# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





### Zynq-7000 All Programmable SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics

DS187 (v1.19) October 3, 2016

### **Product Specification**

### Introduction

The Zyng®-7000 All Programmable SoCs are available in -3, -2, -1, and -1LI speed grades, with -3 having the highest performance. The -1LI devices can operate at either of two programmable logic (PL) V<sub>CCINT</sub>/V<sub>CCBRAM</sub> voltages, 0.95V and 1.0V, and are screened for lower maximum static power. The speed specification of a -1LI device is the same as the -1 speed grade. When operated at PL  $V_{CCINT}/V_{CCBRAM} = 0.95V$ , the -1LI static and dynamic power is reduced. Zynq-7000 device DC and AC characteristics are specified in commercial, extended, industrial and expanded (Q-temp) temperature ranges. Except for the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices are available in the commercial, extended, industrial, or Q-temp temperature ranges.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

The available device/package combinations are outlined in:

- Zynq-7000 All Programmable SoC Overview (DS190)
- XA Zynq-7000 All Programmable SoC Overview (DS188)
- Defense-grade Zynq-7000Q All Programmable SoC Overview (DS196)

This Zynq-7000 AP SoC data sheet, which covers the specifications for the XC7Z007S, XC7Z012S, XC7Z014S, XC7Z010, XA7Z010, XC7Z015, XC7Z020, XA7Z020, and XQ7Z020, complements the Zynq-7000 AP SoC documentation suite available on the Xilinx website at www.xilinx.com/zynq.

### **DC Characteristics**

### Table 1: Absolute Maximum Ratings<sup>(1)</sup>

| Symbol                                   | Description                                  | Min   | Max                    | Units |
|------------------------------------------|----------------------------------------------|-------|------------------------|-------|
| Processing Sys                           | tem (PS)                                     |       |                        |       |
| V <sub>CCPINT</sub>                      | PS internal logic supply voltage             | -0.5  | 1.1                    | V     |
| V <sub>CCPAUX</sub>                      | PS auxiliary supply voltage                  | -0.5  | 2.0                    | V     |
| V <sub>CCPLL</sub>                       | PS PLL supply                                | -0.5  | 2.0                    | V     |
| V <sub>CCO_DDR</sub>                     | PS DDR I/O supply voltage                    | -0.5  | 2.0                    | V     |
| V <sub>CCO_MIO</sub> <sup>(2)</sup>      | PS MIO I/O supply voltage                    | -0.5  | 3.6                    | V     |
| V <sub>PREF</sub>                        | PS input reference voltage                   | -0.5  | 2.0                    | V     |
| V <sub>PIN</sub> <sup>(2)(3)(4)(5)</sup> | PS MIO I/O input voltage                     | -0.40 | $V_{CCO_{MIO}} + 0.55$ | V     |
| VPIN <sup>(2)(0)(1)(0)</sup>             | PS DDR I/O input voltage                     | -0.55 | $V_{CCO_{DDR}} + 0.55$ | V     |
| Programmable                             | Logic (PL)                                   |       |                        |       |
| V <sub>CCINT</sub>                       | PL internal supply voltage                   | -0.5  | 1.1                    | V     |
| V <sub>CCAUX</sub>                       | PL auxiliary supply voltage                  | -0.5  | 2.0                    | V     |
| V <sub>CCBRAM</sub>                      | PL supply voltage for the block RAM memories | -0.5  | 1.1                    | V     |
| V <sub>CCO</sub>                         | PL supply voltage for HR I/O banks           | -0.5  | 3.6                    | V     |
| V <sub>REF</sub>                         | Input reference voltage                      | -0.5  | 2.0                    | V     |

© Copyright 2011–2016 Xilinx, Inc. Xilinx, the Xilinx logo, Zynq, Virtex, Artix, Kintex, Spartan, ISE, Vivado and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, Cortex-A9, CoreSight, Cortex, PrimeCell, ARM Powered, and ARM Connected Partner are trademarks of ARM Ltd. All other trademarks are the property of their respective owners.

www.xilinx.com

Send Feedback

### Table 1: Absolute Maximum Ratings<sup>(1)</sup> (Cont'd)

| Symbol                               | Description                                                                                                 | Min   | Max                     | Units |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------|-------|-------------------------|-------|
|                                      | I/O input voltage for HR I/O banks                                                                          | -0.40 | V <sub>CCO</sub> + 0.55 | V     |
| V <sub>IN</sub> <sup>(3)(4)(5)</sup> | I/O input voltage (when $V_{CCO}$ = 3.3V) for $V_{REF}$ and differential I/O standards except TMDS_33^{(6)} | -0.40 | 2.625                   | V     |
| V <sub>CCBATT</sub>                  | Key memory battery backup supply                                                                            | -0.5  | 2.0                     | V     |
| GTP Transceiver                      | r (XC7Z015 Only)                                                                                            |       |                         |       |
| V <sub>MGTAVCC</sub>                 | Analog supply voltage for the GTP transmitter and receiver circuits                                         | -0.5  | 1.1                     | V     |
| V <sub>MGTAVTT</sub>                 | Analog supply voltage for the GTP transmitter and receiver termination circuits                             | -0.5  | 1.32                    | V     |
| V <sub>MGTREFCLK</sub>               | Reference clock absolute input voltage                                                                      | -0.5  | 1.32                    | V     |
| V <sub>IN</sub>                      | Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage                                         | -0.5  | 1.26                    | V     |
| I <sub>DCIN-FLOAT</sub>              | DC input current for receiver input pins DC coupled RX termination = floating                               | _     | 14                      | mA    |
| IDCIN-MGTAVTT                        | DC input current for receiver input pins DC coupled RX termination = $V_{MGTAVTT}$                          | _     | 12                      | mA    |
| I <sub>DCIN-GND</sub>                | DC input current for receiver input pins DC coupled RX termination = GND                                    | _     | 6.5                     | mA    |
| IDCOUT-FLOAT                         | DC output current for transmitter pins DC coupled RX termination = floating                                 | _     | 14                      | mA    |
| IDCOUT-MGTAVTT                       | DC output current for transmitter pins DC coupled RX termination = $V_{MGTAVTT}$                            | _     | 12                      | mA    |
| XADC                                 | ·                                                                                                           |       | L                       | 1     |
| V <sub>CCADC</sub>                   | XADC supply relative to GNDADC                                                                              | -0.5  | 2.0                     | V     |
| V <sub>REFP</sub>                    | XADC reference input relative to GNDADC                                                                     | -0.5  | 2.0                     | V     |
| Temperature                          | ·                                                                                                           |       | L                       | 1     |
| T <sub>STG</sub>                     | Storage temperature (ambient)                                                                               | -65   | 150                     | °C    |
|                                      | Maximum soldering temperature for Pb/Sn component bodies <sup>(7)</sup>                                     | _     | +220                    | °C    |
| T <sub>SOL</sub>                     | Maximum soldering temperature for Pb-free component bodies <sup>(7)</sup>                                   | _     | +260                    | °C    |
| T <sub>j</sub>                       | Maximum junction temperature <sup>(7)</sup>                                                                 | _     | +125                    | °C    |

#### Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

- 2. Applies to both MIO supply banks  $V_{\text{CCO}\_\text{MIO0}}$  and  $V_{\text{CCO}\_\text{MIO1}}.$
- 3. The lower absolute voltage specification always applies.
- 4. For I/O operation, refer to the 7 Series FPGAs SelectIO Resources User Guide (UG471) or the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).
- 5. The maximum limit applies to DC signals. For maximum undershoot and overshoot AC specifications, see Table 4.
- 6. See Table 11 for TMDS\_33 specifications.
- 7. For soldering guidelines and thermal considerations, see the *Zynq-7000 All Programmable SoC Packaging and Pinout Specification* (UG865).

### Table 2: Recommended Operating Conditions<sup>(1)(2)</sup>

| Symbol                              | Description                             | Min  | Тур  | Max   | Units |
|-------------------------------------|-----------------------------------------|------|------|-------|-------|
| PS                                  |                                         |      |      |       |       |
| V <sub>CCPINT</sub>                 | PS internal logic supply voltage        | 0.95 | 1.00 | 1.05  | V     |
| V <sub>CCPAUX</sub>                 | PS auxiliary supply voltage             | 1.71 | 1.80 | 1.89  | V     |
| V <sub>CCPLL</sub>                  | PS PLL supply                           | 1.71 | 1.80 | 1.89  | V     |
| V <sub>CCO_DDR</sub>                | PS DDR I/O supply voltage               | 1.14 | -    | 1.89  | V     |
| V <sub>CCO_MIO</sub> <sup>(3)</sup> | PS MIO I/O supply voltage for MIO banks | 1.71 | -    | 3.465 | V     |



| Symbol                               | Description                                                                                                                        | Min   | Тур  | Max                                                                                     | Units |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----------------------------------------------------------------------------------------|-------|
| V <sub>PIN</sub> <sup>(4)</sup>      | PS DDR and MIO I/O input voltage                                                                                                   | -0.20 | _    | $\begin{array}{c} V_{\text{CCO\_DDR}} + 0.20 \\ V_{\text{CCO\_MIO}} + 0.20 \end{array}$ | V     |
| PL                                   |                                                                                                                                    |       |      |                                                                                         |       |
| V <sub>CCINT</sub> <sup>(5)</sup>    | PL internal supply voltage                                                                                                         | 0.95  | 1.00 | 1.05                                                                                    | V     |
| • CCINT * 7                          | PL -1LI (0.95V) internal supply voltage                                                                                            | 0.92  | 0.95 | 0.98                                                                                    | V     |
| V <sub>CCAUX</sub>                   | PL auxiliary supply voltage                                                                                                        | 1.71  | 1.80 | 1.89                                                                                    | V     |
| V (5)                                | PL block RAM supply voltage                                                                                                        | 0.95  | 1.00 | 1.05                                                                                    | V     |
| V <sub>CCBRAM</sub> <sup>(5)</sup>   | PL -1LI (0.95V) block RAM supply voltage                                                                                           | 0.92  | 0.95 | 0.98                                                                                    | V     |
| V <sub>CCO</sub> <sup>(6)(7)</sup>   | PL supply voltage for HR I/O banks                                                                                                 | 1.14  | -    | 3.465                                                                                   | V     |
|                                      | I/O input voltage                                                                                                                  | -0.20 | _    | V <sub>CCO</sub> + 0.20                                                                 | V     |
| V <sub>IN</sub> <sup>(4)</sup>       | I/O input voltage (when V <sub>CCO</sub> = 3.3V) for V <sub>REF</sub> and differential I/O standards except TMDS_33 <sup>(8)</sup> | -0.20 | -    | 2.625                                                                                   | V     |
| I <sub>IN</sub> <sup>(9)</sup>       | Maximum current through any (PS or PL) pin in a powered or unpowered bank when forward biasing the clamp diode                     |       | _    | 10                                                                                      | mA    |
| V <sub>CCBATT</sub> <sup>(10)</sup>  | Battery voltage                                                                                                                    | 1.0   | _    | 1.89                                                                                    | V     |
| GTP Transceiv                        | ver (XC7Z015 Only)                                                                                                                 |       | 1    | 1                                                                                       | 1     |
| V <sub>MGTAVCC</sub> <sup>(11)</sup> | Analog supply voltage for the GTP transmitter and receiver circuits                                                                | 0.97  | 1.0  | 1.03                                                                                    | V     |
| V <sub>MGTAVTT</sub> <sup>(11)</sup> | Analog supply voltage for the GTP transmitter and receiver termination circuits                                                    | 1.17  | 1.2  | 1.23                                                                                    | V     |
| XADC                                 |                                                                                                                                    |       | l    | L                                                                                       |       |
| V <sub>CCADC</sub>                   | XADC supply relative to GNDADC                                                                                                     | 1.71  | 1.80 | 1.89                                                                                    | V     |
| V <sub>REFP</sub>                    | Externally supplied reference voltage                                                                                              | 1.20  | 1.25 | 1.30                                                                                    | V     |
| Temperature                          |                                                                                                                                    |       | ļ    | ł                                                                                       | ļ     |
|                                      | Junction temperature operating range for commercial (C) temperature devices                                                        | 0     | _    | 85                                                                                      | °C    |
| Ŧ                                    | Junction temperature operating range for extended (E) temperature devices                                                          |       | _    | 100                                                                                     | °C    |
| Тj                                   | Junction temperature operating range for industrial (I) temperature devices                                                        | -40   | _    | 100                                                                                     | °C    |
|                                      | Junction temperature operating range for expanded (Q) temperature devices                                                          | -40   | _    | 125                                                                                     | °C    |
|                                      |                                                                                                                                    | 1     |      | 1                                                                                       |       |

