: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

2A Synchronous Step-Down DC/DC Converters

\star GreenOperation Compatible

- GENERAL DESCRIPTION

The XC9242/XC9243 series is a group of synchronous-rectification step-down DC/DC converters with a built-in 0.11Ω (TYP.) P-channel MOS driver transistor and 0.12Ω (TYP.) N-channel MOS switching transistor, designed to allow the use of ceramic capacitors. The small on-resistances of these two internal driver transistors enable a high efficiency, stable power supply with an output current up to 2 A . The XC9242/XC9243 series has operating voltage range of $2.7 \mathrm{~V} \sim 6.0 \mathrm{~V}$ and a 0.8 V $(\pm 2.0 \%)$ reference voltage, and using externally connected resistors, the output voltage can be set freely from 0.9 V . With an internal switching frequency of 1.2 MHz or 2.4 MHz , small external components can be used.
The XC9242 series is PWM control, and the XC9243 series is PWM/PFM, which automatically switches from PWM to PFM during light loads and provides high efficiency, high load response, low voltage ripple, can be achieved over a wide range of load conditions. The series have a high speed soft-start as fast as 1 ms in typical for quick turn-on. It's suitable for large-current application due to limit current is configured 4.0A in typical. During stand-by, all circuits are shutdown to reduce current consumption to as low as $1.0 \mu \mathrm{~A}$ or less. The integrated C_{L} discharge function which enables the electric charge at the output capacitor C_{L} to be discharged via the internal discharge switch located between the L_{x} and V_{ss} pins. Due to C_{L} discharge function, malfunction on L_{x} is prevented when Stand-by mode. With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel driver transistor is forced OFF when input voltage becomes 2.5 V or lower. The series are available in USP-10B, SOP-8FD packages.

FEATURES

APPLICATIONS

- Smart phones / Mobile phones
- Bluetooth
- Mobile devices / terminals
- Portable game consoles
- Digital still cameras / Camcorders

Driver Transistor

Input Voltage Range
Output Voltage Setting
FB Voltage
High Efficiency
Output Current
Oscillation Frequency
Maximum Duty Cycle
Functions
: 0.11Ω P-ch Driver Transistor 0.12Ω N-ch Switching Transistor
$2.7 \mathrm{~V} \sim 6.0 \mathrm{~V}$
$0.9 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{IN}}$
$0.8 \mathrm{~V} \pm 2.0 \%$
95\%(TYP.)*
2.0A
1.2MHz $\pm 15 \%, 2.4 \mathrm{MHz} \pm 15 \%$

100\%
: Soft-Start Circuit Built-In
C_{L} Discharge
Current Limit Circuit (automatic return)
Thermal Shutdown
UVLO
Low ESR Ceramic Capacitor
PWM control (XC9242) PWM/PFM Auto (XC9243)
Operating Ambient Temperature
Packages
Environmentally Friendly
$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
USP-10B, SOP-8FD
EU RoHS Compliant, Pb Free

* Performance depends on external components and wiring on the PCB.

- TYPICAL APPLICATION CIRCUIT

- XC9242/XC9243 Series (FB Type)

- TYPICAL PERFORMANCE CHARACTERISTICS

- Efficiency vs. Output Current (fosc=1.2MHz, Vout=3.3V)

XC 9242B08C
$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathrm{M}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx2})$ $C_{\text {NR }}=1 \mu F\left(L M K 107 B J\right.$ 105KAx1), $C_{L}=20 \mu F(L M K 212 A B J 106 K G \times 2)$ $\mathrm{R}_{\mathrm{FB}}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F} 82}=15 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=330 \mathrm{pF}$

- BLOCK DIAGRAM

- XC9242/XC9243 Series

* Diodes inside the circuits are ESD protection diodes and parasitic diodes.

- PRODUCT CLASSIFICATION

- Ordering Information

Fixed PWM control
PWM / PFM automatic switching control

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	Functional Selection	B	C_{L} Discharge
(2) (3)	Output Voltage	08	Reference Voltage is fixed at 0.8 V
(4)	Oscillation Frequency	C	1.2 MHz
		D	2.4 MHz
(5) (6)-77 ${ }^{\left({ }^{(1)}\right)}$	Package (Order Unit)	DR-G	USP-10B (3,000/Reel) ${ }^{(+2)}$
		QR-G	SOP-8FD (1,000/Reel)

${ }^{\left({ }^{(11)}\right)}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
${ }^{(2)}$ The USP-10B reels are shipped in a moisture-proof packing.
Selection Guide

TYPE	SOFT-START TIME	CHIP ENABLE	CURRENT LIMITER	THERMAL SHUTDOWN	UVLO	C AUTO- DISCHARGE
B	Fixed	Yes	Yes	Yes	Yes	Yes

PIN CONFIGURATION

USP-10B
(BOTTOM VIEW)

USP-10B

* Please connect the power input pins (No. 8 and No.9) and analog input pin (No.7) when operating.
* Please connect the two Lx pins (No. 1 and 10).
* Please connect the power ground pins (No. 2 and 3) and analog ground pin (No.5) when operating.
* It is recommended that the heat dissipation pad of the USP-10B package is soldered by using the reference mount pattern and metal mask pattern for mounting strength. The mount pattern should be electrically opened or connected to AGND pin (No.5) and PGND pin (No.2, and 3).

