2. Recommended input minimum voltage not to go below -0.5V.

eFUSE Read Endurance

 Table 12 lists the maximum number of read cycle operations expected. For more information, see UG360: Virtex-6 FPGA

 Configuration User Guide.

Table 12: eFUSE Read Endurance

Symbol	Description	Speed Grade			Unite	
Symbol	Description	-3 -2 -1 -1L				Units
DNA_CYCLES	Number of DNA_PORT READ operations or JTAG ISC_DNA read command operations. Unaffected by SHIFT operations.	30,000,000				Read Cycles
AES_CYCLES	Number of JTAG FUSE_KEY or FUSE_CNTL read command operations. Unaffected by SHIFT operations.	30,000,000			Read Cycles	

GTX Transceiver Specifications

GTX Transceiver DC Characteristics

Table 13: Absolute Maximum Ratings for GTX Transceivers⁽¹⁾

Symbol	Description	Min	Max	Units
MGTAVCC	Analog supply voltage for the GTX transmitter and receiver circuits relative to GND	-0.5	1.1	V
MGTAVTT	Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND	-0.5	1.32	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTX transceiver column	-0.5	1.32	V
V _{IN}	Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage	-0.5	1.32	V
V _{MGTREFCLK}	Reference clock absolute input voltage	-0.5	1.32	V

Notes:

 Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table	14:	Recommended	Operating	Conditions	for GTX	1)(2)
Table	17.	necommenaca	operating	Contaitions		· · · ·

Symbol Description		Speed Grade	PLL Frequency	Min	Тур	Max	Units
		-3, -2 ⁽³⁾	> 2.7 GHz	1.0	1.03	1.06	V
MGTAVCC	Analog supply voltage for the GTX transmitter and receiver circuits relative to GND	-3, -2 ⁽³⁾	\leq 2.7 GHz	0.95	1.0	1.06	V
		-1	\leq 2.7 GHz	0.95	1.0	1.06	V
		-1L	\leq 2.7 GHz	0.95	1.0	1.05	V
MGTAVTT	Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND	All –		1.14	1.2	1.26	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTX transceiver column	All	-	1.14	1.2	1.26	V

Notes:

1. Each voltage listed requires the filter circuit described in UG366: Virtex-6 FPGA GTX Transceivers User Guide.

- 2. Voltages are specified for the temperature range of $T_j = -40^{\circ}C$ to +100°C for all XC devices and $T_j = -55^{\circ}C$ to +125°C for the XQ devices 3. If a GTX Quad contains transceivers operating with a mixture of PLL frequencies above and below 2.7 GHz, the MGTAVCC voltage supply
- must be in the range of 1.0V to 1.06V.

Table 15: GTX Transceiver Supply Current (per Lane) (1)(2)

Symbol	Description	Тур	Max	Units
I _{MGTAVTT}	MGTAVTT supply current for one GTX transceiver	55.9	Noto 2	mA
I _{MGTAVCC}	/CC MGTAVCC supply current for one GTX transceiver		NOIG 2	mA
MGTR _{REF}	Precision reference resistor for internal calibration termination	100.0 ± 1% tolerance		Ω

Notes:

- 1. Typical values are specified at nominal voltage, 25°C, with a 3.125 Gb/s line rate.
- 2. Values for currents of other transceiver configurations and conditions can be obtained by using the XPower Estimator (XPE) or XPower Analyzer (XPA) tools.

Table 16: GTX Transceiver Quiescent Supply Current (per Lane) (1)(2)(3)

Symbol	Description	Typ <mark>(4)</mark>	Мах	Units
IMGTAVTTQ	Quiescent MGTAVTT supply current for one GTX transceiver	0.9	Note 2	mA
IMGTAVCCQ	Quiescent MGTAVCC supply current for one GTX transceiver	3.5	Note 2	mA

Notes:

1. Device powered and unconfigured.

2. Currents for conditions other than values specified in this table can be obtained by using the XPE or XPA tools.

3. GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTX transceivers.

4. Typical values are specified at nominal voltage, 25°C.

GTX Transceiver DC Input and Output Levels

Table 17 summarizes the DC output specifications of the GTX transceivers in Virtex-6 FPGAs. Consult <u>UG366</u>: *Virtex-6* FPGA GTX Transceivers User Guide for further details.