### Table 2: Recommended Operating Conditions<sup>(1)(2)</sup> (Cont'd)

#### Notes:

- 1. All voltages are relative to ground. The PL and PS share a common ground.
- 2. For the design of the power distribution system consult the Zynq-7000 All Programmable SoC PCB Design Guide (UG933).
- 3. Applies to both MIO supply banks  $V_{CCO\_MIO0}$  and  $V_{CCO\_MIO1}.$
- 4. The lower absolute voltage specification always applies.
- 5.  $V_{CCINT}$  and  $V_{CCBRAM}$  should be connected to the same supply.
- 6. Configuration data is retained even if  $V_{CCO}$  drops to 0V.
- 7. Includes  $V_{CCO}$  of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V at ±5%.
- 8. See Table 11 for TMDS\_33 specifications.
- 9. A total of 200 mA per PS or PL bank should not be exceeded.
- 10. V<sub>CCBATT</sub> is required only when using bitstream encryption. If battery is not used, connect V<sub>CCBATT</sub> to either ground or V<sub>CCAUX</sub>.
- 11. Each voltage listed requires the filter circuit described in the 7 Series FPGAs GTP Transceiver User Guide (UG482).

| Symbol                              | Description                                                                                                   | Min  | Typ <mark>(1)</mark> | Max | Units |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------|------|----------------------|-----|-------|
| V <sub>DRINT</sub>                  | Data retention $V_{CCINT}$ voltage (below which configuration data might be lost)                             | 0.75 | -                    | —   | V     |
| V <sub>DRI</sub>                    | Data retention V <sub>CCAUX</sub> voltage (below which configuration data might be lost)                      | 1.5  | -                    | -   | V     |
| I <sub>REF</sub>                    | PS_DDR_VREF 0/1, PS_MIO_VREF, and V <sub>REF</sub> leakage current per pin                                    | -    | _                    | 15  | μA    |
| ΙL                                  | Input or output leakage current per pin (sample-tested)                                                       | -    | -                    | 15  | μA    |
| C <sub>IN</sub> <sup>(2)</sup>      | PL die input capacitance at the pad                                                                           | -    | -                    | 8   | pF    |
| C <sub>PIN</sub> <sup>(2)</sup>     | PS die input capacitance at the pad                                                                           | -    | -                    | 8   | pF    |
|                                     | Pad pull-up (when selected) @ $V_{IN} = 0V$ , $V_{CCO} = 3.3V$                                                | 90   | -                    | 330 | μA    |
|                                     | Pad pull-up (when selected) @ $V_{IN} = 0V$ , $V_{CCO} = 2.5V$                                                | 68   | -                    | 250 | μA    |
| I <sub>RPU</sub>                    | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 1.8V                                   | 34   | _                    | 220 | μA    |
|                                     | Pad pull-up (when selected) @ $V_{IN} = 0V$ , $V_{CCO} = 1.5V$                                                | 23   | _                    | 150 | μA    |
|                                     | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 1.2V                                   | 12   | _                    | 120 | μA    |
|                                     | Pad pull-down (when selected) @ V <sub>IN</sub> = 3.3V                                                        | 68   | _                    | 330 | μA    |
| I <sub>RPD</sub>                    | Pad pull-down (when selected) @ V <sub>IN</sub> = 1.8V                                                        | 45   | _                    | 180 | μA    |
| ICCADC                              | Analog supply current, analog circuits in powered up state                                                    | -    | _                    | 25  | mA    |
| I <sub>BATT</sub> (3)               | Battery supply current                                                                                        | _    | _                    | 150 | nA    |
|                                     | The<br>venin equivalent resistance of programmable input termination to<br>$V_{\rm CCO}/2$ (UNTUNED_SPLIT_40) | 28   | 40                   | 55  | Ω     |
| R <sub>IN_TERM</sub> <sup>(4)</sup> | The<br>venin equivalent resistance of programmable input termination to<br>$V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) | 35   | 50                   | 65  | Ω     |
|                                     | The<br>venin equivalent resistance of programmable input termination to<br>$V_{\rm CCO}/2$ (UNTUNED_SPLIT_60) | 44   | 60                   | 83  | Ω     |
| n                                   | Temperature diode ideality factor                                                                             | _    | 1.010                | -   | -     |
| r                                   | Temperature diode series resistance                                                                           | _    | 2                    | _   | Ω     |

### Table 3: DC Characteristics Over Recommended Operating Conditions

Notes:

1. Typical values are specified at nominal voltage, 25°C.

2. This measurement represents the die capacitance at the pad, not including the package.

3. Maximum value specified for worst case process at 25°C.

4. Termination resistance to a  $V_{\mbox{CCO}}/2$  level.

### Table 4: V<sub>IN</sub> Maximum Allowed AC Voltage Overshoot and Undershoot for PS I/O and PL HR I/O Banks<sup>(1)(2)</sup>

| AC Voltage Overshoot    | % of UI @-40°C to 125°C | AC Voltage Undershoot | % of UI @-40°C to 125°C |
|-------------------------|-------------------------|-----------------------|-------------------------|
|                         |                         | -0.40                 | 100                     |
| V . 0.55                | 100                     | -0.45                 | 61.7                    |
| V <sub>CCO</sub> + 0.55 | 100                     | -0.50                 | 25.8                    |
|                         |                         | -0.55                 | 11.0                    |
| V <sub>CCO</sub> + 0.60 | 46.6                    | -0.60                 | 4.77                    |
| V <sub>CCO</sub> + 0.65 | 21.2                    | -0.65                 | 2.10                    |
| V <sub>CCO</sub> + 0.70 | 9.75                    | -0.70                 | 0.94                    |
| V <sub>CCO</sub> + 0.75 | 4.55                    | -0.75                 | 0.43                    |
| V <sub>CCO</sub> + 0.80 | 2.15                    | -0.80                 | 0.20                    |
| V <sub>CCO</sub> + 0.85 | 1.02                    | -0.85                 | 0.09                    |
| V <sub>CCO</sub> + 0.90 | 0.49                    | -0.90                 | 0.04                    |
| V <sub>CCO</sub> + 0.95 | 0.24                    | -0.95                 | 0.02                    |

#### Notes:

1. A total of 200 mA per bank should not be exceeded.

 The peak voltage of the overshoot or undershoot, and the duration above V<sub>CCO</sub>+ 0.20V or below GND –0.20V, must not exceed the values in this table.

#### Table 5: Typical Quiescent Supply Current

| Ourseland            | Description                                     | Davias   |     | Speed | Grade |      | Units |
|----------------------|-------------------------------------------------|----------|-----|-------|-------|------|-------|
| Symbol               | Description                                     | Device   | -3  | -2    | -1    | -1LI |       |
|                      |                                                 | XC7Z007S | N/A | 122   | 122   | N/A  | mA    |
|                      |                                                 | XC7Z012S | N/A | 122   | 122   | N/A  | mA    |
|                      |                                                 | XC7Z014S | N/A | 122   | 122   | N/A  | mA    |
|                      |                                                 | XC7Z010  | 122 | 122   | 122   | 85   | mA    |
| ICCPINTQ             | PS quiescent $V_{CCPINT}$ supply current        | XC7Z015  | 122 | 122   | 122   | 85   | mA    |
|                      |                                                 | XC7Z020  | 122 | 122   | 122   | 85   | mA    |
|                      |                                                 | XA7Z010  | N/A | N/A   | 122   | N/A  | mA    |
|                      |                                                 | XA7Z020  | N/A | N/A   | 122   | N/A  | mA    |
|                      |                                                 | XQ7Z020  | N/A | 122   | 122   | 85   | mA    |
|                      |                                                 | XC7Z007S | N/A | 13    | 13    | N/A  | mA    |
|                      |                                                 | XC7Z012S | N/A | 13    | 13    | N/A  | mA    |
|                      |                                                 | XC7Z014S | N/A | 13    | 13    | N/A  | mA    |
|                      |                                                 | XC7Z010  | 13  | 13    | 13    | 11   | mA    |
| I <sub>CCPAUXQ</sub> | PS quiescent V <sub>CCPAUX</sub> supply current | XC7Z015  | 13  | 13    | 13    | 11   | mA    |
|                      |                                                 | XC7Z020  | 13  | 13    | 13    | 11   | mA    |
|                      |                                                 | XA7Z010  | N/A | N/A   | 13    | N/A  | mA    |
|                      |                                                 | XA7Z020  | N/A | N/A   | 13    | N/A  | mA    |
|                      |                                                 | XQ7Z020  | N/A | 13    | 13    | 11   | mA    |

