# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### ETR06003-002

### Synchronous Rectification Buck-Boost DC/DC Converter IC

☆GreenOperation Compatible

### ■GENERAL DESCRIPTION

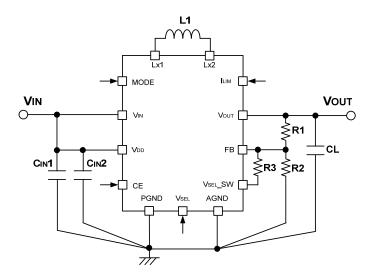
The XC9306B05G0R-G is a synchronous buck-boost DC/DC converter IC with built-in FETs. The circuit topology switches over between buck and boost smoothly based on the relationship of the input voltage and the output voltage which is observed by the internal PWM controller. Due to the internal FETs, the number of external components is reduced. Also, a 6MHz switching frequency enables smaller external components, such as a coil and capacitors, to be used. The input voltage range is 2.5V~5.5V and the output voltage is adjustable from 0.8V to 5.0V by using external resistors since the reference voltage circuit is embedded internally. Synchronous topology provides high efficiency performance and the control method is selectable from either PWM mode (MODE pin: H) or PFM mode (MODE pin: L). Under PFM mode, the efficiency at light load current will be improved. When a "L" signal level is fed to the CE pin, the product is in stand-by mode and the consumption current is going to be 2.0uA (Max.) or less. Regarding other functions, the product has UVLO, thermal shutdown protection and soft-start. The soft-start time is approx. 100us and the output voltage can rise up quickly.

### APPLICATIONS

#### RF Power Amplifiers

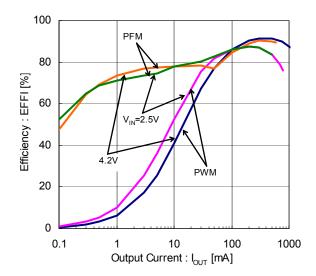
- Mobile Phones, Smart Phones
- Portable Information Devices
- MP3 Players
- Digital Still Cameras
- Products powered by Li-ion 1 cell batteries

### ■FEATURES

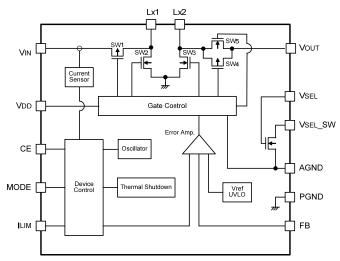

Coil Value

Environmentally Friendly

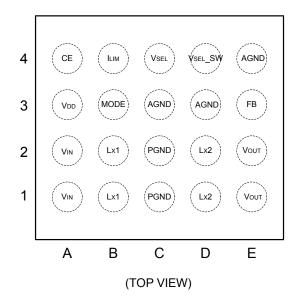
Package


- Input Voltage Range : 2.5V~5.5V Output Voltage Setting Range : 0.8V~5.0V (FB=0.5V) **Oscillation Frequency** : 6.0MHz Efficiency : 92%(VIN=4.2V, VOUT=3.3V/300mA) **Control Methods** : PWM (Mode=High, ILIM=Low) Protection Circuit : Current Limit Thermal Shutdown Function : Soft-start Power Save (Mode=Low) UVLO Output Capacitor
  - : Ceramic Capacitor Compatible
  - : 0.5 (0.47) µH
  - : WLP-20-01
  - : EU RoHS Compliant, Pb Free

### TYPICAL APPLICATION CIRCUIT




### TYPICAL PERFORMANCE **CHARACTERISTICS**


XC9306B05G0R-G Vout=3.3V



### BLOCK DIAGRAM



### ■ PIN CONFIGURATION



NOTE:

Please connect the AGND pin and PGND pin when operating.