Table	17:	GTX	Transceiver	DC	Specifications
-------	-----	-----	-------------	----	----------------

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
	Differential peak-to-peak input	External AC coupled \leq 4.25 Gb/s	125	-	2000	mV
DVPPIN	voltage	External AC coupled > 4.25 Gb/s	175	-	2000	mV
V _{IN}	Absolute input voltage	DC coupled MGTAVTT = 1.2V	-400	_	MGTAVTT	mV
V _{CMIN}	Common mode input voltage	DC coupled MGTAVTT = 1.2V	-	2/3 MGTAVTT	-	mV
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	-	_	1000	mV
V _{CMOUTDC}	DC common mode output voltage.	Equation based	MGTAVTT – DV _{PPOUT} /4			mV
R _{IN}	Differential input resistance		80	100	130	Ω
R _{OUT}	Differential output resistance		80	100	120	Ω
T _{OSKEW}	Transmitter output pair (TXP and	I TXN) intra-pair skew	_	2	8	ps
C _{EXT}	Recommended external AC coup	pling capacitor ⁽²⁾	_	100	_	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in UG366: *Virtex-6 FPGA GTX Transceivers User Guide* and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

Figure 1: Single-Ended Peak-to-Peak Voltage

Figure 2: Differential Peak-to-Peak Voltage

 Table 18 summarizes the DC specifications of the clock input of the GTX transceiver. Consult UG366: Virtex-6 FPGA GTX

 Transceivers User Guide for further details.

Table	18:	GTX	Transceiver	Clock	DC Ir	nput l	Level S	Specification
-------	-----	-----	-------------	-------	-------	--------	---------	---------------

Symbol	DC Parameter	Min	Тур	Max	Units
VIDIFF	Differential peak-to-peak input voltage	210	800	2000	mV
R _{IN}	Differential input resistance	90	100	130	Ω
C _{EXT}	Required external AC coupling capacitor	-	100	-	nF

GTX Transceiver Switching Characteristics

Consult UG366: Virtex-6 FPGA GTX Transceivers User Guide for further information.

Table 19: GTX Transceiver Performance

Symbol	Description	Speed Grade			Unite	
	Description	-3	-2	-1	-1L	Units
F _{GTXMAX}	Maximum GTX transceiver data rate	6.6	6.6	5.0	5.0	Gb/s
F _{GPLLMAX}	Maximum PLL frequency	3.3 ⁽¹⁾	3.3 ⁽¹⁾	2.7	2.7	GHz
F _{GPLLMIN}	Minimum PLL frequency	1.2	1.2	1.2	1.2	GHz

Notes:

1. See Table 14 for MGTAVCC requirements when PLL frequency is greater than 2.7 GHz.

Table 20: GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description	Speed Grade			Speed Grade	Unite
	Description	-3	-2	-1	-1L	Units
F _{GTXDRPCLK}	GTXDRPCLK maximum frequency	150	150	125	100	MHz

Symbol	Description	Description Conditions	AI	ades	Unite	
Symbol	Description	Conditions	Min	Тур	Max	
F _{GCLK}	Reference clock frequency range		62.5	-	650	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	_	200	_	ps
T _{FCLK}	Reference clock fall time	80% – 20%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	45	50	55	%
Т _{LOCK}	Clock recovery frequency acquisition time	Initial PLL lock	-	-	1	ms
T _{PHASE}	Clock recovery phase acquisition time	Lock to data after PLL has locked to the reference clock	-	-	200	μs

Table 21: GTX Transceiver Reference Clock Switching Characteristics

Figure 3: Reference Clock Timing Parameters

Table 22: GTX Transceiver User Clock Switching Characteristics⁽¹⁾

Symbol	Description	Conditions		Speed	Grade		Unito
Symbol	Description	Conditions	-3	-2	-1	-1L	Units
E		Internal 20-bit data path	330	330	250	250	MHz
' TXOUT	TXOOTOER maximum requency	Internal 16-bit data path	412.5	412.5	312.5	250	MHz
E		Internal 20-bit data path	330	330	250	250	MHz
RXREC	INTEGER maximum nequency	Internal 16-bit data path	412.5	412.5	312.5	250	MHz
T _{RX}	RXUSRCLK maximum frequency		412.5 ⁽²⁾	412.5 <mark>(2)</mark>	312.5	250	MHz
		1 byte interface	376	376	312.5	250	MHz
T _{RX2}	RXUSRCLK2 maximum frequency	2 byte interface	406.25	406.25	312.5	250	MHz
		4 byte interface	206.25	206.25	156.25	125	MHz
T _{TX}	TXUSRCLK maximum frequency		412.5 ⁽³⁾	412.5 ⁽³⁾	312.5	250	MHz
		1 byte interface	376	376	312.5	250	MHz
T _{TX2}	TXUSRCLK2 maximum frequency	2 byte interface	406.25	406.25	312.5	250	MHz
		4 byte interface	206.25	206.25	156.25	125	MHz

Notes:

1. Clocking must be implemented as described in UG366: *Virtex-6 FPGA GTX Transceivers User Guide*.

2. 406.25 MHz when the RX elastic buffer is bypassed.

3. 406.25 MHz when the TX buffer is bypassed.