### Table 5: Typical Quiescent Supply Current (Cont'd)

| Symbol              | Description                                    | Device   |     | Speed Grade |    |                        |       |  |
|---------------------|------------------------------------------------|----------|-----|-------------|----|------------------------|-------|--|
| Symbol              | Description                                    | Device   | -3  | -2          | -1 | -1LI                   | Units |  |
|                     |                                                | XC7Z007S | N/A | 4           | 4  | N/A                    | mA    |  |
|                     |                                                | XC7Z012S | N/A | 4           | 4  | N/A                    | mA    |  |
|                     |                                                | XC7Z014S | N/A | 4           | 4  | N/A                    | mA    |  |
|                     |                                                | XC7Z010  | 4   | 4           | 4  | 4                      | mA    |  |
| ICCDDRQ             | PS quiescent $V_{CCO_DDR}$ supply current      | XC7Z015  | 4   | 4           | 4  | 4                      | mA    |  |
|                     |                                                | XC7Z020  | 4   | 4           | 4  | 4                      | mA    |  |
|                     |                                                | XA7Z010  | N/A | N/A         | 4  | N/A                    | mA    |  |
|                     |                                                | XA7Z020  | N/A | N/A         | 4  | N/A                    | mA    |  |
|                     |                                                | XQ7Z020  | N/A | 4           | 4  | 4                      | mA    |  |
|                     |                                                | XC7Z007S | N/A | 34          | 34 | N/A                    | mA    |  |
|                     |                                                | XC7Z012S | N/A | 77          | 77 | N/A                    | mA    |  |
|                     |                                                | XC7Z014S | N/A | 78          | 78 | N/A                    | mA    |  |
| ICCINTQ             | PL quiescent V <sub>CCINT</sub> supply current | XC7Z010  | 34  | 34          | 34 | 21/23 <sup>(4)</sup>   | mA    |  |
|                     |                                                | XC7Z015  | 77  | 77          | 77 | 47/53 <mark>(4)</mark> | mA    |  |
|                     |                                                | XC7Z020  | 78  | 78          | 78 | 48/54 <sup>(4)</sup>   | mA    |  |
|                     |                                                | XA7Z010  | N/A | N/A         | 34 | N/A                    | mA    |  |
|                     |                                                | XA7Z020  | N/A | N/A         | 78 | N/A                    | mA    |  |
|                     |                                                | XQ7Z020  | N/A | 78          | 78 | 48/54 <sup>(4)</sup>   | mA    |  |
|                     |                                                | XC7Z007S | N/A | 18          | 18 | N/A                    | mA    |  |
|                     |                                                | XC7Z012S | N/A | 35          | 35 | N/A                    | mA    |  |
|                     |                                                | XC7Z014S | N/A | 38          | 38 | N/A                    | mA    |  |
|                     |                                                | XC7Z010  | 18  | 18          | 18 | 16                     | mA    |  |
| I <sub>CCAUXQ</sub> | PL quiescent V <sub>CCAUX</sub> supply current | XC7Z015  | 35  | 35          | 35 | 31                     | mA    |  |
|                     |                                                | XC7Z020  | 38  | 38          | 38 | 34                     | mA    |  |
|                     |                                                | XA7Z010  | N/A | N/A         | 18 | N/A                    | mA    |  |
|                     |                                                | XA7Z020  | N/A | N/A         | 38 | N/A                    | mA    |  |
|                     |                                                | XQ7Z020  | N/A | 38          | 38 | 34                     | mA    |  |
|                     |                                                | XC7Z007S | N/A | 3           | 3  | N/A                    | mA    |  |
|                     |                                                | XC7Z012S | N/A | 3           | 3  | N/A                    | mA    |  |
|                     |                                                | XC7Z014S | N/A | 3           | 3  | N/A                    | mA    |  |
|                     |                                                | XC7Z010  | 3   | 3           | 3  | 3                      | mA    |  |
| Iccoq               | PL quiescent V <sub>CCO</sub> supply current   | XC7Z015  | 3   | 3           | 3  | 3                      | mA    |  |
|                     |                                                | XC7Z020  | 3   | 3           | 3  | 3                      | mA    |  |
|                     |                                                | XA7Z010  | N/A | N/A         | 3  | N/A                    | mA    |  |
|                     |                                                | XA7Z020  | N/A | N/A         | 3  | N/A                    | mA    |  |
|                     |                                                | XQ7Z020  | N/A | 3           | 3  | 3                      | mA    |  |

### Table 5: Typical Quiescent Supply Current (Cont'd)

| Symbol               | Description                                     | Device   |     | Units |    |                    |       |
|----------------------|-------------------------------------------------|----------|-----|-------|----|--------------------|-------|
| Symbol               | Description                                     | Device   | -3  | -2    | -1 | -1LI               | Units |
|                      |                                                 | XC7Z007S | N/A | 3     | 3  | N/A                | mA    |
|                      |                                                 | XC7Z012S | N/A | 4     | 4  | N/A                | mA    |
|                      | PL quiescent V <sub>CCBRAM</sub> supply current | XC7Z014S | N/A | 6     | 6  | N/A                | mA    |
|                      |                                                 | XC7Z010  | 3   | 3     | 3  | 1/2 <sup>(4)</sup> | mA    |
| I <sub>CCBRAMQ</sub> |                                                 | XC7Z015  | 4   | 4     | 4  | 2/2 <sup>(4)</sup> | mA    |
|                      |                                                 | XC7Z020  | 6   | 6     | 6  | 3/4 <sup>(4)</sup> | mA    |
|                      |                                                 | XA7Z010  | N/A | N/A   | 3  | N/A                | mA    |
|                      |                                                 | XA7Z020  | N/A | N/A   | 6  | N/A                | mA    |
|                      |                                                 | XQ7Z020  | N/A | 6     | 6  | 3/4 <sup>(4)</sup> | mA    |

#### Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperatures (T<sub>j</sub>) with single-ended SelectIO<sup>™</sup> resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. The Xilinx Power Estimator (XPE) spreadsheet tool (download at <a href="http://www.xilinx.com/power">http://www.xilinx.com/power</a>) estimates operating current. When the required power-on current exceeds the estimated operating current, XPE can display the power-on current.

4. The first value is at 0.95V, and the second value is at 1.0V.

### PS Power-On/Off Power Supply Sequencing

The recommended power-on sequence is  $V_{CCPINT}$ , then  $V_{CCPAUX}$  and  $V_{CCPLL}$  together, then the PS  $V_{CCO}$  supplies ( $V_{CCO\_MIOO}$ ,  $V_{CCO\_MIO1}$ , and  $V_{CCO\_DDR}$ ) to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The PS\_POR\_B input is required to be asserted to GND during the power-on sequence until  $V_{CCPINT}$ ,  $V_{CCPAUX}$  and  $V_{CCO\_MIO0}$  have reached minimum operating levels to ensure PS eFUSE integrity. For additional information about PS\_POR\_B timing requirements refer to Resets.

The recommended power-off sequence is the reverse of the power-on sequence. If  $V_{CCPAUX}$ ,  $V_{CCPLL}$ , and the PS  $V_{CCO}$  supplies ( $V_{CCO\_MIO0}$ ,  $V_{CCO\_MIO1}$ , and  $V_{CCO\_DDR}$ ) have the same recommended voltage levels, then they can be powered by the same supply and ramped simultaneously. Xilinx recommends powering  $V_{CCPLL}$  with the same supply as  $V_{CCPAUX}$ , with an optional ferrite bead filter. Before  $V_{CCPINT}$  reaches 0.80V at least one of the four following conditions is required during the power-off stage: the PS\_POR\_B input is asserted to GND, the reference clock to the PS\_CLK input is disabled,  $V_{CCPAUX}$  is lower than 0.70V, or  $V_{CCO\_MIO0}$  is lower than 0.90V. The condition must be held until  $V_{CCPINT}$  reaches 0.40V to ensure PS eFUSE integrity.

For  $V_{CCO MIO0}$  and  $V_{CCO MIO1}$  voltages of 3.3V:

- The voltage difference between V<sub>CCO\_MIO0</sub> /V<sub>CCO\_MIO1</sub> and V<sub>CCPAUX</sub> must not exceed 2.625V for longer than T<sub>VCCO2VCCAUX</sub> for each power-on/off cycle to maintain device reliability levels.
- The T<sub>VCCO2VCCAUX</sub> time can be allocated in any percentage between the power-on and power-off ramps.

### PL Power-On/Off Power Supply Sequencing

The recommended power-on sequence for the PL is V<sub>CCINT</sub>, V<sub>CCBRAM</sub>, V<sub>CCAUX</sub>, and V<sub>CCO</sub> to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V<sub>CCINT</sub> and V<sub>CCBRAM</sub> have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V<sub>CCAUX</sub> and V<sub>CCO</sub> have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously.

For V<sub>CCO</sub> voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V<sub>CCO</sub> and V<sub>CCAUX</sub> must not exceed 2.625V for longer than T<sub>VCCO2VCCAUX</sub> for each power-on/off cycle to maintain device reliability levels.
- The T<sub>VCCO2VCCAUX</sub> time can be allocated in any percentage between the power-on and power-off ramps.

### GTP Transceivers (XC7Z015 Only)

The recommended power-on sequence to achieve minimum current draw for the GTP transceivers (XC7Z015 only) is V<sub>CCINT</sub>, V<sub>MGTAVCC</sub>, V<sub>MGTAVCC</sub>, V<sub>MGTAVCC</sub>, V<sub>MGTAVCC</sub>, V<sub>CCINT</sub>, V<sub>MGTAVCC</sub>, N<sub>MGTAVCC</sub>, V<sub>CCINT</sub>, V<sub>MGTAVCC</sub>, N<sub>MGTAVCC</sub>, V<sub>CCINT</sub>, V<sub>MGTAVCC</sub>, N<sub>MGTAVCC</sub>, N<sub>MGTAVC</sub>, N<sub>MGTAVC</sub>

If these recommended sequences are not met, current drawn from V<sub>MGTAVTT</sub> can be higher than specifications during power-up and power-down.

- When  $V_{MGTAVTT}$  is powered before  $V_{MGTAVCC}$  and  $V_{MGTAVTT} V_{MGTAVCC} > 150 \text{ mV}$  and  $V_{MGTAVCC} < 0.7V$ , the  $V_{MGTAVTT}$  current draw can increase by 460 mA per transceiver during  $V_{MGTAVCC}$  ramp up. The duration of the current draw can be up to 0.3 x  $T_{MGTAVCC}$  (ramp time from GND to 90% of  $V_{MGTAVCC}$ ). The reverse is true for power-down.
- When  $V_{MGTAVTT}$  is powered before  $V_{CCINT}$  and  $V_{MGTAVTT} V_{CCINT} > 150$  mV and  $V_{CCINT} < 0.7V$ , the  $V_{MGTAVTT}$  current draw can increase by 50 mA per transceiver during  $V_{CCINT}$  ramp up. The duration of the current draw can be up to 0.3 x  $T_{VCCINT}$  (ramp time from GND to 90% of  $V_{CCINT}$ ). The reverse is true for power-down.

There is no recommended sequence for supplies not shown.

### **PS**—**PL** Power Sequencing

The PS and PL power supplies are fully independent. PS power supplies (V<sub>CCPINT</sub>, V<sub>CCPAUX</sub>, V<sub>CCPLL</sub>, V<sub>CCO\_DDR</sub>, V<sub>CCO\_MIO0</sub>, and V<sub>CCO\_MIO1</sub>) can be powered before or after any PL power supplies. The PS and PL power regions are isolated to prevent damage.