### PIN ASSIGNMENT

| PIN NUMBER  | PIN NAME           | FUNCTIONS                                   |
|-------------|--------------------|---------------------------------------------|
| A1,A2       | VIN                | Power Input                                 |
| A3          | Vdd                | Analog Input                                |
| A4          | CE                 | Chip Enable                                 |
| B1,B2,D1,D2 | Lx1,Lx2            | Connection pins for Inductor                |
| B3          | MODE               | Power Save Mode(High:PWM mode,Low:PFM mode) |
| B4          | ILIM               | Current Limit Select                        |
| C1,C2       | PGND               | Power Ground                                |
| C3,D3,E4    | AGND               | Analog Ground                               |
| C4          | VSEL               | Resistor(R3) ON/OFF Switch                  |
| E1,E2       | Vout               | Output                                      |
| E3          | FB                 | Output Voltage Monitior                     |
| D4          | $V_{\text{SEL}}SW$ | Resistor(R3) Connection pin                 |

### ■PRODUCT CLASSIFICATION

#### 1) Ordering Information

#### XC9306B12345-6

|                                            | <u></u>               |        |                                    |
|--------------------------------------------|-----------------------|--------|------------------------------------|
| DESIGNATOR                                 | ITEM                  | SYMBOL | DESCRIPTION                        |
| 12                                         | Output Voltage        | 05     | Reference Voltage is fixed at 0.5V |
| 3                                          | Oscillation Frequency | G      | 5.8MHz                             |
| <b>(4)(5)</b> - <b>(6)</b> <sup>(*1)</sup> | Package (Order Unit)  | 0R-G   | WLP-20-01 (6,000/REEL)             |

<sup>(\*1)</sup> The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

### ■ CE PIN FUNCTION

#### 1) CE pin Function

| PIN NAME | SIGNAL | STATUS   |
|----------|--------|----------|
| CE pin   | High   | Active   |
|          | Low    | Stand-by |

\* Please do not leave the CE pin open.

#### 2) MODE pin, $I_{\text{LIM}}$ pin Function

"OPERATION MODE" can be selected with the MODE pin.

#### "OVER CURRENT LIMIT" can be selected with the ILIM pin.

| OPERATION<br>MODE | MODE pin<br>SIGNAL | I∟ıм pin SIGNAL | OVER CURRENT LIMIT | NOTES    |
|-------------------|--------------------|-----------------|--------------------|----------|
| PWM Mode          | High               | High            | -                  | Disabled |
| F WIWI WIOUE      | riigii             | Low             | 3.1A               | -        |
| PFM Mode          | Low                | High            | 1.3A               | -        |
| Frivi wode        | Low                | Low             | -                  | Disabled |

 $^{\ast}$  Please do not leave the MODE pin,  $I_{\text{LIM}}$  pin open.

Input of (MODE pin ="High",  $I_{LIM}$  pin ="High") is prohibited. Input of (MODE pin ="Low",  $I_{LIM}$  pin ="Low") is prohibited.

#### 3) V<sub>SEL</sub> pin Function

The V<sub>SEL</sub> pin is enabled when a resistor (R3) for adjustment of the output voltage (V<sub>OUT</sub>) is connected between the V<sub>SEL</sub>\_SW pin and FB pin.

| PIN NAME             | I NAME SIGNAL STATUS |                                      |  |
|----------------------|----------------------|--------------------------------------|--|
|                      | High                 | Output voltage adjustment switch ON  |  |
| V <sub>SEL</sub> pin | Low                  | Output voltage adjustment switch OFF |  |

 $^{\ast}$  Please do not leave the  $V_{\text{SEL}}$  pin open.

\* If you will not use output voltage adjustment, connect the  $V_{SEL}$  pin and  $V_{SEL}$ SW pin to Low voltage.