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTXTX}	Serial data rate range		0.480	-	F _{GTXMAX}	Gb/s
T _{RTX}	TX Rise time	20%-80%	-	120	-	ps
T _{FTX}	TX Fall time	80%–20%	-	120	-	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		-	-	350	ps
V _{TXOOBVDPP}	Electrical idle amplitude		-	-	15	mV
T _{TXOOBTRANSITION}	Electrical idle transition time		-	-	75	ns
TJ _{6.5}	Total Jitter ⁽²⁾⁽³⁾	6 5 Cb/c	-	-	0.33	UI
DJ _{6.5}	Deterministic Jitter ⁽²⁾⁽³⁾	0.5 GD/S	-	-	0.17	UI
TJ _{5.0}	Total Jitter ⁽²⁾⁽³⁾	5.0 Cb/c	-	-	0.33	UI
DJ _{5.0}	Deterministic Jitter ⁽²⁾⁽³⁾	5.0 GD/S	-	-	0.15	UI
TJ _{4.25}	Total Jitter ⁽²⁾⁽³⁾	4.25 Gb/c	-	-	0.33	UI
DJ _{4.25}	Deterministic Jitter ⁽²⁾⁽³⁾	4.25 Gb/S	-	-	0.14	UI
TJ _{3.75}	Total Jitter ⁽²⁾⁽³⁾	2 75 Ch/c	-	-	0.34	UI
DJ _{3.75}	Deterministic Jitter ⁽²⁾⁽³⁾	3.75 Gb/s	-	-	0.16	UI
TJ _{3.125}	Total Jitter ⁽²⁾⁽³⁾	2 125 Gb/c	-	-	0.2	UI
DJ _{3.125}	Deterministic Jitter ⁽²⁾⁽³⁾	3.125 Gb/S	-	-	0.1	UI
TJ _{3.125L}	Total Jitter ⁽²⁾⁽³⁾	2 125 Ch/c ⁽⁴⁾	-	-	0.35	UI
DJ _{3.125L}	Deterministic Jitter ⁽²⁾⁽³⁾	3.125 GD/S(*)	-	-	0.16	UI
TJ _{2.5}	Total Jitter ⁽²⁾⁽³⁾	$2.5 Gb/c^{(5)}$	-	_	0.20	UI
DJ _{2.5}	Deterministic Jitter ⁽²⁾⁽³⁾	2.5 GD/S(*)	-	-	0.08	UI
TJ _{1.25}	Total Jitter ⁽²⁾⁽³⁾	1.25 Gb/c(6)	-	-	0.15	UI
DJ _{1.25}	Deterministic Jitter ⁽²⁾⁽³⁾	1.25 Gb/S(0)	-	-	0.06	UI
TJ ₆₀₀	Total Jitter ⁽²⁾⁽³⁾	600 Mb/a	-	-	0.1	UI
DJ ₆₀₀	Deterministic Jitter ⁽²⁾⁽³⁾		-	-	0.03	UI
TJ ₄₈₀	Total Jitter ⁽²⁾⁽³⁾	480 Mb/c	-	-	0.1	UI
DJ ₄₈₀	Deterministic Jitter ⁽²⁾⁽³⁾	400 100/5	-	-	0.03	UI

Table 23: GTX Transceiver Transmitter Switching Characteristics

Notes:

1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to 12 consecutive transmitters (three fully populated GTX Quads).