### Power Supply Requirements

Table 6 shows the minimum current, in addition to  $I_{CCQ}$ , that is required by Zynq-7000 devices for proper power-on and configuration. If the current minimums shown in Table 5 and Table 6 are met, the device powers on after all four PL supplies have passed through their power-on reset threshold voltages. The Zynq-7000 device must not be configured until after  $V_{CCINT}$  is applied. Once initialized and configured, use the Xilinx Power Estimator (XPE) spreadsheet tool (download at www.xilinx.com/power) to estimate current drain on these supplies.

| Device                        | I <sub>CCPINTMIN</sub>   | I <sub>CCPAUXMIN</sub>   |                                          | I <sub>CCINTMIN</sub>    |                         | I <sub>CCOMIN</sub>                   | I <sub>CCBRAMMIN</sub>   | Units |
|-------------------------------|--------------------------|--------------------------|------------------------------------------|--------------------------|-------------------------|---------------------------------------|--------------------------|-------|
| XC7Z007S                      | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +40  | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |
| XC7Z012S                      | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +130 | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |
| XC7Z014S                      | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +70  | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |
| XC7Z010<br>XA7Z010            | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +40  | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |
| XC7Z015                       | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +130 | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |
| XC7Z020<br>XA7Z020<br>XQ7Z020 | I <sub>CCPINTQ</sub> +70 | I <sub>CCPAUXQ</sub> +40 | I <sub>CCDDRQ</sub> + 100 mA<br>per bank | I <sub>CCINTQ</sub> +70  | I <sub>CCAUXQ</sub> +60 | I <sub>CCOQ</sub> + 90 mA<br>per bank | I <sub>CCBRAMQ</sub> +40 | mA    |

### Table 6: Power-On Current for Zynq-7000 Devices

### Table 7: Power Supply Ramp Time

| Symbol                   | Description                                                                                                | Conditions                  | Min | Max | Units |
|--------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|-----|-----|-------|
| T <sub>VCCPINT</sub>     | Ramp time from GND to 90% of V <sub>CCPINT</sub>                                                           | 0.2                         | 50  | ms  |       |
| T <sub>VCCPAUX</sub>     | Ramp time from GND to 90% of V <sub>CCPAUX</sub>                                                           | 0.2                         | 50  | ms  |       |
| T <sub>VCCO_DDR</sub>    | Ramp time from GND to 90% of V <sub>CCO_DDR</sub>                                                          | 0.2                         | 50  | ms  |       |
| T <sub>VCCO_MIO</sub>    | Ramp time from GND to 90% of V <sub>CCO_MIO</sub>                                                          | 0.2                         | 50  | ms  |       |
| T <sub>VCCINT</sub>      | Ramp time from GND to 90% of V <sub>CCINT</sub>                                                            | 0.2                         | 50  | ms  |       |
| T <sub>VCCO</sub>        | Ramp time from GND to 90% of V <sub>CCO</sub>                                                              | 0.2                         | 50  | ms  |       |
| T <sub>VCCAUX</sub>      | Ramp time from GND to 90% of V <sub>CCAUX</sub>                                                            | 0.2                         | 50  | ms  |       |
| T <sub>VCCBRAM</sub>     | Ramp time from GND to 90% of V <sub>CCBRAM</sub>                                                           |                             | 0.2 | 50  | ms    |
|                          |                                                                                                            | $T_j = 125^{\circ}C^{(1)}$  | -   | 300 |       |
| T <sub>VCCO2VCCAUX</sub> | Allowed time per power cycle for $V_{CCO} - V_{CCAUX} > 2.625V$<br>and $V_{CCO MIO} - V_{CCPAUX} > 2.625V$ | $T_j = 100^{\circ}C^{(1)}$  | -   | 500 | ms    |
|                          |                                                                                                            | $T_{j} = 85^{\circ}C^{(1)}$ | -   | 800 |       |
| T <sub>MGTAVCC</sub>     | Ramp time from GND to 90% of V <sub>MGTAVCC</sub>                                                          |                             |     | 50  | ms    |
| T <sub>MGTAVTT</sub>     | Ramp time from GND to 90% of V <sub>MGTAVTT</sub>                                                          | 0.2                         | 50  | ms  |       |

#### Notes:

1. Based on 240,000 power cycles with nominal  $V_{CCO}$  of 3.3V or 36,500 power cycles with worst case  $V_{CCO}$  of 3.465V.

### DC Input and Output Levels

Values for  $V_{IL}$  and  $V_{IH}$  are recommended input voltages. Values for  $I_{OL}$  and  $I_{OH}$  are guaranteed over the recommended operating conditions at the  $V_{OL}$  and  $V_{OH}$  test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum  $V_{CCO}$  with the respective  $V_{OL}$  and  $V_{OH}$  voltage levels shown. Other standards are sample tested.

### PS I/O Levels

### Table 8: PS DC Input and Output Levels<sup>(1)</sup>

| Bank | I/O       |        | V <sub>IL</sub>           |                           | V <sub>IH</sub>         | V <sub>OL</sub>                 | V <sub>ОН</sub>                 | I <sub>OL</sub> | I <sub>ОН</sub> |
|------|-----------|--------|---------------------------|---------------------------|-------------------------|---------------------------------|---------------------------------|-----------------|-----------------|
| Dank | Standard  | V, Min | V, Max                    | V, Min                    | V, Max                  | V, Max                          | V, Min                          | mA              | mA              |
| MIO  | LVCMOS18  | -0.300 | $35\% V_{CCO_MIO}$        | 65% V <sub>CCO_MIO</sub>  | $V_{CCO_MIO} + 0.300$   | 0.450                           | V <sub>CCO_MIO</sub> – 0.450    | 8               | -8              |
| MIO  | LVCMOS25  | -0.300 | 0.700                     | 1.700                     | $V_{CCO_MIO} + 0.300$   | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| MIO  | LVCMOS33  | -0.300 | 0.800                     | 2.000                     | 3.450                   | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| MIO  | HSTL_I_18 | -0.300 | V <sub>PREF</sub> – 0.100 | V <sub>PREF</sub> + 0.100 | $V_{CCO_MIO} + 0.300$   | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| DDR  | SSTL18_I  | -0.300 | V <sub>PREF</sub> – 0.125 | V <sub>PREF</sub> + 0.125 | $V_{CCO_DDR} + 0.300$   | $V_{CCO_{DDR}}/2 - 0.470$       | V <sub>CCO_DDR</sub> /2 + 0.470 | 8               | -8              |
| DDR  | SSTL15    | -0.300 | V <sub>PREF</sub> – 0.100 | V <sub>PREF</sub> + 0.100 | $V_{CCO_DDR} + 0.300$   | V <sub>CCO_DDR</sub> /2 - 0.175 | V <sub>CCO_DDR</sub> /2 + 0.175 | 13.0            | -13.0           |
| DDR  | SSTL135   | -0.300 | V <sub>PREF</sub> – 0.090 | V <sub>PREF</sub> + 0.090 | $V_{CCO_DDR} + 0.300$   | V <sub>CCO_DDR</sub> /2 - 0.150 | $V_{CCO_{DDR}}/2 + 0.150$       | 13.0            | -13.0           |
| DDR  | HSUL_12   | -0.300 | V <sub>PREF</sub> – 0.130 | V <sub>PREF</sub> + 0.130 | $V_{CCO_{DDR}} + 0.300$ | 20% V <sub>CCO_DDR</sub>        | 80% V <sub>CCO_DDR</sub>        | 0.1             | -0.1            |

#### Notes:

1. Tested according to relevant specifications.

### Table 9: PS Complementary Differential DC Input and Output Levels

| Bank I/O Standard |               |                                         | V <sub>ICM</sub> <sup>(1)</sup> |        | V <sub>ID</sub> <sup>(2)</sup> |         | V <sub>OL</sub> (3)               | V <sub>OH</sub> <sup>(4)</sup>    | I <sub>OL</sub> | I <sub>OH</sub> |
|-------------------|---------------|-----------------------------------------|---------------------------------|--------|--------------------------------|---------|-----------------------------------|-----------------------------------|-----------------|-----------------|
| Dalik             |               | V, Min V,Typ V, Max V,Min V, Max V, Max |                                 | V, Max | V, Min                         | mA, Max | mA, Min                           |                                   |                 |                 |
| DDR               | DIFF_HSUL_12  | 0.300                                   | 0.600                           | 0.850  | 0.100                          | -       | 20% V <sub>CCO</sub>              | 80% V <sub>CCO</sub>              | 0.100           | -0.100          |
| DDR               | DIFF_SSTL135  | 0.300                                   | 0.675                           | 1.000  | 0.100                          | -       | (V <sub>CCO_DDR</sub> /2) - 0.150 | (V <sub>CCO_DDR</sub> /2) + 0.150 | 13.0            | -13.0           |
| DDR               | DIFF_SSTL15   | 0.300                                   | 0.750                           | 1.125  | 0.100                          | -       | $(V_{CCO_{DDR}}/2) - 0.175$       | (V <sub>CCO_DDR</sub> /2) + 0.175 | 13.0            | -13.0           |
| DDR               | DIFF_SSTL18_I | 0.300                                   | 0.900                           | 1.425  | 0.100                          | -       | $(V_{CCO_{DDR}}/2) - 0.470$       | (V <sub>CCO_DDR</sub> /2) + 0.470 | 8.00            | -8.00           |

### Notes:

1. V<sub>ICM</sub> is the input common mode voltage.

2.  $V_{ID}$  is the input differential voltage (Q– $\overline{Q}$ ).

3.  $V_{OL}$  is the single-ended low-output voltage.

