

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

XC7SH32

2-input OR gate

Rev. 01 — 2 September 2009

Product data sheet

1. General description

XC7SH32 is a high-speed Si-gate CMOS device. It provides a 2-input OR function.

2. Features

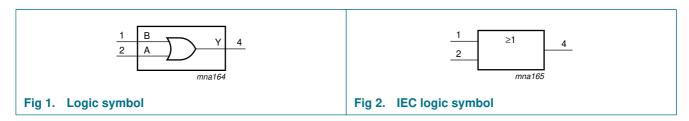
- Symmetrical output impedance
- High noise immunity
- ESD protection:
 - ◆ HBM JESD22-A114E: exceeds 2000 V
 ◆ MM JESD22-A115-A: exceeds 200 V
 ◆ CDM JESD22-C101C: exceeds 1000 V
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options
- Specified from –40 °C to +125 °C

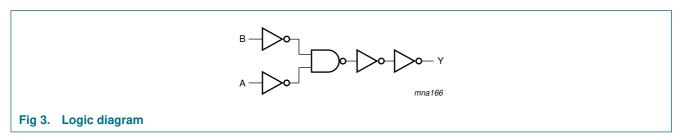
3. Ordering information

Table 1. Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
XC7SH32GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1			
XC7SH32GV	-40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753			

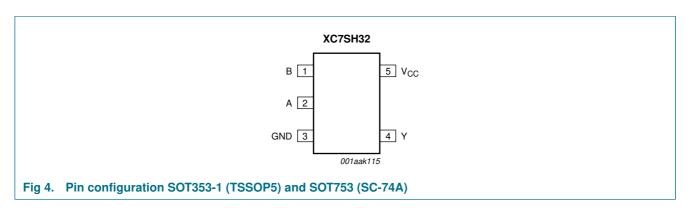
2-input OR gate


4. Marking


Table 2. Marking codes

Type number	Marking code ^[1]
XC7SH32GW	fG
XC7SH32GV	f32

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

6. Pinning information

6.1 Pinning

XC7SH32_1 © NXP B.V. 2009. All rights reserved.

XC7SH32 NXP Semiconductors

2-input OR gate

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
В	1	data input
Α	2	data input
GND	3	ground (0 V)
Υ	4	data output
V_{CC}	5	supply voltage

7. Functional description

Function table

H = HIGH voltage level; L = LOW voltage level

Inputs		Output
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

Limiting values 8.

Table 5. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 V$	-20	-	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	75	mA
I_{GND}	ground current		–75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P_{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For both TSSOP5 and SC-74A packages: above 87.5 $^{\circ}$ C the value of P_{tot} derates linearly with 4.0 mW/K.

2-input OR gate

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
V _O	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	ns/V
		V_{CC} = 5.0 V \pm 0.5 V	-	-	20	ns/V

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	٧
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	٧
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = -50 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.8	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_O = 50 μA ; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
II	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	V_{I} = V_{CC} or GND; I_{O} = 0 A; V_{CC} = 5.5 V	-	-	1.0	-	10	-	40	μΑ
C _I	input capacitance		-	1.5	10	-	10	-	10	pF

2-input OR gate

11. Dynamic characteristics

Table 8. Dynamic characteristics

GND = 0 V. For waveform see Figure 5. For test circuit see Figure 6.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	–40 °C t	to +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation	A and B to Y	<u>[1]</u>	•		•					
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		$C_{L} = 15 pF$		-	4.4	7.9	1.0	9.5	1.0	10.0	ns
		$C_L = 50 pF$		-	6.3	11.4	1.0	13.0	1.0	14.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		$C_{L} = 15 pF$		-	3.2	5.5	1.0	6.5	1.0	7.0	ns
		$C_L = 50 pF$		-	4.6	7.5	1.0	8.5	1.0	9.5	ns
C_{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}$; $f = 1 \text{ MHz}$; $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	16	-	-	-	-	-	pF

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$$

 V_{CC} = supply voltage in Volts.

^[2] Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

^[3] Typical values are measured at $V_{CC} = 5.0 \text{ V}$.

^[4] C_{PD} is used to determine the dynamic power dissipation P_D (μW).