2. Using PLL_DIVSEL_FB = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

3. All jitter values are based on a bit-error ratio of 1e⁻¹².

4. PLL frequency at 1.5625 GHz and OUTDIV = 1.

5. PLL frequency at 2.5 GHz and OUTDIV = 2.

6. PLL frequency at 2.5 GHz and OUTDIV = 4.

Symbol	Descri	ption	Min	Тур	Max	Units
E	Sorial data rato	RX oversampler not enabled	0.600	-	F _{GTXMAX}	Gb/s
GTXRX	Serial Gala Tale	RX oversampler enabled	0.480	-	0.600	Gb/s
T _{RXELECIDLE}	Time for RXELECIDLE to respond	to loss or restoration of data	_	75	-	ns
RX _{OOBVDPP}	OOB detect threshold peak-to-pea	ak	60	-	150	mV
RX _{SST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated @ 33 KHz	-5000	-	0	ppm
RX _{RL}	Run length (CID)	Internal AC capacitor bypassed	_	-	512	UI
DV	Data/REFCLK PPM offset	CDR 2 nd -order loop disabled	-200	-	200	ppm
TAPPMTOL	tolerance	CDR 2 nd -order loop enabled	-2000	-	2000	ppm
SJ Jitter Tolerance ⁽²⁾	1			L	L	<u> </u>
JT_SJ _{6.5}	Sinusoidal Jitter ⁽³⁾	6.5 Gb/s	0.44	-	-	UI
JT_SJ _{5.0}	Sinusoidal Jitter ⁽³⁾	5.0 Gb/s	0.44	-	-	UI
JT_SJ _{4.25}	Sinusoidal Jitter ⁽³⁾	4.25 Gb/s	0.44	-	-	UI
JT_SJ _{3.75}	Sinusoidal Jitter ⁽³⁾	3.75 Gb/s	0.44	_	-	UI
JT_SJ _{3.125}	Sinusoidal Jitter ⁽³⁾	3.125 Gb/s	0.45	_	-	UI
JT_SJ _{3.125L}	Sinusoidal Jitter ⁽³⁾	3.125 Gb/s ⁽⁴⁾	0.45	-	-	UI
JT_SJ _{2.5}	Sinusoidal Jitter ⁽³⁾	2.5 Gb/s ⁽⁵⁾	0.5	_	-	UI
JT_SJ _{1.25}	Sinusoidal Jitter ⁽³⁾	1.25 Gb/s ⁽⁶⁾	0.5	_	-	UI
JT_SJ ₆₀₀	Sinusoidal Jitter ⁽³⁾	600 Mb/s	0.4	_	-	UI
JT_SJ ₄₈₀	Sinusoidal Jitter ⁽³⁾	480 Mb/s	0.4	-	-	UI
SJ Jitter Tolerance with	n Stressed Eye ⁽²⁾			L	L	<u> </u>
	Total litter with Stressed Eve(7)	3.125 Gb/s	0.70	-	-	UI
JI_IJS⊏3.125		5.0 Gb/s	0.70	-	-	UI
	Sinusoidal Jitter with Stressed	3.125 Gb/s	0.1	-	-	UI
JI_3J3⊏3.125	Eye ⁽⁷⁾	5.0 Gb/s	0.1	-	-	UI

Table 24: GTX Transceiver Receiver Switching Characteristics

Notes:

- 1. Using PLL_RXDIVSEL_OUT = 1, 2, and 4.
- 2. All jitter values are based on a bit error ratio of $1e^{-12}$.
- 3. The frequency of the injected sinusoidal jitter is 80 MHz.
- 4. PLL frequency at 1.5625 GHz and OUTDIV = 1.
- 5. PLL frequency at 2.5 GHz and OUTDIV = 2.
- 6. PLL frequency at 2.5 GHz and OUTDIV = 4.
- 7. Composite jitter with RX equalizer enabled. DFE disabled.

GTH Transceiver Specifications

GTH Transceiver DC Characteristics

Table 25: Absolute Maximum Ratings for GTH Transceivers⁽¹⁾

Symbol	Description	Min	Max	Units
MGTHAVCC	Analog supply voltage for the GTH transmitter, receiver, and common analog circuits	-0.5	1.125	V
MGTHAVCCRX	Analog supply voltage for the GTH receiver circuits and common analog circuits	-0.5	1.125	V
MGTHAVTT	Analog supply voltage for the GTH transmitter termination circuits	-0.5	1.32	V
MGTHAVCCPLL	Analog supply voltage for the GTH receiver and PLL circuits	-0.5	1.935	V
V _{IN}	Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage	-0.5	1.125	V
V _{MGTREFCLK}	Reference clock absolute input voltage	-0.5	1.935	V

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 26: Recommended Operating Conditions for GTH Transceivers (1)(2)

Symbol	Description	Min	Тур	Max	Units
MGTHAVCC	Analog supply voltage for the GTH transmitter, receiver, and common analog circuits	1.075	1.1	1.125	V
MGTHAVCCRX	Analog supply voltage for the GTH receiver circuits and common analog circuits	1.075	1.1	1.125	V
MGTHAVTT	Analog supply voltage for the GTH transmitter termination circuits	1.140	1.2	1.26	V
MGTHAVCCPLL	Analog supply voltage for the GTH receiver and PLL circuit	1.710	1.8	1.89	V

Notes:

1. Each voltage listed requires the filter circuit described in UG371: Virtex-6 FPGA GTH Transceivers User Guide.

2. Voltages are specified for the temperature range of $T_i = -40^{\circ}C$ to $+100^{\circ}C$.

Table 27: GTH Transceiver Power Supply Sequencing (1)(2)(3)

Symbol	Description	Min	Max	Units
T _{HAVCC2HAVCCRX}	Maximum time between powering MGTHAVCC to when MGTHAVCCRX must be powered.	0	5	ms
T _{HAVCCRX2HAVCCPLL}	Minimum time between powering MGTHAVCCRX to when MGTHAVCCPLL can be powered.	10	-	μs
T _{HAVCCRX2HAVTT}	Minimum time between powering MGTHAVCCRX to when MGTHAVTT can be powered.	10	-	μs

Notes:

- 1. MGTHAVCCRX must be powered simultaneously or within T_{HAVCC2HAVCCRX} of MGTHAVCC, but it must not precede MGTHAVCC.
- 2. MGTHAVCC and MGTHAVCCRX must be powered before MGTHAVCCPLL and MGTHAVTT. This minimum time is defined by T_{HAVCCRX2HAVCCPLL} and T_{HAVCCRX2HAVTT}.
- 3. At any time, the condition of MGTHAVCC being present and MGTHAVCCRX not being present should not occur for more than the maximum THAVCC2HAVCCRX.