4. V<sub>OH</sub> is the single-ended high-output voltage.

### PL I/O Levels

### Table 10: SelectIO DC Input and Output Levels<sup>(1)(2)</sup>

| I/O Standard | V <sub>IL</sub> |                          | VII                      | н                        | V <sub>OL</sub>             | V <sub>OH</sub>          | I <sub>OL</sub> | I <sub>ОН</sub> |
|--------------|-----------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|-----------------|-----------------|
| 1/O Standard | V, Min          | V, Max                   | V, Min                   | V, Max                   | V, Max                      | V, Min                   | mA              | mA              |
| HSTL_I       | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | $V_{CCO} - 0.400$        | 8.00            | -8.00           |
| HSTL_I_18    | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | $V_{CCO} + 0.300$        | 0.400                       | $V_{CCO} - 0.400$        | 8.00            | -8.00           |
| HSTL_II      | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | $V_{CCO} - 0.400$        | 16.00           | -16.00          |
| HSTL_II_18   | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | $V_{CCO} - 0.400$        | 16.00           | -16.00          |
| HSUL_12      | -0.300          | V <sub>REF</sub> – 0.130 | V <sub>REF</sub> + 0.130 | $V_{CCO} + 0.300$        | 20% V <sub>CCO</sub>        | 80% V <sub>CCO</sub>     | 0.10            | -0.10           |
| LVCMOS12     | -0.300          | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | $V_{CCO} + 0.300$        | 0.400                       | V <sub>CCO</sub> – 0.400 | Note 3          | Note 3          |
| LVCMOS15     | -0.300          | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 25% V <sub>CCO</sub>        | 75% V <sub>CCO</sub>     | Note 4          | Note 4          |
| LVCMOS18     | -0.300          | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | $V_{CCO} + 0.300$        | 0.450                       | $V_{CCO} - 0.450$        | Note 5          | Note 5          |
| LVCMOS25     | -0.300          | 0.7                      | 1.700                    | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> – 0.400 | Note 4          | Note 4          |
| LVCMOS33     | -0.300          | 0.8                      | 2.000                    | 3.450                    | 0.400                       | $V_{CCO} - 0.400$        | Note 4          | Note 4          |
| LVTTL        | -0.300          | 0.8                      | 2.000                    | 3.450                    | 0.400                       | 2.400                    | Note 5          | Note 5          |
| MOBILE_DDR   | -0.300          | 20% V <sub>CCO</sub>     | 80% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>     | 0.10            | -0.10           |
| PCI33_3      | -0.400          | 30% V <sub>CCO</sub>     | 50% V <sub>CCO</sub>     | $V_{CCO} + 0.500$        | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>     | 1.50            | -0.50           |
| SSTL135      | -0.300          | V <sub>REF</sub> - 0.090 | V <sub>REF</sub> + 0.090 | $V_{CCO} + 0.300$        | $V_{CCO}/2 - 0.150$         | $V_{CCO}/2 + 0.150$      | 13.00           | -13.00          |
| SSTL135_R    | -0.300          | V <sub>REF</sub> - 0.090 | V <sub>REF</sub> + 0.090 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 - 0.150 | $V_{CCO}/2 + 0.150$      | 8.90            | -8.90           |
| SSTL15       | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2-0.175   | $V_{CCO}/2 + 0.175$      | 13.00           | -13.00          |
| SSTL15_R     | -0.300          | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2-0.175   | $V_{CCO}/2 + 0.175$      | 8.90            | -8.90           |
| SSTL18_I     | -0.300          | V <sub>REF</sub> – 0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCO</sub> + 0.300 | $V_{CCO}/2 - 0.470$         | $V_{CCO}/2 + 0.470$      | 8.00            | -8.00           |
| SSTL18_II    | -0.300          | V <sub>REF</sub> – 0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2-0.600   | $V_{CCO}/2 + 0.600$      | 13.40           | -13.40          |

### Notes:

1. Tested according to relevant specifications.

2. 3.3V and 2.5V standards are only supported in HR I/O banks.

3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.

4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. For detailed interface specific DC voltage levels, see the 7 Series FPGAs SelectIO Resources User Guide (UG471).

### Table 11: Differential SelectIO DC Input and Output Levels

| I/O Standard | V <sub>ICM</sub> <sup>(1)</sup> |        |                    | V <sub>ID</sub> (2) |        |        | V <sub>OCM</sub> (3)    |                         | V <sub>OD</sub> <sup>(4)</sup> |        |        |        |
|--------------|---------------------------------|--------|--------------------|---------------------|--------|--------|-------------------------|-------------------------|--------------------------------|--------|--------|--------|
| 1/O Standard | V, Min                          | V, Тур | V, Max             | V, Min              | V, Тур | V, Max | V, Min                  | V, Тур                  | V, Max                         | V, Min | V,Тур  | V, Max |
| BLVDS_25     | 0.300                           | 1.200  | 1.425              | 0.100               | -      | -      | -                       | 1.250                   | _                              |        | Note 5 |        |
| MINI_LVDS_25 | 0.300                           | 1.200  | V <sub>CCAUX</sub> | 0.200               | 0.400  | 0.600  | 1.000                   | 1.200                   | 1.400                          | 0.300  | 0.450  | 0.600  |
| PPDS_25      | 0.200                           | 0.900  | V <sub>CCAUX</sub> | 0.100               | 0.250  | 0.400  | 0.500                   | 0.950                   | 1.400                          | 0.100  | 0.250  | 0.400  |
| RSDS_25      | 0.300                           | 0.900  | 1.500              | 0.100               | 0.350  | 0.600  | 1.000                   | 1.200                   | 1.400                          | 0.100  | 0.350  | 0.600  |
| TMDS_33      | 2.700                           | 2.965  | 3.230              | 0.150               | 0.675  | 1.200  | V <sub>CCO</sub> -0.405 | V <sub>CCO</sub> -0.300 | V <sub>CCO</sub> -0.190        | 0.400  | 0.600  | 0.800  |

### Notes:

1.  $V_{ICM}$  is the input common mode voltage.

2.  $V_{ID}$  is the input differential voltage (Q– $\overline{Q}$ ).

3.  $V_{OCM}$  is the output common mode voltage.

- 4.  $V_{OD}$  is the output differential voltage (Q– $\overline{Q}$ ).
- 5.  $V_{\text{OD}}$  for BLVDS will vary significantly depending on topology and loading.

6. LVDS\_25 is specified in Table 13.

| I/O Standard    |        | V <sub>ICM</sub> <sup>(1)</sup> |        | V <sub>ID</sub> <sup>(2)</sup> |        | V <sub>OL</sub> (3)           | V <sub>OH</sub> <sup>(4)</sup> | I <sub>OL</sub> | I <sub>ОН</sub> |
|-----------------|--------|---------------------------------|--------|--------------------------------|--------|-------------------------------|--------------------------------|-----------------|-----------------|
| 1/O Standard    | V, Min | V,Тур                           | V, Max | V,Min                          | V, Max | V, Max                        | V, Min                         | mA, Max         | mA, Min         |
| DIFF_HSTL_I     | 0.300  | 0.750                           | 1.125  | 0.100                          | -      | 0.400                         | V <sub>CCO</sub> -0.400        | 8.00            | -8.00           |
| DIFF_HSTL_I_18  | 0.300  | 0.900                           | 1.425  | 0.100                          | -      | 0.400                         | V <sub>CCO</sub> -0.400        | 8.00            | -8.00           |
| DIFF_HSTL_II    | 0.300  | 0.750                           | 1.125  | 0.100                          | -      | 0.400                         | V <sub>CCO</sub> -0.400        | 16.00           | -16.00          |
| DIFF_HSTL_II_18 | 0.300  | 0.900                           | 1.425  | 0.100                          | -      | 0.400                         | V <sub>CCO</sub> -0.400        | 16.00           | -16.00          |
| DIFF_HSUL_12    | 0.300  | 0.600                           | 0.850  | 0.100                          | -      | 20% V <sub>CCO</sub>          | 80% V <sub>CCO</sub>           | 0.100           | -0.100          |
| DIFF_MOBILE_DDR | 0.300  | 0.900                           | 1.425  | 0.100                          | -      | 10% V <sub>CCO</sub>          | 90% V <sub>CCO</sub>           | 0.100           | -0.100          |
| DIFF_SSTL135    | 0.300  | 0.675                           | 1.000  | 0.100                          | -      | (V <sub>CCO</sub> /2) – 0.150 | (V <sub>CCO</sub> /2) + 0.150  | 13.0            | -13.0           |
| DIFF_SSTL135_R  | 0.300  | 0.675                           | 1.000  | 0.100                          | -      | (V <sub>CCO</sub> /2) - 0.150 | (V <sub>CCO</sub> /2) + 0.150  | 8.9             | -8.9            |
| DIFF_SSTL15     | 0.300  | 0.750                           | 1.125  | 0.100                          | -      | (V <sub>CCO</sub> /2) – 0.175 | (V <sub>CCO</sub> /2) + 0.175  | 13.0            | -13.0           |
| DIFF_SSTL15_R   | 0.300  | 0.750                           | 1.125  | 0.100                          | -      | (V <sub>CCO</sub> /2) - 0.175 | (V <sub>CCO</sub> /2) + 0.175  | 8.9             | -8.9            |
| DIFF_SSTL18_I   | 0.300  | 0.900                           | 1.425  | 0.100                          | -      | (V <sub>CCO</sub> /2) - 0.470 | (V <sub>CCO</sub> /2) + 0.470  | 8.00            | -8.00           |
| DIFF_SSTL18_II  | 0.300  | 0.900                           | 1.425  | 0.100                          | _      | (V <sub>CCO</sub> /2) - 0.600 | (V <sub>CCO</sub> /2) + 0.600  | 13.4            | -13.4           |

### Table 12: Complementary Differential SelectIO DC Input and Output Levels

#### Notes:

1.  $V_{ICM}$  is the input common mode voltage.

2.  $V_{ID}$  is the input differential voltage  $(Q-\overline{Q})$ .

3.  $V_{OL}$  is the single-ended low-output voltage.

4. V<sub>OH</sub> is the single-ended high-output voltage.

### LVDS DC Specifications (LVDS\_25)

### Table 13: LVDS\_25 DC Specifications<sup>(1)</sup>

| Symbol             | DC Parameter                                                                                                | Conditions                                            | Min   | Тур  | Max   | Units |
|--------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|------|-------|-------|
| V <sub>CCO</sub>   | Supply voltage                                                                                              |                                                       | 2.375 | 2.5  | 2.625 | V     |
| V <sub>OH</sub>    | Output High voltage for Q and $\overline{Q}$                                                                | $R_T = 100\Omega$ across Q and $\overline{Q}$ signals | -     | _    | 1.675 | V     |
| V <sub>OL</sub>    | Output Low voltage for Q and $\overline{Q}$                                                                 | $R_T = 100\Omega$ across Q and $\overline{Q}$ signals | 0.700 | _    | _     | V     |
| V <sub>ODIFF</sub> | Differential output voltage:<br>$(Q - \overline{Q}), Q = High$<br>$(\overline{Q} - Q), \overline{Q} = High$ | $R_T = 100\Omega$ across Q and $\overline{Q}$ signals | 247   | 350  | 600   | mV    |
| V <sub>OCM</sub>   | Output common-mode voltage                                                                                  | $R_T = 100\Omega$ across Q and $\overline{Q}$ signals | 1.00  | 1.25 | 1.425 | V     |
| V <sub>IDIFF</sub> | Differential input voltage:<br>$(Q - \overline{Q}), Q = High$<br>$(\overline{Q} - Q), \overline{Q} = High$  |                                                       | 100   | 350  | 600   | mV    |
| V <sub>ICM</sub>   | Input common-mode voltage                                                                                   |                                                       | 0.3   | 1.2  | 1.500 | V     |

### Notes:

 Differential inputs for LVDS\_25 can be placed in banks with V<sub>CCO</sub> levels that are different from the required level for outputs. Consult the 7 Series FPGAs SelectIO Resources User Guide (UG471) for more information.

### AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in the ISE® Design Suite 14.7 and Vivado® Design Suite 2015.4 as outlined in Table 14.

| ISE 14.7 | Vivado 2016.3 | Device                                    |
|----------|---------------|-------------------------------------------|
| 1.08     | 1.11          | XC7Z010 and XC7Z020                       |
| N/A      | 1.11          | XC7Z007S, XC7Z012S, XC7Z014S, and XC7Z015 |
| 1.06     | 1.09          | XA7Z010 and XA7Z020                       |
| 1.06     | 1.10          | XQ7Z020                                   |

| Table 14: Zynq-7000 All Programmable SoC Speed Specification Version By Devi | се |
|------------------------------------------------------------------------------|----|
|------------------------------------------------------------------------------|----|

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

### Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

### Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

### **Production Product Specification**

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

### **Testing of AC Switching Characteristics**

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Zynq-7000 devices.