SOP-8FD

* Please connect the power input pin (No.7) and analog input pin (No.6) when operating.
* Please connect the two Lx pins (No. 1 and 8).
* Please connect the two power ground pins (No. 2 and 4).
* It is recommended that the heat dissipation pad of the SOP-8FD package is soldered by using the reference mount pattern and metal mask pattern for mounting strength. The mount pattern should be electrically opened or connected to AGND pin (No.6) and PGND pin (No.7).

- PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTIONS
USP-10B	SOP-8FD		
1,10	1,8	Lx	Switching Output
2,3	2	PGND	Power Ground
4	3	FB	Output Voltage Monitor
5	4	AGND	Analog Ground
6	5	CE	Chip Enable
7	6	AVIN	Analog Input
8,9	7	PVIN	Power Input

- CE PIN FUNCTION

PIN NAME	SIGNAL	STATUS
CE	H	Active
	L	Stand-by

[^0]- ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
PVIN Pin Voltage		$V_{\text {PVIN }}$	$-0.3 \sim+7.0{ }^{(* 1)}$	V
AVIN Pin Voltage		$\mathrm{V}_{\text {AVIN }}$		V
CE Pin Voltage		$V_{\text {CE }}$	-0.3~+7.0	V
FB Pin Voltage		$V_{\text {FB }}$	-0.3 ~ +7.0	V
Lx Pin Voltage		$\mathrm{V}_{\text {Lx }}$	$-0.3 \sim+7.0$ or $\mathrm{V}_{\mathrm{PVIN}}+0.3{ }^{(* 2)}$	V
Lx Pin Current		Lx	$\pm 6.0{ }^{\left({ }^{(3)}\right.}$	A
Power Dissipation	USP-10B	Pd	150	mW
	SOP-8FD	Pd	300	mW
Operating Ambient Temperature		Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

All voltages are described based on the ground voltage of AGND and PGND.
(*1) Please connect PVIN pin and AVIN pin for use.
(*2) The maximum value should be either +7.0 or $\mathrm{V}_{\mathrm{PVIN}}+0.3$ in the lowest.
(*3) It is measured when the two Lx pins (USP-10B No. 1 and 10, SOP-8FD No. 1 and 8) are tied up to each other.

ELECTRICAL CHARACTERISTICS

- XC9242/XC9243, fosc $=1.2 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX.	UNIT	CIRCUIT
FB Voltage	$V_{\text {FB }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$ Voltage to start oscillation while $V_{F B}=0.72 \mathrm{~V} \rightarrow 0.88 \mathrm{~V}$	0.784	0.800	0.816	V	(3)
Operating Voltage Range	$\mathrm{V}_{\text {IN }}$	When connected to external components	2.7	-	6.0	V	(1)
Maximum Output Current	loutmax	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}^{\left({ }^{*} 1, *_{2}\right)}$ When connected to external components	2.0	-	-	A	(1)
UVLO Voltage	Vuvio	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Voltage which $L x$ pin holding " $L^{\prime \prime}$ level ${ }^{(+3)}$	2.00	-	2.68	V	(3)
Quiescent Current	I_{q}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	41	78	$\mu \mathrm{A}$	(2)
Stand-by Current	$\mathrm{I}_{\text {STB }}$	$\mathrm{V}_{\mathbb{I N}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	0.01	1.00	$\mu \mathrm{A}$	(2)
Oscillation Frequency	$\mathrm{f}_{\text {Osc }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=300 \mathrm{~mA}$ When connected to external components	1020	1200	1380	kHz	(1)
PFM Switch Current ${ }^{(* 4)}$	IPFM	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$ When connected to external components	-	280	-	mA	(1)
PFM Duty Limit ${ }^{(* 4)}$	DTY ${ }_{\text {LIMIT_PFM }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CE}}=2.7 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$ When connected to external components	-	180	250	\%	(1)
Maximum Duty Limit	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$	100	-	-	\%	(3)
Minimum Duty Limit	$\mathrm{D}_{\text {MIN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	-	0	\%	(3)
Efficiency	EFFI	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=500 \mathrm{~mA}^{(* 5)} \\ & \mathrm{R}_{\mathrm{FB} 1}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=15 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=330 \mathrm{pF} \end{aligned}$	-	95	-	\%	(1)
LXSW"H"ON Resistance	$\mathrm{R}_{\text {LxH }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}^{(* 6)}$	-	0.11	0.21	Ω	(4)
LXSW"L"ON Resistance	$\mathrm{R}_{\text {LxL }}$		-	0.12	$0.30^{\left({ }^{(7)}\right.}$	Ω	-
LXSW"H" Leakage Current	$\mathrm{I}_{\text {LeakH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx}}=0 \mathrm{~V}$	-	0.01	$1.00^{(* 8)}$	$\mu \mathrm{A}$	(5)
Current Limit	ILIM	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}^{(* 9)}$	-	4.0	-	A	(4)
Output Voltage Temperature Characteristics	$\begin{gathered} \Delta \mathrm{V}_{\text {out } /} \\ \left(\mathrm{V}_{\text {out }} \cdot \Delta \text { topr }\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{I}_{\text {out }}=100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leqq \mathrm{Topr} \leqq 85^{\circ} \mathrm{C} \end{aligned}$ When connected to external components	-	± 100	-	ppml ${ }^{\circ} \mathrm{C}$	(1)
CE"H" Voltage	$\mathrm{V}_{\text {CEH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Applied voltage to V_{CE} Voltage changes Lx to "H" level	1.2	-	$\mathrm{V}_{\text {IN }}$	V	(3)
CE"L" Voltage	$\mathrm{V}_{\text {cel }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Applied to V_{CE} Voltage changes $L x$ to "L" level	AGND	-	0.4	V	(3)
CE"H" Current	$\mathrm{I}_{\text {CEH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
CE"L" Current	$\mathrm{I}_{\text {CEL }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
FB"H" Current	$\mathrm{I}_{\text {FBH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=5.0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
FB"L" Current	$\mathrm{I}_{\text {FBL }}$	$\mathrm{VI}_{\mathrm{N}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
Soft-Start Time	$\mathrm{t}_{\text {ss }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \rightarrow 5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$ When connected to external components	0.3	1.0	2.0	ms	(1)
Thermal Shutdown Temperature	$\mathrm{T}_{\text {TSD }}$		-	150	-	${ }^{\circ} \mathrm{C}$	-
Hysteresis Width	$\mathrm{T}_{\mathrm{HYS}}$		-	20	-	${ }^{\circ} \mathrm{C}$	-
C_{L} Discharge	$\mathrm{R}_{\text {DCHG }}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx}}=1.0 \mathrm{~V}$	80	130	160	Ω	(6)