Figure 4 shows the timing parameters in Table 27.

Figure 4: GTH Transceiver Power Supply Power-On Sequencing

Table 28: GTH Transceiver Supply Current

Symbol	Description	Typ <mark>(1)</mark>	Max	Units
I _{MGTHAVCC}	MGTHAVCC supply current for one GTH Quad (4 lanes)	571	Note 2	mA
IMGTHAVCCRX	MGTHAVCCRX supply current for a GTH Quad (4 lanes)	254	Note 2	mA
I _{MGTHAVTT}	MGTHAVTT supply current for one GTH Quad (4 lanes)	93	Note 2	mA
I _{MGTHAVCCPLL}	MGTHAVCCPLL supply current for one GTH Quad (4 lanes)	219	Note 2	mA
MGTR _{REF}	Precision reference resistor for internal calibration termination	1000.0 ± 19	% tolerance	Ω

Notes:

1. Typical values are specified at nominal voltage, 25°C, with a 10.3125 Gb/s line rate.

 Values for currents other than the values specified in this table can be obtained by using the XPower Estimator (XPE) or XPower Analyzer (XPA) tools.

Table 29: GTH Transceiver Quiescent Supply Current⁽¹⁾⁽²⁾

Symbol	Description	Typ <mark>(3)</mark>	Max	Units
IMGTHAVCCQ	Quiescent MGTHAVCC Supply Current for one GTH Quad (4 lanes)	65	Note 4	mA
I _{MGTHAVCCRXQ}	Quiescent MGTHAVCCRX Supply Current for one GTH Quad (4 lanes)	17	Note 4	mA
I _{MGTHAVTTQ}	Quiescent MGTHAVTT Supply Current for one GTH Quad (4 lanes)	1	Note 4	mA
I _{MGTHAVCCPLLQ}	Quiescent MGTHAVCCPLL Supply Current for one GTH Quad (4 lanes)	1	Note 4	mA

Notes:

1. Device powered and unconfigured.

2. GTH transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTH transceivers.

3. Typical values are specified at nominal voltage, 25°C.

4. Currents for conditions other than values specified in this table can be obtained by using the XPE or XPA tools.

GTH Transceiver DC Input and Output Levels

Table 30 summarizes the DC output specifications of the GTH transceivers in Virtex-6 FPGAs. Consult <u>UG371</u>: *Virtex-6* FPGA GTH Transceivers User Guide for further details.

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
D _{VPPIN}	Differential peak-to-peak input voltage	External AC coupled	175	-	1200	mV
D _{VPPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	800	-	1200	mV
R _{IN}	Differential input resistance		80	100	120	Ω
R _{OUT}	Differential output resistance		80	100	120	Ω
T _{OSKEW}	Transmitter output pair (TXP and TXN) intra-pair skew		-	2	-	ps
C _{EXT}	Recommended external AC coupling capacitor ⁽²⁾		1	100	_	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in UG371: Virtex-6 FPGA GTH Transceivers User Guide and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

 Table 31 summarizes the DC specifications of the clock input of the GTH transceiver. Consult UG371: Virtex-6 FPGA GTH

 Transceivers User Guide for further details.

Table 31: GTH Transceiver Clock DC Input Level Specification

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
VIDIFF	Differential peak to peak input voltage	≤ 600 MHz	500	-	1600	mV
	Differential peak-to-peak input voltage	> 600 MHz	600	_	1600	mV
R _{IN}	Differential input resistance		80	100	120	Ω
C _{EXT}	Required external AC coupling capacitor		-	100	-	nF

GTH Transceiver Switching Characteristics

Consult UG371: Virtex-6 FPGA GTH Transceivers User Guide for further information.