### ■ABSOLUTE MAXIMUM RATINGS

|                                              |                      |                               | Ta=25°C |
|----------------------------------------------|----------------------|-------------------------------|---------|
| PARAMETER                                    | SYMBOL               | RATINGS                       | UNITS   |
| Power Input Voltage                          | VIN                  | -0.3 ~ + 7.0                  | V       |
| Analog Input Voltage                         | Vdd                  | -0.3 ~ + 7.0                  | V       |
| Signal Input Voltage                         | CE, MODE, VSEL, ILIM | - 0.3 ~ V <sub>IN</sub> + 0.3 | V       |
| Power Dissipation                            | Pd                   | 1080 <sup>(*1)</sup>          | mW      |
| Maximum Junction Temperature <sup>(*2)</sup> | T <sub>jmax</sub>    | + 95                          | °C      |
| Operating Ambient Temperature                | T <sub>opr</sub>     | - 40~+ 85                     | °C      |
| Storage Temperature                          | T <sub>stg</sub>     | - 65 ~ + 150                  | °C      |

All voltages are described based on the GND (AGND and PGND) pin.

(\*1) The power dissipation figure shown is PCB mounted. (JEDEC regulation board used)

(\*2) The maximum temperature conditions for the of IC-Chip under recommended operating conditions.

Please design the heat radiation not to go beyond the maximum junction temperature.