NOTE:
External Components: $\mathrm{C}_{\mathbb{I N} 1}=20 \mu \mathrm{~F}$ (ceramic), $\mathrm{C}_{\mathrm{IN} 2}=1 \mu \mathrm{~F}$ (ceramic), $\mathrm{L}=4.7 \mu \mathrm{H}$ (SLF7055T-4R7 TDK), $\mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}$ (ceramic)

$$
R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}
$$

Condition: Unless otherwise stated, " $H^{\prime \prime}=\mathrm{V}_{\mathbb{I N}} \sim \mathrm{V}_{\mathbb{I N}}-1.2 \mathrm{~V}$, "L" $=+0.1 \mathrm{~V} \sim-0.1 \mathrm{~V}$
(*1) Mount conditions affect heat dissipation. Maximum output current is not guaranteed when $T_{\text {TSD }}$ starts to operate earlier.
(*2) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
(*3) These values include UVLO detect voltage, UVLO release voltage and hysteresis operating voltage range.
UVLO release voltage is defined as the $\mathrm{V}_{\mathbb{I N}}$ voltage which makes Lx pin "H".
(*4) XC9242 series exclude $\mathrm{I}_{\text {PFM }}$ and DTY LImit_pFM because those are only for the PFM control's functions.
(*5) $\mathrm{EFFI}=\{$ (output voltage \times output current) / (input voltage \times input current) $\} \times 100$
(*6) On resistance $=\left(\mathrm{V}_{\mathbb{I N}}-\mathrm{Lx}\right.$ pin measurement voltage) $/ 100 \mathrm{~mA}$
(*7) Design value
(*8) When temperature is high, a current of approximately $20 \mu \mathrm{~A}$ (maximum) may leak.
(*9) Current limit denotes the level of detection at peak of coil current.

- ELECTRICAL CHARACTERISTICS (Continued)