Table 32: GTH Transceiver Maximum Data Rate and PLL Frequency Range

Symbol	Description	Conditions	S	Unito		
		Conditions	-3	-2	-1	Units
F _{GTHMAX}	Maximum GTH transceiver data rate	PLL Output Divider = 1	11.182	11.182	10.32	Gb/s
		PLL Output Divider = 4	2.795	2.795	2.58	Gb/s
F _{GTHMIN}	Minimum GTH transceiver data rate ⁽¹⁾	PLL Output Divider = 1	9.92	9.92	9.92	Gb/s
		PLL Output Divider = 4	2.48	2.48	2.48	Gb/s
F _{GPLLMAX}	Maximum GTH PLL frequency		5.591	5.591	5.16	GHz
F _{GPLLMIN}	Minimum GTH PLL frequency		4.96	4.96	4.96	GHz

Notes:

1. Lower data rates can be achieved using FPGA logic based oversampling designs.

Table 33: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description		Speed Grade			
	Description	-3	-2	-1	Units	
F _{GTHDRPCLK}	GTHDRPCLK maximum frequency	70	70	60	MHz	

Table 34: GTH Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	All	Unito		
Symbol		Conditions	Min	Тур	Max	Units
E	Potoronoo olook fraguanov rango	-1 speed grade	150	-	645	MHz
FGCLK	Reference clock frequency range	-2 and -3 speed grades	150	-	700	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	-	200	-	ps
T _{FCLK}	Reference clock fall time	80% – 20%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	CLK	45	50	55	%
Т _{LOCK}	Clock recovery frequency acquisition time	Initial PLL lock	-	-	2	ms
T _{PHASE}	Clock recovery phase acquisition time	Lock to data after PLL has locked to the reference clock	-	-	20	μs

Figure 5: Reference Clock Timing Parameters

Symbol	Description	Conditions	9	Unite		
Symbol		Conditions	-3	-2	-1	Units
F _{TXOUT}	TXUSERCLKOUT maximum frequency		350	350	323	MHz
F _{RXOUT}	RXUSERCLKOUT maximum frequency		350	350	323	MHz
		16-bit data path	350	350	323	MHz
		20-bit data path	280	280	258	MHz
		32-bit data path	350	350	323	MHz
F _{TXIN}	TXUSERCLKIN maximum frequency	40-bit data path	280	280	258	MHz
		64-bit data path	175	175	162	MHz
		80-bit data path	140	140	129	MHz
		64B/66B-bit data path	170	170	157	MHz
		16-bit data path	350	350	323	MHz
		20-bit data path	280	280	258	MHz
		32-bit data path	350	350	323	MHz
F _{RXIN}	RXUSERCLKIN maximum frequency	40-bit data path	280	280	258	MHz
		64-bit data path	175	175	162	MHz
		80-bit data path	140	140	129	MHz
		64B/66B-bit data path	170	170	157	MHz

Table 35: GTH Transceiver User Clock Switching Characteristics (1)

Notes:

1. Clocking must be implemented as described in UG371: Virtex-6 FPGA GTH Transceivers User Guide.

Table 36: GTH Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units			
T _{RTX}	TX Rise time	20%-80%	_	50 ⁽³⁾	-	ps			
T _{FTX}	TX Fall time	80%–20%	_	50 ⁽³⁾	-	ps			
T _{LLSKEW}	TX lane-to-lane skew	within one GTH Quad	_	-	300	ps			
Transmitter Output Jitte	Transmitter Output Jitter ⁽¹⁾⁽²⁾								
TJ _{11.18}	Total Jitter	11.181 Gb/s	_	-	0.280	UI			
DJ _{11.18}	Deterministic Jitter		_	-	0.170	UI			
TJ _{10.3125}	Total Jitter	10.3125 Gb/s	_	-	0.280	UI			
DJ _{10.3125}	Deterministic Jitter		_	-	0.170	UI			
TJ _{9.953}	Total Jitter	9.953 Gb/s	_	_	0.280	UI			
DJ _{9.953}	Deterministic Jitter		_	-	0.170	UI			
TJ _{2.667}	Total Jitter	2.667 Gb/s	_	_	0.110	UI			
DJ _{2.667}	Deterministic Jitter		_	-	0.060	UI			
TJ _{2.488}	Total Jitter	2.488 Gb/s	_	-	0.110	UI			
DJ _{2.488}	Deterministic Jitter		_	-	0.060	UI			

Notes:

1. These values are NOT intended for protocol specific compliance determinations.

2. All jitter values are based on a bit-error ratio of 1e⁻¹².

3. Rise and fall times are specified at the transmitter package balls.

Symbol		Description	Min	Тур	Max	Units
R _{XRL}	Run length (CID)		8000	-	-	UI
R _{XPPMTOL}	Data/REFCLK PPM off	Data/REFCLK PPM offset tolerance		_	200	ppm
SJ Jitter Tolerance ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾						
JT_SJ _{11.18}	Sinusoidal Jitter	11.18 Gb/s	0.3	-	-	UI
JT_SJ _{10.32}	Sinusoidal Jitter	10.32 Gb/s	0.3	_	-	UI
JT_SJ _{9.95}	Sinusoidal Jitter	9.95 Gb/s	0.3	_	-	UI
JT_SJ _{2.667}	Sinusoidal Jitter	2.667 Gb/s	0.5	_	_	UI
JT_SJ _{2.48}	Sinusoidal Jitter	2.48 Gb/s	0.5	_	_	UI

Notes:

1. These values are NOT intended for protocol specific compliance determinations.

2. All jitter values are based on a bit error ratio of 1e⁻¹².

3. The frequency of the injected sinusoidal jitter is 80 MHz.

4. High-frequency jitter tolerance including 6 db of channel loss at a high frequency of the data rate divided by two.

Ethernet MAC Switching Characteristics

Consult UG368: Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information.