### **Speed Grade Designations**

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 15 correlates the current status of each Zynq-7000 device on a per speed grade basis.

| Table | 15: Zynq-7000 Dev | vice Speed Grade | Designations |
|-------|-------------------|------------------|--------------|
|-------|-------------------|------------------|--------------|

| Device   |         | Speed Grade Designations |                               |  |  |  |  |  |
|----------|---------|--------------------------|-------------------------------|--|--|--|--|--|
| Device   | Advance | Preliminary              | Production                    |  |  |  |  |  |
| XC7Z007S |         |                          | -2E, -2I, -1C, -1I            |  |  |  |  |  |
| XC7Z012S |         |                          | -2E, -2I, -1C, -1I            |  |  |  |  |  |
| XC7Z014S |         |                          | -2E, -2I, -1C, -1I            |  |  |  |  |  |
| XC7Z010  |         |                          | -3E, -2E, -2I, -1C, -1I, -1LI |  |  |  |  |  |
| XC7Z015  |         |                          | -3E, -2E, -2I, -1C, -1I, -1LI |  |  |  |  |  |

### Table 15: Zynq-7000 Device Speed Grade Designations (Cont'd)

| Device  | Speed Grade Designations |             |                               |  |  |  |
|---------|--------------------------|-------------|-------------------------------|--|--|--|
| Device  | Advance                  | Preliminary | Production                    |  |  |  |
| XC7Z020 |                          |             | -3E, -2E, -2I, -1C, -1I, -1LI |  |  |  |
| XA7Z010 |                          |             | -1I, -1Q                      |  |  |  |
| XA7Z020 |                          |             | -1I, -1Q                      |  |  |  |
| XQ7Z020 |                          |             | -2l, -1l, -1Q, -1Ll           |  |  |  |

### **Production Silicon and Software Status**

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 16 lists the production released Zynq-7000 device, speed grade, and the minimum corresponding supported speed specification version and software revisions. The software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 16: Zynq-7000 Device Production Software and Speed Specification Release

| Davias   | Speed Grade Designations                                    |                                                     |                                                             |       |                                                             |                              |                                                             |  |  |  |
|----------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-------|-------------------------------------------------------------|------------------------------|-------------------------------------------------------------|--|--|--|
| Device   | -3E                                                         | -2E                                                 | -21                                                         | -1C   | -11                                                         | -1LI                         | -1Q                                                         |  |  |  |
| XC7Z007S | N/A                                                         |                                                     | Vivado tools 2                                              | 016.3 | v1.11                                                       | N/A                          | N/A                                                         |  |  |  |
| XC7Z012S | N/A                                                         |                                                     | Vivado tools 2                                              | 016.3 | v1.11                                                       | N/A                          | N/A                                                         |  |  |  |
| XC7Z014S | N/A                                                         |                                                     | Vivado tools 2                                              | 016.3 | v1.11                                                       | N/A                          | N/A                                                         |  |  |  |
| XC7Z010  | ISE tools 14.5<br>v1.06 and<br>Vivado tools 2013.1<br>v1.06 | IS                                                  | E tools 14.4 and the 1<br>and Vivado tools                  |       |                                                             | Vivado tools<br>2014.4 v1.11 | N/A                                                         |  |  |  |
| XC7Z015  |                                                             | Viva                                                | do tools 2013.4 v1.09                                       |       |                                                             | Vivado tools<br>2014.4 v1.11 | N/A                                                         |  |  |  |
| XC7Z020  | ISE tools 14.5<br>v1.06 and<br>Vivado tools 2013.1<br>v1.06 | IS                                                  | E tools 14.4 and the 1<br>and Vivado tools                  |       |                                                             | Vivado tools<br>2014.4 v1.11 | N/A                                                         |  |  |  |
| XA7Z010  |                                                             | N/A                                                 |                                                             |       | ISE tools 14.5<br>v1.04 and<br>Vivado tools 2013.1<br>v1.04 | N/A                          | ISE tools 14.6<br>v1.05 and<br>Vivado tools 2013.2<br>v1.05 |  |  |  |
| XA7Z020  |                                                             | vado tools 2013.1 and Vivado tools<br>v1.06 N/A N/A |                                                             |       | ISE tools 14.5<br>v1.04 and<br>Vivado tools 2013.1<br>v1.04 | N/A                          | ISE tools 14.6<br>v1.05 and<br>Vivado tools 2013.2<br>v1.05 |  |  |  |
| XQ7Z020  | N/A                                                         |                                                     | ISE tools 14.6<br>v1.05 and<br>Vivado tools 2013.2<br>v1.05 | N/A   | ISE tools 14.6<br>v1.05 and<br>Vivado tools 2013.2<br>v1.05 | Vivado tools<br>2015.4 v1.10 | ISE tools 14.7<br>v1.06 and<br>Vivado tools 2013.3<br>v1.06 |  |  |  |

### Selecting the Correct Speed Grade and Voltage in the Vivado Tools

It is important to select the correct device speed grade and voltage in the Vivado tools for the device that you are selecting.

To select the -3, -2, or -1 (PL 1.0V) speed specifications in the Vivado tools, select the **Zynq-7000**, **XA Zynq-7000**, or **Defense Grade Zynq-7000** sub-family, and then select the part name that is the device name followed by the package name followed by the speed grade. For example, select the **xc7z020clg484-3** part name for the XC7Z020 device in the CLG484 package and -3 speed grade.

To select the -1LI (PL 0.95V) speed specifications in the Vivado tools, select the **Zynq-7000** sub-family and then select the part name that is the device name followed by an *i* followed by the package name followed by the speed grade. For example, select the **xc7z020iclg484-1L** part name for the XC7Z020 device in the CLG484 package and -1LI (PL 0.95V) speed grade. The -1LI (PL 0.95V) speed specifications are not supported in the ISE tools.

A similar part naming convention applies to the speed specifications selection in the ISE tools for supported devices. See Table 16 for the subset of the Zynq-7000 devices supported in the ISE tools.

### **PS Performance Characteristics**

For further design requirement details, refer to the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).

### Table 17: CPU Clock Domains Performance

| Symbol                                       | Clock Ratio | Description                    |     |     | Units        |     |       |  |
|----------------------------------------------|-------------|--------------------------------|-----|-----|--------------|-----|-------|--|
| Symbol                                       | CIOCK Hallo | Description -3                 |     | -2  | -1C/-1I/-1LI | -1Q | Units |  |
| F <sub>CPU_6X4X_621_MAX</sub> <sup>(1)</sup> |             | Maximum CPU clock frequency    | 866 | 766 | 667          | 667 | MHz   |  |
| F <sub>CPU_3X2X_621_MAX</sub>                | 6:2:1       | Maximum CPU_3X clock frequency | 433 | 383 | 333          | 333 | MHz   |  |
| F <sub>CPU_2X_621_MAX</sub>                  | 0.2.1       | Maximum CPU_2X clock frequency | 288 | 255 | 222          | 222 | MHz   |  |
| F <sub>CPU_1X_621_MAX</sub>                  |             | Maximum CPU_1X clock frequency | 144 | 127 | 111          | 111 | MHz   |  |
| F <sub>CPU_6X4X_421_MAX</sub> <sup>(1)</sup> |             | Maximum CPU clock frequency    | 710 | 600 | 533          | 533 | MHz   |  |
| F <sub>CPU_3X2X_421_MAX</sub>                | 4:2:1       | Maximum CPU_3X clock frequency | 355 | 300 | 267          | 267 | MHz   |  |
| F <sub>CPU_2X_421_MAX</sub>                  | 4.2.1       | Maximum CPU_2X clock frequency | 355 | 300 | 267          | 267 | MHz   |  |
| F <sub>CPU_1X_421_MAX</sub>                  |             | Maximum CPU_1X clock frequency | 178 | 150 | 133          | 133 | MHz   |  |

### Notes:

1. The maximum frequency during BootROM execution is 500 MHz across all speed specifications.

### Table 18: PS DDR Clock Domains Performance<sup>(1)</sup>

| Symbol                    | Description                          |      | Speed Grade |              |      |       |  |
|---------------------------|--------------------------------------|------|-------------|--------------|------|-------|--|
|                           |                                      | -3   | -2          | -1C/-1I/-1LI | -1Q  | Units |  |
| F <sub>DDR3_MAX</sub>     | Maximum DDR3 interface performance   | 1066 | 1066        | 1066         | 1066 | Mb/s  |  |
| F <sub>DDR3L_MAX</sub>    | Maximum DDR3L interface performance  | 1066 | 1066        | 1066         | 1066 | Mb/s  |  |
| F <sub>DDR2_MAX</sub>     | Maximum DDR2 interface performance   | 800  | 800         | 800          | 800  | Mb/s  |  |
| F <sub>LPDDR2_MAX</sub>   | Maximum LPDDR2 interface performance | 800  | 800         | 800          | 800  | Mb/s  |  |
| F <sub>DDRCLK_2XMAX</sub> | Maximum DDR_2X clock frequency       | 444  | 408         | 355          | 355  | MHz   |  |

### Notes:

1. All performance numbers apply to both internal and external  $V_{\text{REF}}$  configurations.

### Table 19: PS-PL Interface Performance

| Symbol                   | Description                                        | Min | Max | Units |
|--------------------------|----------------------------------------------------|-----|-----|-------|
| FEMIOGEMCLK              | EMIO gigabit Ethernet controller maximum frequency | _   | 125 | MHz   |
| F <sub>EMIOSDCLK</sub>   | EMIO SD controller maximum frequency               | _   | 25  | MHz   |
| FEMIOSPICLK              | EMIO SPI controller maximum frequency              | _   | 25  | MHz   |
| F <sub>EMIOJTAGCLK</sub> | EMIO JTAG controller maximum frequency             | _   | 20  | MHz   |
| FEMIOTRACECLK            | EMIO trace controller maximum frequency            | _   | 125 | MHz   |
| F <sub>FTMCLK</sub>      | Fabric trace monitor maximum frequency             | _   | 125 | MHz   |
| FEMIODMACLK              | DMA maximum frequency                              | _   | 100 | MHz   |
| F <sub>AXI_MAX</sub>     | Maximum AXI interface performance                  | _   | 250 | MHz   |