XC9242/XC9243, $\mathrm{f}_{\mathrm{OSC}}=2.4 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
FB Voltage	$V_{\text {FB }}$	$V_{I N}=V_{C E}=5.0 \mathrm{~V}$ Voltage to start oscillation while $\mathrm{V}_{\mathrm{FB}}=0.72 \mathrm{~V} \rightarrow 0.88 \mathrm{~V}$	0.784	0.800	0.816	V	(3)
Operating Voltage Range	$\mathrm{V}_{\text {IN }}$	When connected to external components	2.7	-	6.0	V	(1)
Maximum Output Current	loutmax	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}{ }^{\left({ }^{(11,2)}\right.}$ When connected to external components	2.0	-	-	A	(1)
UVLO Voltage	$V_{\text {uvio }}$	$V_{C E}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Voltage which Lx pin holding " L " level ${ }^{\left({ }^{(3)}\right)}$	2.00	-	2.68	V	(3)
Quiescent Current	I_{q}	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	53	92	$\mu \mathrm{A}$	(2)
Stand-by Current	$\mathrm{I}_{\text {STB }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	0.01	1.00	$\mu \mathrm{A}$	(2)
Oscillation Frequency	$\mathrm{f}_{\text {Osc }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1000 \mathrm{~mA}$ When connected to external components	2040	2400	2760	kHz	(1)
PFM Switch Current ${ }^{(* 4)}$	$I_{\text {PFM }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$ When connected to external components	-	680	-	mA	(1)
PFM Duty Limit ${ }^{(* 4)}$	DTY LIMIT_PFM	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=2.7 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=1 \mathrm{~mA}$ When connected to external components	-	180	250	\%	(1)
Maximum Duty Limit	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$	100	-	-	\%	(3)
Minimum Duty Limit	$\mathrm{D}_{\text {MIN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}$	-	-	0	\%	(3)
Efficiency	EFFI	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}^{(+5)} \\ & \mathrm{R}_{\mathrm{FB} 1}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=15 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=330 \mathrm{pF} \end{aligned}$	-	95	-	\%	(1)
LXSW"H"ON Resistance	$\mathrm{R}_{\text {LXH }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}^{(* 6)}$	-	0.11	0.21	Ω	(4)
LXSW"L"ON Resistance	$\mathrm{R}_{\mathrm{LXL}}$		-	0.12	$0.30^{(* 7)}$	Ω	-
LXSW"H" Leakage Current	$\mathrm{I}_{\text {LeakH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.88 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx}}=0 \mathrm{~V}$	-	0.01	$1.00{ }^{(* 8)}$	$\mu \mathrm{A}$	(5)
Current Limit	ILIM	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}^{(* 9)}$	-	4.0	-	A	(4)
Output Voltage Temperature Characteristics	$\begin{gathered} \Delta \mathrm{V}_{\text {out }} \\ \left(\mathrm{V}_{\text {OUT }} \Delta \text { topr }\right) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leqq \mathrm{Topr} \leqq 85^{\circ} \mathrm{C} \end{aligned}$ When connected to external components	-	± 100	-	ppm ${ }^{\circ} \mathrm{C}$	(1)
CE"H" Voltage	$\mathrm{V}_{\text {ceh }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Applied voltage to V_{CE} Voltage changes Lx to " H " level	1.2	-	$\mathrm{V}_{\text {IN }}$	V	(3)
CE"L" Voltage	$\mathrm{V}_{\text {cel }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}$ Applied voltage to V_{CE} Voltage changes Lx to "L" level	AGND	-	0.4	V	(3)
CE"H" Current	$\mathrm{I}_{\text {CEH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
CE"L" Current	$\mathrm{I}_{\text {cel }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
FB"H" Current	$\mathrm{I}_{\text {FBH }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=5.0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
FB"L" Current	$\mathrm{I}_{\text {FBL }}$	$\mathrm{VI}_{\mathrm{N}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$	-0.1	-	0.1	$\mu \mathrm{A}$	(5)
Soft-Start Time	$\mathrm{t}_{\text {ss }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V} \rightarrow 5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$ When connected to external components	0.3	1.0	2.0	ms	(1)
Thermal Shutdown Temperature	$\mathrm{T}_{\text {TSD }}$		-	150	-	${ }^{\circ} \mathrm{C}$	-
Hysteresis Width	$\mathrm{T}_{\mathrm{HYS}}$		-	20	-	${ }^{\circ} \mathrm{C}$	-
C_{L} Discharge	$\mathrm{R}_{\text {DCHG }}$	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.72 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx}}=1.0 \mathrm{~V}$	80	130	160	Ω	(6)

NOTE:
External Components: $\mathrm{C}_{\mathbb{I} 1}=20 \mu \mathrm{~F}$ (ceramic), $\mathrm{C}_{\mathbb{I N} 2}=1 \mu \mathrm{~F}$ (ceramic), $\mathrm{L}=2.2 \mu \mathrm{H}$ (SLF7055T-2R2 TDK), $\mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}$ (ceramic) $R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, \mathrm{C}_{F B}=1000 \mathrm{pF}$
Condition: Unless otherwise stated, "H"= $\mathrm{V}_{\mathrm{IN}} \sim \mathrm{VI}_{\mathrm{N}}-1.2 \mathrm{~V}$, "L" $=+0.1 \mathrm{~V} \sim-0.1 \mathrm{~V}$
(*1) Mount conditions affect heat dissipation. Maximum output current is not guaranteed when $T_{\text {TSD }}$ starts to operate earlier.
(*2) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P -ch driver ON resistance.
(*3) These values include UVLO detect voltage, UVLO release voltage and hysteresis operating voltage range. UVLO release voltage is defined as the $V_{I N}$ voltage which makes $L x$ pin " H ".
(*4) XC9242 series exclude IPFM and DTY Limit_PFm because those are only for the PFM control's functions.
(*5) EFFI $=\{$ (output voltage \times output current) / (input voltage \times input current) $\} \times 100$
(*6) On resistance $=\left(\mathrm{V}_{\mathbb{I N}}-\right.$ Lx pin measurement voltage $) / 100 \mathrm{~mA}$
(*7) Design value
(*8) When temperature is high, a current of approximately $20 \mu \mathrm{~A}$ (maximum) may leak.
(*9) Current limit denotes the level of detection at peak of coil current.