0=04

### **RECOMMENDED OPERATING CONDITIONS**

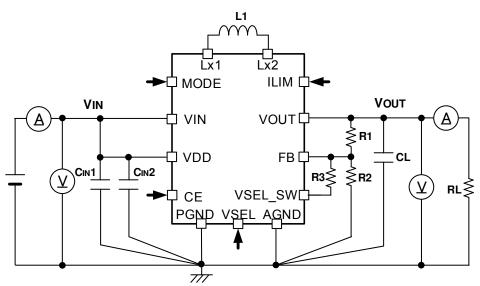
|                                   | 0)(1400)             |                                                               | L NAINI |      |      | Ta=25°C |
|-----------------------------------|----------------------|---------------------------------------------------------------|---------|------|------|---------|
| PARAMETER                         | SYMBOL               |                                                               | MIN.    | TYP. | MAX. | UNITS   |
| Power Supply Voltage              | V <sub>IN</sub>      |                                                               | 2.5     | 3.7  | 5.5  | V       |
| Signal Input Voltage              | -                    |                                                               | 0.0     | -    |      | V       |
|                                   |                      | $V_{IN}$ =5.5V, PWM mode(MODE =H), $I_{LIM}$ =L               | -       | -    | 1.2  |         |
| V <sub>OUT</sub> =5.0V            |                      | $V_{IN}$ =3.7V, PWM mode(MODE =H), I <sub>LIM</sub> =L        | -       | -    | 0.9  |         |
| Maximum                           | I <sub>OUT_MAX</sub> | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 0.6  | А       |
| Output Current                    |                      | V <sub>IN</sub> =5.5V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  | -       |
|                                   |                      | V <sub>IN</sub> =3.7V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.5  | -       |
|                                   |                      | V <sub>IN</sub> =2.5V, PFM mode(MODE =L) ,I <sub>LIM</sub> =H | -       | -    | 0.3  |         |
|                                   |                      | V <sub>IN</sub> =5.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
| V <sub>OUT</sub> =4.4V            |                      | V <sub>IN</sub> =3.7V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.0  | -       |
| Maximum                           | I <sub>OUT_MAX</sub> | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 0.7  | А       |
| Output Current                    | ·001_WAX             | V <sub>IN</sub> =5.5V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  |         |
| output outfold                    |                      | V <sub>IN</sub> =3.7V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  |         |
|                                   |                      | V <sub>IN</sub> =2.5V, PFM mode(MODE =L) ,I <sub>LIM</sub> =H | -       | -    | 0.35 |         |
|                                   |                      | V <sub>IN</sub> =5.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
| \/ -2 6\/                         |                      | V <sub>IN</sub> =4.2V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
| V <sub>OUT</sub> =3.6V<br>Maximum |                      | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 0.7  | A       |
| Output Current                    | I <sub>OUT_MAX</sub> | V <sub>IN</sub> =5.5V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  |         |
| Output Current                    |                      | V <sub>IN</sub> =4.2V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  |         |
|                                   |                      | V <sub>IN</sub> =2.5V, PFM mode(MODE =L) ,I <sub>LIM</sub> =H | -       | -    | 0.4  |         |
|                                   |                      | V <sub>IN</sub> =5.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
|                                   |                      | V <sub>IN</sub> =3.7V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
| V <sub>OUT</sub> =3.3V            |                      | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 0.8  |         |
| Maximum                           | I <sub>OUT_MAX</sub> | V <sub>IN</sub> =5.5V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  | A       |
| Output Current                    |                      | V <sub>IN</sub> =3.7V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.6  |         |
|                                   |                      | V <sub>IN</sub> =2.5V, PFM mode(MODE =L), I <sub>LIM</sub> =H | -       | -    | 0.5  |         |
|                                   |                      | V <sub>IN</sub> =5.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  |         |
|                                   |                      | V <sub>IN</sub> =3.7V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  | -       |
| V <sub>OUT</sub> =2.0V            |                      | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 1.2  | -       |
| Maximum                           | I <sub>OUT_MAX</sub> | $V_{IN}$ =5.5V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.6  | A       |
| Output Current                    |                      | $V_{IN}$ =3.7V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.5  |         |
|                                   |                      | $V_{IN}$ =2.5V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.5  |         |
|                                   |                      | $V_{IN}$ =5.5V, PWM mode(MODE =H), $I_{LIM}$ =L               | -       | -    | 0.7  |         |
|                                   |                      | $V_{IN}$ =3.7V, PWM mode(MODE =H), $I_{LIM}$ =L               | -       |      | 0.6  | -       |
| V <sub>OUT</sub> =1.2V            |                      | $V_{IN}$ =2.5V, PWM mode(MODE =H), $I_{LIM}$ =L               | -       | _    | 0.6  | -       |
| Maximum                           | I <sub>OUT_MAX</sub> | $V_{IN}$ = 5.5V, PFM mode(MODE = 1), $I_{LIM}$ =H             |         | -    | 0.0  | A       |
| Output Current                    |                      | $V_{IN}$ = 3.7V, PFM mode(MODE = L), $I_{LIM}$ =H             | -       | -    | 0.4  | -       |
|                                   |                      |                                                               | -       |      |      | -       |
|                                   |                      | $V_{IN}$ =2.5V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.3  |         |
|                                   |                      | $V_{IN}$ =5.5V, PWM mode(MODE =H), $I_{LIM}$ =L               | -       | -    | 0.6  |         |
| V <sub>OUT</sub> =0.8V            |                      | $V_{IN}$ =3.7V, PWM mode(MODE =H), I <sub>LIM</sub> =L        | -       | -    | 0.5  | -       |
| Maximum                           | IOUT_MAX             | V <sub>IN</sub> =2.5V, PWM mode(MODE =H), I <sub>LIM</sub> =L | -       | -    | 0.25 | А       |
| Output Current                    |                      | $V_{IN}$ =5.5V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.4  | 4       |
|                                   |                      | $V_{IN}$ =3.7V, PFM mode(MODE =L), $I_{LIM}$ =H               | -       | -    | 0.2  | 4       |
|                                   |                      | V <sub>IN</sub> =2.5V, PFM mode(MODE =L) ,I <sub>LIM</sub> =H | -       | -    | 0.2  |         |
| Operating Ambient                 | Та                   | -                                                             | -40     | -    | +85  | °C      |
| temperature                       |                      |                                                               |         |      |      |         |
| Junction                          | Tj                   | -                                                             | -40     | -    | +95  | °C      |
| temperature range                 | 1                    | _                                                             | _       | 0.5  | _    |         |
| Inductor value                    | L                    | -                                                             | -       | 0.5  | -    | μH      |

#### NOTE:

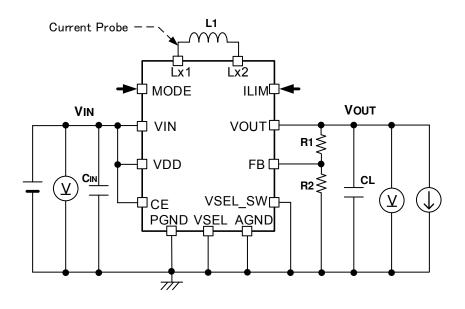
For the setting conditions for the MODE pin and  $I_{LIM}$  pin, refer to the Function Table. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet.