Table 38: Maximum Ethernet	MAC Performance
----------------------------	-----------------

Symbol	Description	Conditions	Speed Grade				Unite
Symbol		Conditions	-3	-2	-1	-1L	Units
FTEMACCLIENT	Client interface maximum	10 Mb/s – 8-bit width	2.5 ⁽¹⁾	2.5 ⁽¹⁾	2.5 ⁽¹⁾	2.5 ⁽¹⁾	MHz
	frequency	100 Mb/s – 8-bit width	25 ⁽²⁾	25 ⁽²⁾	25 ⁽²⁾	25 ⁽²⁾	MHz
		1000 Mb/s - 8-bit width	125	125	125	125	MHz
		1000 Mb/s – 16-bit width	62.5	62.5	62.5	62.5	MHz
		2000 Mb/s - 16-bit width	125	125	125	N/A	MHz
		2500 Mb/s - 16-bit width	156.25	156.25	156.25	N/A	MHz
F _{TEMACPHY}	Physical interface maximum frequency	10 Mb/s – 4-bit width	2.5	2.5	2.5	2.5	MHz
		100 Mb/s – 4-bit width	25	25	25	25	MHz
		1000 Mb/s - 8-bit width	125	125	125	125	MHz
		2000 Mb/s - 8-bit width	250	250	250	N/A	MHz
		2500 Mb/s - 8-bit width	312.5	312.5	312.5	N/A	MHz

Notes:

1. When not using clock enable, the F_{MAX} is lowered to 1.25 MHz.

2. When not using clock enable, the F_{MAX} is lowered to 12.5 MHz.

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 39: Maximum Performance for PCI Express Designs

Symbol	Description		Unito			
	Description	-3	-2	-1	-1L	Units
F _{PIPECLK}	Pipe clock maximum frequency	250	250	250	250	MHz
FUSERCLK	User clock maximum frequency	500	500	250	250	MHz
F _{DRPCLK}	DRP clock maximum frequency	250	250	250	250	MHz

System Monitor Analog-to-Digital Converter Specification

Table 40: Analog-to-Digital Specifications						
Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
$AV_{DD} = 2.5V \pm 5\%, V_{REFP} = 1.2$	5V, V _{REFN} = (DV, ADCCLK = 5.2 MHz, $T_j = -55^{\circ}C$ to 125°C	M-Grade, T	ypical val	ues at T _j =	+35°C
DC Accuracy: All external input	t channels. Bo	oth unipolar and bipolar modes.				
Resolution			10	-	-	Bits
Integral Nonlinearity	INL		-	_	±1	LSBs
Differential Nonlinearity	DNL	No missing codes (T _{MIN} to T _{MAX}) Guaranteed Monotonic	-	-	±0.9	LSBs
Unipolar Offset Error (1)		Uncalibrated	-	±2	±30	LSBs
Bipolar Offset Error (1)		Uncalibrated measured in bipolar mode	-	±2	±30	LSBs
Gain Error		Uncalibrated - External Reference	-	±0.2	±2	%
		Uncalibrated - Internal Reference	-	±2	-	%
Bipolar Gain Error ⁽¹⁾		Uncalibrated - External Reference	-	±0.2	±2	%
		Uncalibrated - Internal Reference	-	±2	-	%
Total Unadjusted Error (Uncalibrated)	TUE	Deviation from ideal transfer function. External 1.25V reference	-	±10	-	LSBs
		Deviation from ideal transfer function. Internal reference	-	±20	-	LSBs
Total Unadjusted Error (Calibrated)	TUE	Deviation from ideal transfer function. External 1.25V reference	-	±1	±2	LSBs
Calibrated Gain Temperature Coefficient		Variation of FS code with temperature	_	±0.01	-	LSB/°C
DC Common-Mode Reject	CMRR _{DC}	$V_{N} = V_{CM} = 0.5V \pm 0.5V,$ $V_{P} - V_{N} = 100mV$	-	70	-	dB
Conversion Rate ⁽²⁾	-!	1	ŧ			
Conversion Time - Continuous	t _{CONV}	Number of CLK cycles	26	-	32	
Conversion Time - Event	t _{CONV}	Number of CLK cycles	-	_	21	
T/H Acquisition Time	t _{ACQ}	Number of CLK cycles	4	_	_	
DRP Clock Frequency	DCLK	DRP clock frequency	8	_	80	MHz
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	-	5.2	MHz
CLK Duty cycle			40	_	60	%