■ TYPICAL APPLICATION CIRCUIT

- XC9242/XC9243 Series

External Components

	1.2 MHz		2.4 MHz
$\mathrm{L}:$	$4.7 \mu \mathrm{H}(\mathrm{SLF} 7055 \mathrm{~T}-4 \mathrm{R} 7)$	$\mathrm{L}:$	$2.2 \mu \mathrm{H}(\mathrm{SLF} 7055 \mathrm{~T}-2 \mathrm{R} 2)$
	$4.7 \mu \mathrm{H}(\mathrm{SPM} 6530 \mathrm{~T}-4 \mathrm{R} 7)$		$2.2 \mu \mathrm{H}(\mathrm{SPM} 6530 \mathrm{~T}-2 \mathrm{R} 2)$
$\mathrm{C}_{\mathrm{IN} 1}:$	$20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} 10 \mathrm{~V} / 10 \mu \mathrm{~F} \times 2)$	$\mathrm{C}_{\mathrm{IN} 1}:$	$20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} 10 \mathrm{~V} / 10 \mu \mathrm{~F} \times 2)$
$\mathrm{C}_{\mathrm{IN} 2}$	$1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KA} 10 \mathrm{~V} / 1 \mu \mathrm{~F} \times 1)$	$\mathrm{C}_{\mathrm{IN} 2}$	$1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KA} 10 \mathrm{~V} / 1 \mu \mathrm{~F} \times 1)$
$\mathrm{C}_{\mathrm{L}}:$	$20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} 10 \mathrm{~V} / 10 \mu \mathrm{~F} \times 2)$	$\mathrm{C}_{\mathrm{L}}:$	$20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} 10 \mathrm{~V} / 10 \mu \mathrm{~F} \times 2)$

<Output Voltage Setting>
Output voltage can be set by adding external split resistors. Output voltage is determined by the following equation, based on the values of RFB1 and RFB2. The sum of RFB1 and RFB2 should normally be $100 \mathrm{k} \Omega$ or less. Output voltage range is $0.9 \mathrm{~V} \sim 5.5 \mathrm{~V}$ by a $0.8 \mathrm{~V}(\pm 2.0 \%)$ reference voltage. When input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right) \leqq$ setting output voltage, output voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ can not output the power more than input voltage $\left(\mathrm{V}_{\text {IN }}\right)$.

$$
V O U T=0.8 \times(R F B 1+R F B 2) / R F B 2
$$

The value of C_{FB}, speed-up capacitor for phase compensation, should be $f_{\mathrm{ZFB}}=1 /(2 \times \pi \times C F B \times R F B 1)$ which is equal to 10 kHz . Adjustments are required from 1 kHz to 10 kHz depending on the application, value of inductance (L), and value of load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$.

[Example of calculation]

When $R_{F B 1}=47 \mathrm{k} \Omega, R_{F B 2}=15 \mathrm{k} \Omega$, $V_{\text {OUT }}=0.8 \times(47 \mathrm{k} \Omega+15 \mathrm{k} \Omega) / 15 \mathrm{k} \Omega=3.3 \mathrm{~V}$
When $\mathrm{C}_{\mathrm{FB}}=330 \mathrm{pF}, f z f b=1 /(2 \times \pi \times 330 \mathrm{pF} \times 47 \mathrm{k} \Omega)=10.26 \mathrm{kHz}$

$V_{\text {OUT }}$ (V)	$R_{\text {FB1 }}$ $(\mathrm{k} \Omega)$	$\mathrm{R}_{\text {FB2 }}$ $(\mathrm{k} \Omega)$	$\mathrm{C}_{\text {FB }}$ (pF)	$\mathrm{V}_{\text {OUT }}$ (V)	$\mathrm{R}_{\text {FB1 }}$ $(\mathrm{k} \Omega)$	$\mathrm{R}_{\text {FB2 }}$ $(\mathrm{k} \Omega)$	$\mathrm{C}_{\text {FB }}$ (pF)
1.0	7.5	30	2000	2.5	51	24	300
1.2	15	30	1000	3.0	33	12	470
1.5	26	30	560	3.3	47	15	330
1.8	30	24	510	5.0	43	8.2	390

- OPERATIONAL DESCRIPTION

The XC9242/XC9243 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel MOS switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage from the FB pin. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.

<Ramp Wave Circuit>

The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2 MHz or 2.4 MHz . Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.

<Error Amplifier>

The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the external split resistors, R1 and R2. When a voltage lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer.

<Current Limit>

The XC9242/XC0243 series includes a fold-back circuit, which aids the operation of the current limiter and circuit protection. The XC9242/XC9243 series monitors the current flowing through the P-channel MOS driver transistor
(1) When current flowing through P-channel MOS driver transistor reaches current limit $\mathrm{I}_{\text {LIM }}$, the current limiter circuit operates to limit the inductor current I_{Lx}. If this state continues, the fold-back circuit operates and limit the output current in order to protect the IC from damage.
(2) The output voltage is automatically resumed if the load goes light. When it is resumed, the soft-start function operates.

OPERATIONAL DESCRIPTION (Continued)

<Thermal Shutdown>
For protection against heat damage, the thermal shutdown function monitors chip temperature. When the chip's temperature reaches $150^{\circ} \mathrm{C}$ (TYP.), the thermal shutdown circuit starts operating and the P-channel driver transistor will be turned off. At the same time, the output voltage decreases. When the temperature drops to $130^{\circ} \mathrm{C}$ (TYP.) after shutting off the current flow, the IC performs the soft start function to initiate output startup operation.