### ■ELECTRICAL CHARACTERISTICS


The specifications apply under the recommended operating condition. XC9306B05G0R-G

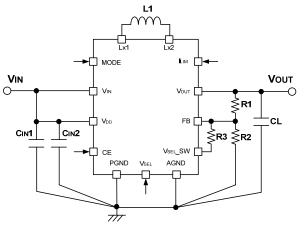
| PARAMETER                                                | SYMBOL              | CONDITIONS                                                                                                | MIN.        | TYP.                | MAX.            | UNITS | CIRCUIT    |
|----------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------|-------|------------|
| Output Voltage Range                                     | Vout                | -                                                                                                         | 0.8         | -                   | 5.0             | V     | _          |
| Feedback Voltage                                         | V <sub>FB</sub>     | $V_{IN} = V_{DD} = 5.5V$ ,<br>$V_{OUT} = 4.28V$ setting, FB Measurement                                   | 490         | 500                 | 510             | mV    | 1          |
| Maximum Output<br>Current                                | Iout_max            | $V_{IN} = V_{DD} = 3.1V$ , $V_{OUT} = 4.5V$ setting,<br>MODE=H, I <sub>LIM</sub> =L                       | 0.8         | -                   | -               | A     | 1          |
| Oscillation Frequency                                    | fosc                | MODE=H, I <sub>LIM</sub> =L                                                                               | 5.2         | 5.8                 | 6.4             | MHz   | 1          |
|                                                          |                     | $V_{IN} = V_{DD} = 4.8V$ , $V_{OUT} = 3.3V$ setting,<br>MODE=H, $I_{LIM} = L$                             | 2.50        | 3.10                |                 |       |            |
| Current Limit                                            | I <sub>РК</sub>     | V <sub>IN</sub> =V <sub>DD</sub> =4.8V, V <sub>OUT</sub> =3.3V setting,<br>MODE=L, I <sub>LIM</sub> =H    | 1.05        | 1.30                | 1.60            | A     | 2          |
| Stand-by Current                                         | I <sub>STB</sub>    | CE=L                                                                                                      | -           | -                   | 2               | μA    | 1          |
| Quiescent Current<br>(PFM mode)                          | lq                  | V <sub>IN</sub> =3.7V, V <sub>OUT</sub> =3.3V setting,<br>I <sub>OU</sub> <sub>T</sub> =0mA, MODE=L, CE=H | -           | 50                  | 90              | μA    | 1          |
|                                                          | Ron1                |                                                                                                           | -           | 63                  | 84              | mΩ    | _          |
|                                                          | Ron2                |                                                                                                           | -           | 124                 | 175             |       |            |
| FET Switch ON<br>Resistance                              | R <sub>ON</sub> 3   | $V_{IN} = V_{DD} = 3.7 V, V_{OUT} = 3.3 V$ setting                                                        | -           | 82                  | 116             |       |            |
|                                                          | Ron4                | -                                                                                                         | - 123 164   |                     |                 |       |            |
|                                                          | Ron5                |                                                                                                           | -           | 51                  | 72              |       |            |
| Signal Input Current<br>(CE/MODE/V <sub>SEL</sub> /ILIM) | Ітн                 | CE, MODE, VSEL, ILIM                                                                                      | -           | -                   | 0.1             | μA    | 1          |
| UVLO                                                     | Vuvlo_h             | -                                                                                                         | 1.9         | 2.0                 | 2.1             | v     | 1          |
| Threshold Voltage                                        | V <sub>UVLO_L</sub> | -                                                                                                         | 1.8         | 1.9                 | 2.0             | v     | $\bigcirc$ |
| Signal Input<br>Threshold Voltage                        | Vтнн                | CE, MODE, Vsel, Ilim                                                                                      | 1.5         | -                   | $V_{\text{DD}}$ | v     | 1          |
| (CE/MODE/V <sub>SEL</sub> /I <sub>LIM</sub> )            | V <sub>THL</sub>    |                                                                                                           | 0           | -                   | 0.25            |       | Ŭ          |
| Thermal Shutdown                                         | T <sub>TSD_</sub> н |                                                                                                           | - 135(*1) - | - °C                | 1               |       |            |
| Temperature                                              | T <sub>TSD_L</sub>  | <b>┐</b> -                                                                                                |             | 110 <sup>(*1)</sup> | -               |       | U          |