Table 40: Analog-to-Digital Specifications (Cont'd)

Parameter	Symbol Comments/Conditions		Min	Тур	Max	Units	
Analog Inputs ⁽³⁾							
Dedicated Analog Inputs		Unipolar Operation	0	_	1	Volts	
Input Voltage Range		Bipolar Operation	-0.5	I	+0.5		
*P *N		Unipolar Common Mode Range (FS input)	0	I	+0.5		
		Bipolar Common Mode Range (FS input)	+0.5	I	+0.6		
		Bandwidth	-	20	-	MHz	
Auxiliary Analog Inputs		Unipolar Operation	0	I	1	Volts	
Input Voltage Range		Bipolar Operation	-0.5	I	+0.5		
$V_{AUXN[15]}$		Unipolar Common Mode Range (FS input)	0	Ι	+0.5		
$T_j = -55^{\circ}C$ to $125^{\circ}C$		Bipolar Common Mode Range (FS input)	+0.5	Ι	+0.6		
		Bandwidth	_	10	-	kHz	
Input Leakage Current		A/D not converting, ADCCLK stopped	-	±1.0	-	μA	
Input Capacitance			-	10	-	pF	
On-chip Supply Monitor Error		V_{CCINT} and V_{CCAUX} with calibration enabled. External 1.25V reference $T_j = -55^{\circ}C$ to 125°C.	-	-	±1.0	% Reading	
		V_{CCINT} and V_{CCAUX} with calibration enabled. Internal reference $T_j = -40^{\circ}C$ to $100^{\circ}C$. ⁽⁴⁾	-	±2	-	% Reading	
On-chip Temperature Monitor Error		$T_j = -55^{\circ}C$ to +125°C with calibration enabled. External 1.25V reference.	-	-	±4	°C	
		$T_j = -40^{\circ}$ C to +100°C with calibration enabled. Internal reference. ⁽⁴⁾	-	±5	_	°C	
External Reference Inputs ⁽⁵⁾							
Positive Reference Input Voltage Range	V _{REFP}	Measured Relative to V _{REFN}	1.20	1.25	1.30	Volts	
Negative Reference Input Voltage Range	V _{REFN}	Measured Relative to AGND	-50	0	100	mV	
Input current	I _{REF}	ADCCLK = 5.2 MHz	_	I	100	μA	
Power Requirements							
Analog Power Supply	AV _{DD}	Measured Relative to AV _{SS}	2.375	2.5	2.625	Volts	
Analog Supply Current	AI _{DD}	ADCCLK = 5.2 MHz	-	_	12	mA	

Notes:

1. Offset errors are removed by enabling the System Monitor automatic gain calibration feature.

2. See "System Monitor Timing" in UG370: Virtex-6 FPGA System Monitor User Guide

3. See "Analog Inputs" in UG370: Virtex-6 FPGA System Monitor User Guide for a detailed description.

4. These internal references are not specified over the junction temperature operating range for military (M) temperature devices.

Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted.

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Virtex-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the Switching Characteristics, page 26.

Table 41: Interface Performances

Description	Speed Grade							
Description	-3	-2	-1	-1L				
Networking Applications								
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	710 Mb/s	710 Mb/s	650 Mb/s	585 Mb/s				
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 10)	1.4 Gb/s	1.3 Gb/s	1.25 Gb/s	1.1 Gb/s				
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	710 Mb/s	710 Mb/s	650 Mb/s	585 Mb/s				
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	1.4 Gb/s	1.3 Gb/s	1.1 Gb/s	0.9 Gb/s				
Maximum Physical Interface (PHY) Rate for Memory Interfaces ⁽²⁾⁽³⁾⁽⁴⁾								
DDR2	800 Mb/s	800 Mb/s	800 Mb/s	606 Mb/s				
DDR3	1066 Mb/s	1066 Mb/s	800 Mb/s	800 Mb/s				
QDR II + SRAM	400 MHz	350 MHz	300 MHz	-				
RLDRAM II	500 MHz	400 MHz	350 MHz	-				

Notes:

1. LVDS receivers are typically bounded with certain applications where specific DPA algorithms dominate deterministic performance.

2. Verified on Xilinx memory characterization platforms designed according to the guidelines in UG: Virtex-6 FPGA Memory Interface Solutions User Guide.

 Consult <u>DS186</u>: Virtex-6 FPGA Memory Interface Solutions Data Sheet for performance and feature information on memory interface cores (controller plus PHY).

4. Memory Interface data rates have not been tested over the junction temperature operating range for military (M) temperature devices. Customers are responsible for specifying and testing their specific M temperature grade memory implementation.