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

2-input OR gate

12. Waveforms

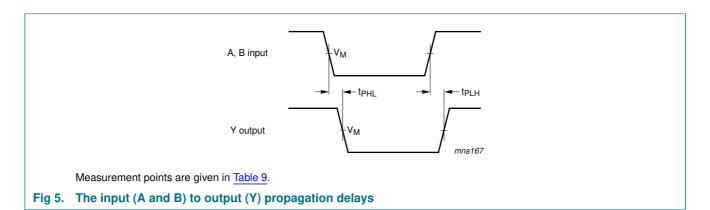


Table 9. Measurement points

Type number	Input C		Output
	V _I	V _M	V _M
XC7SH32	GND to V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

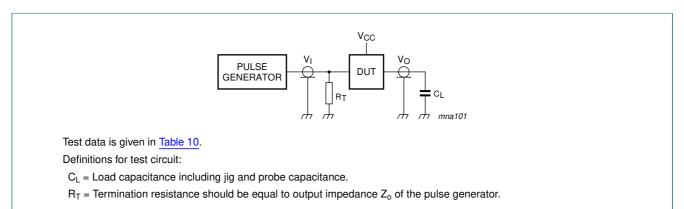
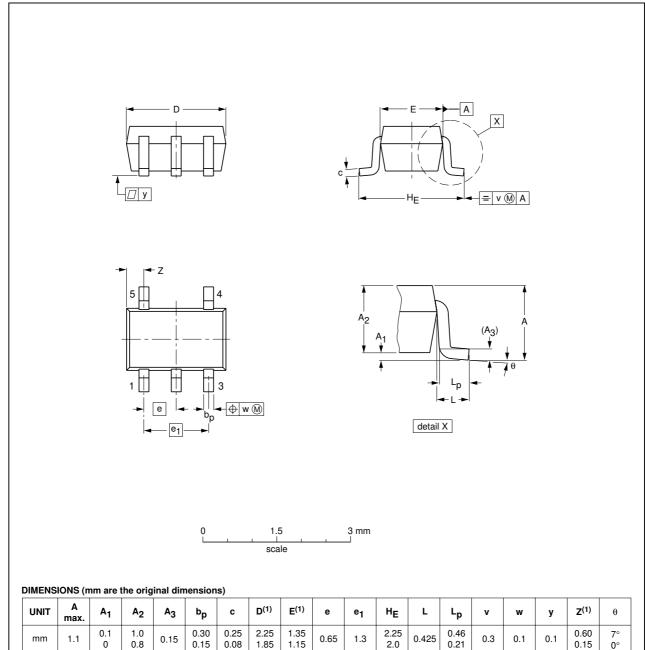


Fig 6. Load circuitry for switching times

Table 10. Test data


Туре	Input L		Load	Test
	VI	t _r , t _f	CL	
XC7SH32	V _{CC}	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

XC7SH32_1 © NXP B.V. 2009. All rights reserved.

13. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

0.15

0.08

1.85

OUTLINE	OUTLINE REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT353-1		MO-203	SC-88A			00-09-01 03-02-19

Fig 7. Package outline SOT353-1 (TSSOP5)

0.8

Plastic surface-mounted package; 5 leads

SOT753

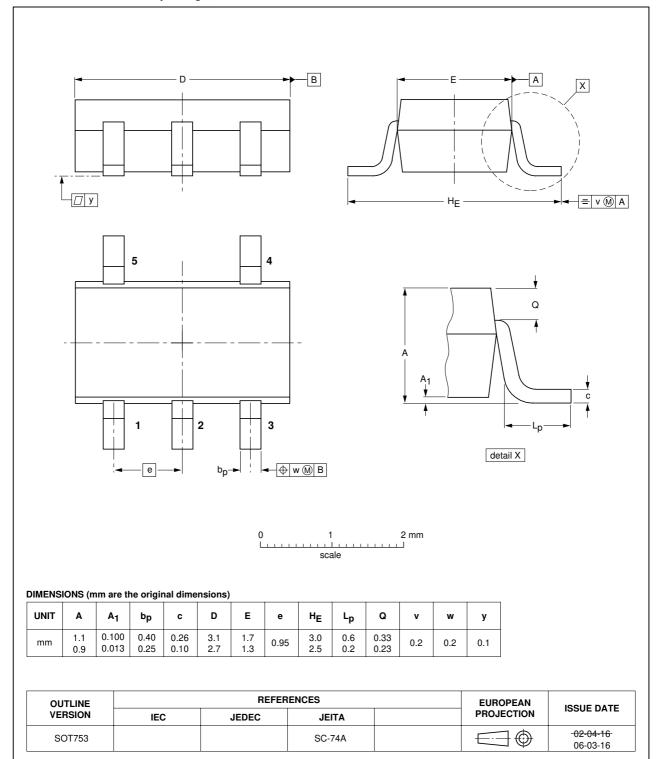


Fig 8. Package outline SOT753 (SC-74A)

2-input OR gate

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
XC7SH32_1	20090902	Product data sheet	-	-

2-input OR gate

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

XC7SH32_1 © NXP B.V. 2009. All rights reserved.

XC7SH32 NXP Semiconductors

2-input OR gate

18. Contents

1	General description 1
2	Features
3	Ordering information
4	Marking 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 4
10	Static characteristics 4
11	Dynamic characteristics 5
12	Waveforms 6
13	Package outline
14	Abbreviations9
15	Revision history 9
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks10
17	Contact information 10
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