### **PS Switching Characteristics**

### Clocks

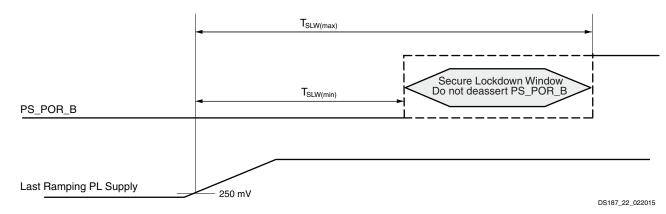
### Table 20: System Reference Clock Input Requirements

| Symbol               | Description                       | Min | Тур | Max  | Units |
|----------------------|-----------------------------------|-----|-----|------|-------|
| T <sub>JTPSCLK</sub> | PS_CLK RMS clock jitter tolerance | -   | -   | ±0.5 | %     |
| T <sub>DCPSCLK</sub> | PS_CLK duty cycle                 | 40  | -   | 60   | %     |
| T <sub>RFPSCLK</sub> | PS_CLK rise and fall time         | -   | -   | 6    | ns    |
| F <sub>PSCLK</sub>   | PS_CLK frequency                  | 30  | -   | 60   | MHz   |

### Table 21: PS PLL Switching Characteristics

| Symbol                  | Description                  |      | Speed Grade |              |      |       |  |
|-------------------------|------------------------------|------|-------------|--------------|------|-------|--|
|                         | Description                  | -3   | -2          | -1C/-1I/-1LI | -1Q  | Units |  |
| T <sub>LOCK_PSPLL</sub> | PLL maximum lock time        | 60   | 60          | 60           | 60   | μs    |  |
| F <sub>PSPLL_MAX</sub>  | PLL maximum output frequency | 2000 | 1800        | 1600         | 1600 | MHz   |  |
| F <sub>PSPLL_MIN</sub>  | PLL minimum output frequency | 780  | 780         | 780          | 780  | MHz   |  |

### Resets


### Table 22: PS Reset Assertion Timing Requirements

| Symbol             | Description                                     | Min | Тур | Max | Units               |
|--------------------|-------------------------------------------------|-----|-----|-----|---------------------|
| T <sub>PSPOR</sub> | Required PS_POR_B assertion time <sup>(1)</sup> | 100 | -   | -   | μs                  |
| T <sub>PSRST</sub> | Required PS_SRST_B assertion time               | 3   | _   | _   | PS_CLK Clock Cycles |

### Notes:

1. PS\_POR\_B needs to be asserted Low until T<sub>PSPOR</sub> after PS supply voltages reach minimum levels.

The PS\_POR\_B deassertion must meet the following requirements to avoid coinciding with the secure lockdown window. Figure 1 shows the timing relationship between PS\_POR\_B and the last power supply ramp ( $V_{CCINT}$ ,  $V_{CCBRAM}$ ,  $V_{CCAUX}$ , or  $V_{CCO}$  in bank 0). T<sub>SLW</sub> minimum and maximum parameters define the beginning and end, respectively, of the secure lockdown window relative to the last PL power supply reaching 250 mV. The PS\_POR\_B must not be deasserted within the secure lockdown window.





| Symbol                          | Description                                                         | PS_CLK Frequency<br>(MHz) | Min  | Max  | Units |
|---------------------------------|---------------------------------------------------------------------|---------------------------|------|------|-------|
| T <sub>SLW</sub> <sup>(1)</sup> | 128 KB CRC eFUSE disabled and PLL enabled.<br>Default configuration | 30                        | 12   | 39   | ms    |
|                                 |                                                                     | 33.33                     | 12   | 40   | ms    |
|                                 |                                                                     | 60                        | 13   | 40   | ms    |
|                                 | 128 KB CRC eFUSE disabled and PLL in bypass.                        | 30                        | -32  | 13   | ms    |
|                                 |                                                                     | 33.33                     | -27  | 13   | ms    |
|                                 |                                                                     | 60                        | -9   | 25   | ms    |
|                                 | 128 KB CRC eFUSE enabled and PLL enabled. <sup>(2)</sup>            | 30                        | -19  | 9    | ms    |
|                                 |                                                                     | 33.33                     | -16  | 12   | ms    |
|                                 |                                                                     | 60                        | -3   | 25   | ms    |
|                                 | 128 KB CRC eFUSE enabled and PLL in bypass. <sup>(2)</sup>          | 30                        | -830 | -788 | ms    |
|                                 |                                                                     | 33.33                     | -746 | -705 | ms    |
|                                 |                                                                     | 60                        | -408 | -374 | ms    |

### Table 23: PS Reset/Power Supply Timing Requirements

#### Notes:

1. Valid for power supply ramp times of less than 6 ms. For ramp times longer than 6 ms, see the BootROM Performance section of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).

2. If any PS and PL power supplies are tied together, observe the PS\_POR\_B assertion time requirement (T<sub>PSPOR</sub>) in Table 22 and its accompanying note.

### **PS Configuration**

### Table 24: Processor Configuration Access Port Switching Characteristics

| Symbol              | Description                                                  | Min | Тур | Max | Units |
|---------------------|--------------------------------------------------------------|-----|-----|-----|-------|
| F <sub>PCAPCK</sub> | Maximum processor configuration access port (PCAP) frequency | -   | _   | 100 | MHz   |

### **DDR Memory Interfaces**

### Table 25: DDR3 Interface Switching Characteristics (1066 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min   | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 450   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 131   | -    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 288   | -    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.11 | 0.09 | Т <sub>СК</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 532   | -    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 637   | -    | ps              |

#### Notes:

- 1. Recommended  $V_{CCO_DDR} = 1.5V \pm 5\%$ .
- 2. Measurement is taken from V<sub>REF</sub> to V<sub>REF</sub>.
- 3. Measurement is taken from either the rising edge of DQ that crosses  $V_{IH}(AC)$  or the falling edge of DQ that crosses  $V_{IL}(AC)$  to  $V_{REF}$  of DQS.
- 4. Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IL</sub>(DC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 26: DDR3 Interface Switching Characteristics (800 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min   | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 232   | _    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 401   | -    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.10 | 0.06 | т <sub>ск</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 722   | -    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 882   | -    | ps              |

#### Notes:

- 1. Recommended  $V_{CCO_DDR} = 1.5V \pm 5\%$ .
- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses V<sub>IH</sub>(AC) or the falling edge of DQ that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of DQS.
   Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses
- 5. Measurement is taken from either the rising edge of CMD/ADDR that crosses  $V_{IH}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  to  $V_{REF}$  of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 27: DDR3L Interface Switching Characteristics (1066 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min   | Мах  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 450   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 189   | _    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 267   | _    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.13 | 0.04 | Т <sub>СК</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 410   | -    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 629   | _    | ps              |

### Notes:

- 1. Recommended  $V_{CCO_DDR}$  = 1.35V ±5%.
- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses  $V_{IH}(AC)$  or the falling edge of DQ that crosses  $V_{IL}(AC)$  to  $V_{REF}$  of DQS.
- 4. Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of DQS.
- 5. Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 28: DDR3L Interface Switching Characteristics (800 Mb/s)(1)

| Symbol                              | Description                                           | Min   | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 321   | _    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 380   | _    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.12 | 0.04 | Т <sub>СК</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 636   | _    | ps              |

### Table 28: DDR3L Interface Switching Characteristics (800 Mb/s)<sup>(1)</sup> (Cont'd)

| Symbol                           | Description                                          | Min | Мах | Units |
|----------------------------------|------------------------------------------------------|-----|-----|-------|
| T <sub>CKCA</sub> <sup>(6)</sup> | Command/address output hold time with respect to CLK | 853 | _   | ps    |

#### Notes:

1. Recommended  $V_{CCO_DDR} = 1.35V \pm 5\%$ .

- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses V<sub>IH</sub>(AC) or the falling edge of DQ that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of DQS.
   Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses
- V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
   Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the failing edge of CMD/ADDR that c V<sub>IH</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 29: LPDDR2 Interface Switching Characteristics (800 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min  | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500  | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 196  | _    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 328  | _    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | 0.90 | 1.06 | т <sub>ск</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 202  | -    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 353  | _    | ps              |

#### Notes:

- 1. Recommended  $V_{CCO\_DDR} = 1.2V \pm 5\%$ .
- 2. Measurement is taken from V<sub>REF</sub> to V<sub>REF</sub>.
- 3. Measurement is taken from either the rising edge of DQ that crosses  $V_{IH}(AC)$  or the falling edge of DQ that crosses  $V_{IL}(AC)$  to  $V_{REF}$  of DQS.
- 4. Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 30: LPDDR2 Interface Switching Characteristics (400 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min  | Max  | Units |
|-------------------------------------|-------------------------------------------------------|------|------|-------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500  | -    | ps    |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 664  | -    | ps    |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 766  | -    | ps    |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | 0.90 | 1.06 | ТСК   |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 731  | -    | ps    |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 907  | _    | ps    |

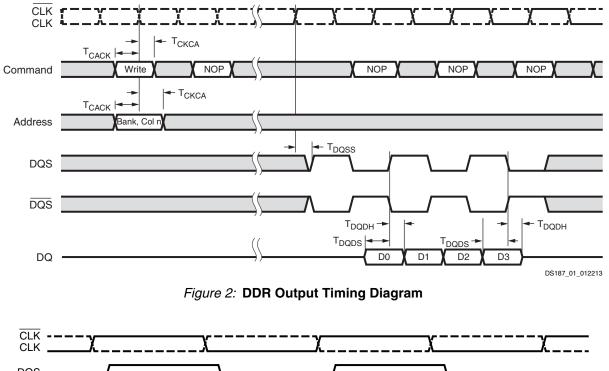
#### Notes:

- 1. Recommended  $V_{CCO DDR} = 1.2V \pm 5\%$ .
- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses V<sub>IH</sub>(AC) or the falling edge of DQ that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of DQS.
- 4. Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IL</sub>(DC) to V<sub>BEF</sub> of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 31: DDR2 Interface Switching Characteristics (800 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min   | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 147   | _    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 376   | -    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.07 | 0.08 | Т <sub>СК</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 732   | _    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 938   | _    | ps              |

#### Notes:


- 1. Recommended  $V_{CCO DDR} = 1.8V \pm 5\%$ .
- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses V<sub>IH</sub>(AC) or the falling edge of DQ that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of DQS.
   Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses
- 5. We as the mean in the staken from either the rising edge of CMD/ADDR that crosses  $V_{IH}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADDR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that crosses  $V_{IL}(AC)$  or the failing edge of CMD/ADR that cro
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of CLK.