< Function of CE pin >

The XC9242/9243 series will enter into stand-by mode by inputting a low level signal to the CE pin. During a stand-by mode, the current consumption of the IC becomes $0 \mu \mathrm{~A}$ (TYP.). The IC starts its operation by inputting a high level signal to the CE pin. The input of the CE pin is a CMOS input and the sink current is $0 \mu \mathrm{~A}$ (TYP.).
<UVLO>
When the VIN pin voltage becomes 2.4 V (TYP.) or lower, the P-channel MOS driver transistor output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the $\mathrm{V}_{\mathbb{I N}}$ pin voltage becomes 2.68 V (MAX.) or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.

<Soft Start>

The XC9242/XC9243 series provide 1.0 ms (TYP). Soft start time is defined as the time interval to reach 90% of the output voltage from the time when the V_{CE} is turned on.

<C ${ }_{L}$ High Speed Discharge>

The XC9242/XC9243 series can quickly discharge the electric charge at the output capacitor (C_{L}) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch transistor located between the L_{x} pin and the $V_{G N D}$ pin. When the IC is disabled, electric charge at the output capacitor (C_{L}) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor $\left(\mathrm{C}_{\mathrm{L}}\right)$ is set by the C_{L} auto-discharge resistance (R) and the output capacitor (C_{L}). By setting time constant of a C_{L} auto-discharge resistance value $[R]$ and an output capacitor value $\left(C_{L}\right)$ as $\tau(\tau=C \times R)$, discharge time of the output voltage after discharge via the N -channel transistor is calculated by the following formulas.

$$
\begin{aligned}
& V=V_{\text {OUT(E) }} \times e^{-t / \tau} \text { or } t=\tau \ln \left(V_{\mathrm{OUT}(E)} / V\right) \\
& \mathrm{V}: \text { Output voltage after discharge } \\
& V_{\text {OUT(E) }}: \text { Output voltage } \\
& \mathrm{t}: \text { Discharge time } \\
& \tau: \mathrm{C}_{\mathrm{L}} \times \mathrm{R}_{\mathrm{DCHG}} \\
& \mathrm{C}_{\mathrm{L}}: \text { Capacitance of Output capacitor } \\
& \mathrm{R}_{\mathrm{DCHG}}: \mathrm{C}_{\mathrm{L}} \text { auto-discharge resistance }
\end{aligned}
$$

Output Voltage Dischage characteristics

- OPERATIONAL DESCRIPTION (Continued)
 <PFM Switch Current> ${ }^{(* 1)}$

In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-channel MOS driver transistor on. In this case, time that the P-channel MOS driver transistor is kept on (t_{ON}) can be given by the following formula. Please refer to $\mathrm{I}_{\mathrm{PFM}}{ }^{(1)}$
$t_{\text {ON }}=L \times I_{\text {PFM }} /\left(V_{I N}-V_{\text {OUT }}\right)$
< PFM Duty Limit > ${ }^{\left({ }^{*}\right)}$
In PFM control operation, the PFM duty limit (DTY LIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for P-channel MOS driver transistor to be turned off even when coil current doesn't reach to IPFM. Please refer to $I_{\text {PFM }}{ }^{(2)}$
${ }^{\left({ }^{*} 1\right)} \mathrm{XC} 9242$ Series is excluded.

Fig. $\mathrm{IPFM}^{(1)}$

Fig. $I_{\text {PFM }}(2)$

■ NOTE ON USE

1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.

Please wire the input capacitor $\left(\mathrm{C}_{\mathbb{I N}}\right)$ and the output capacitor $\left(\mathrm{C}_{\mathrm{L}}\right)$ as close to the IC as possible.
3. When the difference between $\mathrm{V}_{\mathbb{I}}$ and $\mathrm{V}_{\text {OUT }}$ is large in PWM control, very narrow pulses will be outputted, and there is the possibility that some cycles may be skipped completely.
4. When the difference between V_{IN} and $\mathrm{V}_{\text {OUt }}$ is small, and the load current is heavy, very wide pulses will be outputted and there is the possibility that some cycles may be skipped completely.
5. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula:

$$
\begin{gathered}
I p k=\left(V_{I N}-V_{\text {OUT }}\right) \times \text { OnDuty } /\left(2 \times L \times f_{\text {OSC }}\right)+I_{\text {OUT }} \\
\text { L: Coil Inductance Value } \\
f_{\text {OSc: }} \text { Oscillation Frequency }
\end{gathered}
$$

6. Use of the IC at voltages below the recommended voltage range may lead to instability.
7. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
8. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the P-channel driver transistor.
9. The XC9242/XC9243 uses fold-back circuit limiter. However, fold-back may become "droop" affected by the wiring conditions. Care must be taken especially for $\mathrm{C}_{\mathbb{N}}$ distance and position.
10. If $C_{\llcorner }$capacitance reduction happens such as in the case of low temperature, the IC may enter unstable operation. Care must be taken for C_{L} capacitor selection and its capacitance value.

11. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

- NOTE ON USE (Continued)

- Instructions of pattern layouts

1. In order to stabilize $\mathrm{V}_{\mathbb{I N}}$ voltage level, we recommend that a by-pass capacitor $\left(\mathrm{C}_{\mathbb{N}}\right)$ be connected as close as possible to the PVIN \& PGND pins and the AVIN \& AGND pins.
2. Make sure to avoid noise from the PVIN pin to the AVIN pin. Please connect the AGND pin and PGND pin in the shortest length for wiring.
3. Please mount each external component as close to the IC as possible.
4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance
5. This series' internal driver transistors bring on heat because of the output current and ON resistance of P-channel and N -channel MOS driver transistors.
6. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC.
$1^{\text {st }}$ Layer(USP-10B)

$3^{\text {rd }}$ Layer(USP-10B)

- PCB (USP-10B)

1) XC9242/XC9243 Series

$2^{\text {nd }}$ Layer(USP-10B)

$4^{\text {th }}$ Layer(USP-10B)

- Typical Application Circuit (USP-10B)

1) XC9242/XC9243 Series

- NOTE ON USE (Continued)

$1^{\text {st }}$ Layer(SOP-8FD)

$3^{\text {rd }}$ Layer(SOP-8FD)

- PCB (SOP8-FD)

1) $X C 9242 / X C 9243$ Series

$2^{\text {nd }}$ Layer(SOP-8FD)

$4^{\text {th }}$ Layer(SOP-8FD)

Typical Application Circuit (SOP8-FD)

1) XC9242/XC9243 Series

- TEST CIRCUITS

1) CIRCUIT (1)

2) CIRCUIT (2)

3) CIRCUIT (4)

4) CIRCUIT (3)

5) CIRCUIT (5)

6) CIRCUIT (6)

- TYPICAL PERFORMANCE CHARACTERISTICS

(1) Efficiency vs. Output Current

(2) Output Voltage vs. Output Current

$L=4.7 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{N}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2) $C_{\mathbb{N}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx1}), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ} 106 \mathrm{KG} \times 2)$ $\mathrm{R}_{\mathrm{FB} 1}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

XC9243B08C ($\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$)
$L=4.7 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{I}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2) $C_{\mathbb{N}}=1 \mu$ F(LMK107BJ 105KAx1),$C_{L}=20 \mu$ F(LMK212ABJ 106KGx2 $\mathrm{R}_{\mathrm{FB} 1}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

XC9243B08D ($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)
$L=2.2 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2) $\mathrm{C}_{\mathbb{I}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2)

XC9243B08C ($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)
$L=4.7 \mu \mathrm{H}(S L F 7055), \mathrm{C}_{\mathbb{N}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2) $C_{I N}=1 \mu$ F(LMK107BJ 105KAx1), $C_{L}=20 \mu$ F(LMK212ABJ 106KGx2) $\mathrm{R}_{\mathrm{cD} 1}=15 \mathrm{k} \Omega . \mathrm{R}_{\mathrm{cD}}=30 \mathrm{k} \Omega . \mathrm{C}_{\mathrm{co}}=1000 \mathrm{DF}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Output Voltage vs. Output Current

XC9242B08D ($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)
L=2.2 $\mathrm{H}(\mathrm{SLF7055}), \mathrm{CIN}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ}$ 106KGx2) CIN $=1 \mu$ F(LMK107BJ 105KAx1),CL=20 μ F(LMK212ABJ 106KGx2) RFB1 $=15 \mathrm{k} \Omega, \mathrm{RFB} 2=30 \mathrm{k} \Omega, \mathrm{CFB}=1000 \mathrm{pF}$

(3) Ripple Voltage vs. Output Current

XC9242B08C ($\mathrm{V}_{\text {Out }}=1.2 \mathrm{~V}$)

L=4.7 $\mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{I}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ}$ 106KGx2) $C_{\mathbb{N}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx2})$ $R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$

XC9242B08D ($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)

$L=2.2 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathrm{I}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ} 106 \mathrm{KG} \times 2)$ $C_{\mathbb{N}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} \mathrm{105KAx1}), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ} 106 \mathrm{KG} \times 2)$ $R_{\text {FB1 }}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB2}}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

XC9243B08D ($\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$)
$L=2.2 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{N}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ}$ 106KGx2) $C_{\text {IN }}=1 \mu$ F(LMK107BJ 105KAx1), $C_{L}=20 \mu$ F(LMK212ABJ 106KGx2 $R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$

XC9243B08C ($\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$)

L=4.7 $\mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{N}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ} 106 \mathrm{KG} \times 2)$ $\mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}\left(\mathrm{LMK} 107 \mathrm{BJ}\right.$ 105KAx1), $\mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ} 106 \mathrm{KG} \times 2$ $\mathrm{R}_{\mathrm{FB} 1}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

XC9243B08D ($\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$)
L=2.2 $\mu(S L F 7055), C_{\mathbb{N}}=20 \mu$ F(LMK212ABJ 106KGx2) $C_{\mathbb{N}}=1 \mu F(L M K 107 B J 105 K A x 1), C_{L}=20 \mu F(L M K 212 A B J 106 K G \times 2)$ $\mathrm{R}_{\mathrm{FB}}=15 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{FB} 2}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(4) FB Voltage vs. Ambient Temperature