### Table 32: DDR2 Interface Switching Characteristics (400 Mb/s)<sup>(1)</sup>

| Symbol                              | Description                                           | Min   | Max  | Units           |
|-------------------------------------|-------------------------------------------------------|-------|------|-----------------|
| T <sub>DQVALID</sub> <sup>(2)</sup> | Input data valid window                               | 500   | -    | ps              |
| T <sub>DQDS</sub> <sup>(3)</sup>    | Output DQ to DQS skew                                 | 385   | -    | ps              |
| T <sub>DQDH</sub> <sup>(4)</sup>    | Output DQS to DQ skew                                 | 662   | -    | ps              |
| T <sub>DQSS</sub>                   | Output clock to DQS skew                              | -0.11 | 0.06 | Т <sub>СК</sub> |
| T <sub>CACK</sub> <sup>(5)</sup>    | Command/address output setup time with respect to CLK | 1760  | _    | ps              |
| T <sub>CKCA</sub> <sup>(6)</sup>    | Command/address output hold time with respect to CLK  | 1739  | -    | ps              |

### Notes:

- 1. Recommended  $V_{CCO_DDR} = 1.8V \pm 5\%$ .
- 2. Measurement is taken from  $V_{REF}$  to  $V_{REF}$ .
- 3. Measurement is taken from either the rising edge of DQ that crosses V<sub>IH</sub>(AC) or the falling edge of DQ that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of DQS.
- 4. Measurement is taken from either the rising edge of DQ that crosses V<sub>IL</sub>(DC) or the falling edge of DQ that crosses V<sub>IL</sub>(DC) to V<sub>REF</sub> of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IH</sub>(AC) or the falling edge of CMD/ADDR that crosses V<sub>IL</sub>(AC) to V<sub>REF</sub> of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V<sub>IL</sub>(DC) or the falling edge of CMD/ADDR that crosses V<sub>IH</sub>(DC) to V<sub>REF</sub> of CLK.



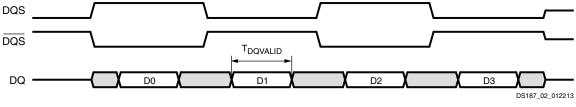



Figure 3: DDR Input Timing Diagram

### **Static Memory Controller**

### Table 33: SMC Interface Delay Characteristics<sup>(1)(2)</sup>

| Symbol                   | Description                                                     | Min  | Max  | Units |
|--------------------------|-----------------------------------------------------------------|------|------|-------|
| T <sub>NANDDOUT</sub>    | NAND_IO output delay from last register to pad                  | 4.12 | 6.45 | ns    |
| T <sub>NANDALE</sub>     | NAND_ALE output delay from last register to pad                 | 5.08 | 6.33 | ns    |
| T <sub>NANDCLE</sub>     | NAND_CLE output delay from last register to pad                 | 4.87 | 6.40 | ns    |
| T <sub>NANDWE</sub>      | NAND_WE_B output delay from last register to pad                | 4.69 | 5.89 | ns    |
| T <sub>NANDRE</sub>      | NAND_RE_B output delay from last register to pad                | 5.12 | 6.44 | ns    |
| T <sub>NANDCE</sub>      | NAND_CE_B output delay from last register to pad                | 4.68 | 5.89 | ns    |
| T <sub>NANDDIN</sub>     | NAND_IO setup time and input delay from pad to first register   | 1.48 | 3.09 | ns    |
| T <sub>NANDBUSY</sub>    | NAND_BUSY setup time and input delay from pad to first register | 2.48 | 3.33 | ns    |
| T <sub>SRAMA</sub>       | SRAM_A output delay from last register to pad                   | 3.94 | 5.73 | ns    |
| T <sub>SRAMDOUT</sub>    | SRAM_DQ output delay from last register to pad                  | 4.66 | 6.45 | ns    |
| T <sub>SRAMCE</sub>      | SRAM_CE output delay from last register to pad                  | 4.57 | 5.95 | ns    |
| T <sub>SRAMOE</sub>      | SRAM_OE_B output delay from last register to pad                | 4.79 | 6.13 | ns    |
| T <sub>SRAMBLS</sub>     | SRAM_BLS_B output delay from last register to pad               | 5.25 | 6.74 | ns    |
| T <sub>SRAMWE</sub>      | SRAM_WE_B output delay from last register to pad                | 5.12 | 6.48 | ns    |
| T <sub>SRAMDIN</sub>     | SRAM_DQ setup time and input delay from pad to first register   | 1.93 | 3.05 | ns    |
| T <sub>SRAMWAIT</sub>    | SRAM_WAIT setup time and input delay from pad to first register | 2.26 | 3.15 | ns    |
| F <sub>SMC_REF_CLK</sub> | SMC reference clock frequency                                   | _    | 100  | MHz   |

#### Notes:

1. All parameters do not include the package flight time and register controlled delays.

2. Refer to the ARM® PrimeCell® Static Memory Controller (PL350 series) Technical Reference Manual for more SMC timing details.

### **Quad-SPI Interfaces**

### Table 34: Quad-SPI Interface Switching Characteristics

| Symbol                    | Description                              | Load<br>Conditions    | Min                  | Max                | Units                           |
|---------------------------|------------------------------------------|-----------------------|----------------------|--------------------|---------------------------------|
| Feedback Cloc             | k Enabled                                |                       |                      |                    |                                 |
| T <sub>DCQSPICLK1</sub>   | Quad-SPI clock duty cycle                | All <sup>(1)(2)</sup> | 44                   | 56                 | %                               |
| <b>+</b>                  |                                          | 15 pF <sup>(1)</sup>  | -0.10 <sup>(3)</sup> | 2.30               |                                 |
| T <sub>QSPICKO1</sub>     | Data and slave select output delay       | 30 pF <sup>(2)</sup>  | -1.00                | 3.80               | – ns                            |
| Ŧ                         |                                          | 15 pF <sup>(1)</sup>  | 2.00                 | _                  |                                 |
| T <sub>QSPIDCK1</sub>     | Input data setup time                    | 30 pF <sup>(2)</sup>  | 3.30                 | -                  | – ns                            |
| Ŧ                         |                                          | 15 pF <sup>(1)</sup>  | 1.30                 | _                  |                                 |
| T <sub>QSPICKD1</sub>     | Input data hold time                     | 30 pF <sup>(2)</sup>  | 1.50                 | _                  | – ns                            |
| T <sub>QSPISSCLK1</sub>   | Slave select asserted to next clock edge | All <sup>(1)(2)</sup> | 1                    | _                  | F <sub>QSPI_REF_CLK</sub> cycle |
| T <sub>QSPICLKSS1</sub>   | Clock edge to slave select deasserted    | All <sup>(1)(2)</sup> | 1                    | _                  | F <sub>QSPI_REF_CLK</sub> cycle |
| -                         | Quad-SPI device clock frequency          | 15 pF <sup>(1)</sup>  | _                    | 100 <sup>(4)</sup> |                                 |
| F <sub>QSPICLK1</sub>     |                                          | 30 pF <sup>(2)</sup>  | _                    | 70 <sup>(4)</sup>  | - MHz                           |
| Feedback Cloc             | k Disabled                               |                       |                      |                    |                                 |
| T <sub>DCQSPICLK2</sub>   | Quad-SPI clock duty cycle                | All <sup>(1)(2)</sup> | 44                   | 56                 | %                               |
| T <sub>QSPICKO2</sub>     | Data and slave select output delay       | 15 pF <sup>(1)</sup>  | -0.10                | 3.80               | ns                              |
|                           |                                          | 30 pF <sup>(2)</sup>  | -1.00                | 3.80               | ns                              |
| T <sub>QSPIDCK2</sub>     | Input data setup time                    | All <sup>(1)(2)</sup> | 6                    | _                  | ns                              |
| T <sub>QSPICKD2</sub>     | Input data hold time                     | All <sup>(1)(2)</sup> | 12.5                 | -                  | ns                              |
| T <sub>QSPISSCLK2</sub>   | Slave select asserted to next clock edge | All <sup>(1)(2)</sup> | 1                    | _                  | F <sub>QSPI_REF_CLK</sub> cycle |
| T <sub>QSPICLKSS2</sub>   | Clock edge to slave select deasserted    | All <sup>(1)(2)</sup> | 1                    | -                  | F <sub>QSPI_REF_CLK</sub> cycle |
| F <sub>QSPICLK2</sub>     | Quad-SPI device clock frequency          | All <sup>(1)(2)</sup> | _                    | 40                 | MHz                             |
|                           | k Enabled or Disabled                    | · ·                   |                      | 1                  | 1                               |
| F <sub>QSPI_REF_CLK</sub> | Quad-SPI reference clock frequency       | All <sup>(1)(2)</sup> | _                    | 200                | MHz                             |

### Notes:

1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads, feedback clock pin has no load. Quad-SPI single slave select 4-bit I/O mode.

2. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 30 pF loads in 4-bit stacked I/O configuration, feedback clock pin has no load. Quad-SPI single slave select 4-bit I/O mode.

3. The T<sub>QSPICKO1</sub> is an effective value. Use it to compute the available memory device input setup and hold timing budgets based on the given device clock-out duty-cycle limits.

4. Requires appropriate component selection/board design.

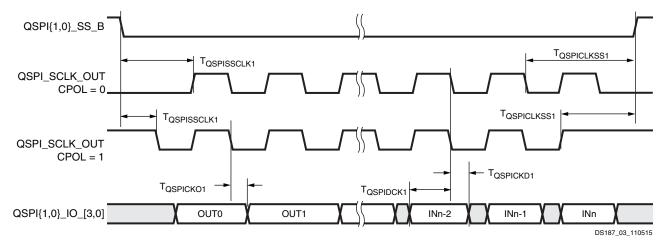



Figure 4: Quad-SPI Interface (Feedback Clock Enabled) Timing Diagram

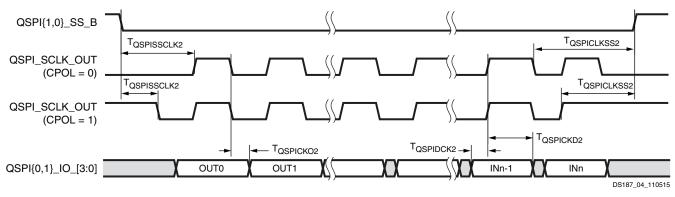



Figure 5: Quad-SPI Interface (Feedback Clock Disabled) Timing Diagram

### **ULPI Interfaces**

| Symbol               | Description                             | Min  | Тур | Max  | Units |
|----------------------|-----------------------------------------|------|-----|------|-------|
| T <sub>ULPIDCK</sub> | Input setup to ULPI clock, all inputs   | 3.00 | -   | -    | ns    |
| TULPICKD             | Input hold to ULPI clock, all inputs    | 1.00 | -   | _    | ns    |
| T <sub>ULPICKO</sub> | ULPI clock to output valid, all outputs | 1.70 | -   | 8.86 | ns    |
| F <sub>ULPICLK</sub> | ULPI device clock frequency             | _    | 60  | _    | MHz   |

### Table 35: ULPI Interface Clock Receiving Mode Switching Characteristics<sup>(1)(2)</sup>

#### Notes:

- 1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads, 60 MHz device clock frequency.
- 2. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

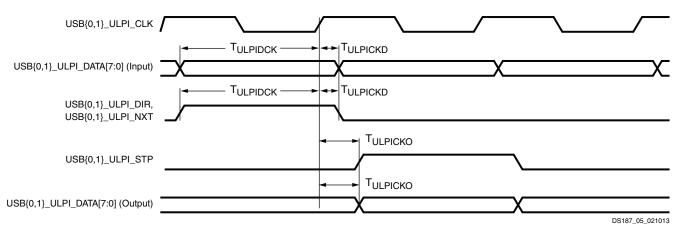



Figure 6: ULPI Interface Timing Diagram