XC9242B08C

(6) Quiescent Current vs. Ambient Temperature

XC9242B08C

(7) Stand-by Current vs. Ambient Temperature

XC9242B08C

XC9242B08C

XC9242B08D

XC9242B08D

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Oscillation Frequency vs. Ambient Temperature

XC9242B08C

(9) PFM Switching Current vs. Ambient Temperature

XC9243B08C

(10) PFM Duty Limit vs. Ambient Temperature

XC9243B08C

XC9242B08D

XC9243B08D

XC9243B08D

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(11) Pch Driver ON Resistance vs. Ambient Temperature

XC9242B08C

(13) LxSW"H" Leakage Current vs. Ambient Temperature

XC9242B08C

(15) CE"H" Voltage vs. Ambient Temperature

XC9242B08C

XC9242B08C

(14) Current Limit vs. Ambient Temperature

XC9242B08C

(16) CE"L" Voltage vs. Ambient Temperature

XC9242B08C

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(17) Soft-Start Time vs. Ambient Temperature

XC9242B08C

(18) C_{L} Discharge Resistance vs. Ambient Temperature

XC9242B08C

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(19) Load Transient Response

XC9242B08C

$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN} 1}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$C_{\mathrm{IN} 2}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$

XC9243B08C
$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN} 1}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ106KGx} 2)$ $C_{\mathrm{IN} 2}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 A B J 106 \mathrm{KG} \times 2)$ $R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$

x-axis:1ms / div

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(19) Load Transient Response

XC9242B08D

$\mathrm{L}=2.2 \mu \mathrm{H}(\mathrm{SLF7055}), \mathrm{C}_{\mathbb{N} 1}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} \times 2)$
$C_{\mathbb{I N} 2}=1 \mu F(L M K 107 B J 105 K A x 1), C_{L}=20 \mu F(L M K 212 A B J 106 K G \times 2)$
$R_{F B 1}=15 k \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$

XC9243B08D

$\mathrm{L}=2.2 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN} 1}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} \times 2)$ $C_{\mathrm{C}_{2}=1}=1 \mu(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK212ABJ106KGx2})$ $R_{F B 1}=15 k \Omega, R_{F B 2}=30 k \Omega, C_{F B}=1000 \mathrm{pF}$
$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.5 \mathrm{~A} \Rightarrow 1 \mathrm{~m} \mathrm{~A}$

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(20) Frequency Response

Test Condition:
Measurement equipment:NF FRA5097 Version:3.00 OSC amplitude $=20.0 \mathrm{mV}$ peak OSC.Dcbias $=0.00 \mathrm{~V}$ OSC waveform: SIN , Sweep minimum frequency $=1 \mathrm{~Hz}$
Sweep maximum frequency $=15 \mathrm{MHz}$
Sweep resolution=300steps/sweep
Integration period=100cycle, Delay time=0cycle
Order of harmonic analysis=1, Measure mode:CH1\&CH2
Auto integration:OFF, Amplitude compression:OFF
Slow sweep:OFF
XC9242B08CDR
$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 A B J 106 \mathrm{KGx} 2)$
$R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$
$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$

$\mathrm{L}=4.7 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KG} \times 2)$
$R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$
$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, I IUT $=1000 \mathrm{~mA}$

- TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(20) Frequency Response (Continued)

Test Condition:

Measurement equipment:NF FRA5097 Version:3.00 OSC amplitude $=20.0 \mathrm{mV}$ peak OSC.Dcbias $=0.00 \mathrm{~V}$ OSC waveform:SIN, Sweep minimum frequency=1Hz
Sweep maximum frequency $=15 \mathrm{MHz}$
Sweep resolution=300steps/sweep
Integration period=100cycle, Delay time=0cycle
Order of harmonic analysis=1, Measure mode:CH1\&CH2
Auto integration:OFF, Amplitude compression:OFF
Slow sweep:OFF

XC9242B08DDR

$\mathrm{L}=2.2 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$\mathrm{C}_{\mathbb{I N}^{\prime}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(L M K 212 A B J 106 K G x 2)$
$R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$
$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$

$\mathrm{L}=2.2 \mu \mathrm{H}(\mathrm{SLF} 7055), \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}(\mathrm{LMK} 107 \mathrm{BJ} 105 \mathrm{KAx} 1), \mathrm{C}_{\mathrm{L}}=20 \mu \mathrm{~F}(\mathrm{LMK} 212 \mathrm{ABJ} 106 \mathrm{KGx} 2)$
$R_{F B 1}=15 \mathrm{k} \Omega, R_{F B 2}=30 \mathrm{k} \Omega, C_{F B}=1000 \mathrm{pF}$
$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, I IOUT $=1000 \mathrm{~mA}$

- PACKAGING INFORMATION

- USP-10B (unit: mm)

- USP-10B Reference Pattern Layout (unit: mm)

- USP-10B Reference Metal Mask Design (unit: mm)

[^0]: * Please do not leave the CE pin open.