(\*1)This parameter is not be specified. This should be used as a reference to support designing the circuits.

### TEST CIRCUITS

<Circuit No.①>




<Circuit No.2>



L1: XPL2010-501ML (0.5 $\mu$ H) C<sub>IN</sub>1: LMK107BBJ106MALT (10V/10 $\mu$ F) C<sub>IN</sub>2: C1005JB1E104K (25V/0.1 $\mu$ F) CL: LMK107BBJ106MALT (10V/10 $\mu$ F)

R1: 620kΩ

### ■TYPICAL APPLICATION CIRCUIT



|                   | VALUE                       | PARTS NUMBER         | MANUFACTURER |  |
|-------------------|-----------------------------|----------------------|--------------|--|
|                   |                             | XPL2010-501ML        | Coilcraft    |  |
| L1                | 0.5µH                       | MLP2016WR47M         | TDK          |  |
| LI                | (0.47µH)                    | MIB2010M-R50W        | MARUWA       |  |
|                   |                             | MHCD201610A-R47M-A8S | Chilisin     |  |
| C <sub>IN</sub> 1 | 10V/10µF                    | C1608JB1A106M        | TDK          |  |
| CINT              | τονπομε                     | LMK107BBJ106MALT     | TaiyoYuden   |  |
| C <sub>IN</sub> 2 | 25V/0.1µF                   | C1005JB1E104K        | TDK          |  |
| GINZ              | 230/0.1µF                   | TMK105BJ104KV        | TaiyoYuden   |  |
|                   | 10)//2 20/5                 | C1608JB1A225K        | TDK          |  |
|                   | 10V/2.2µF                   | LMK107BJ225KA        | TaiyoYuden   |  |
| <b>C</b> (*1)     | CL <sup>(*1)</sup> 10V/10µF | C1608JB1A106M        | TDK          |  |
| CL                |                             | LMK107BBJ106MALT     | TaiyoYuden   |  |
|                   | 10V/22µF                    | C2012JB1A226M        | TDK          |  |
|                   | 10ν/22μΕ                    | LMK212BBJ226MG       | TaiyoYuden   |  |

 $^{(1)}$  The recommended standard capacity of the output capacitor is  $2.2\mu F$  in PWM mode.

When using in PFM mode, the capacitor with larger capacity (around 22µF) is recommended to reduce the ripple voltage. To suppress the decrease of output voltage during the load change, adjust with a larger capacitor.

1) Programming the Output Voltage

(1) When R3 is not used

The output voltage can be obtained from the equation below. VFB = 0.5V and R1 =  $620k\Omega$ .

$$V_{OUT} = V_{FB} \times \frac{R1 + R2}{R2} [V]$$

(2) When R3 is used

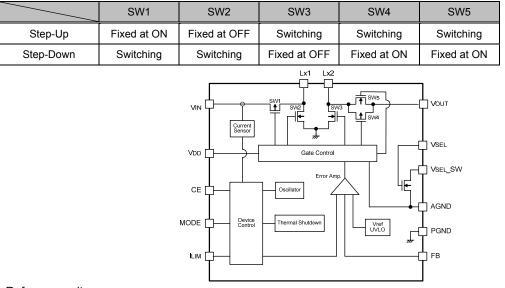
The output voltage can be obtained from the equation below. VFB = 0.5V and R1 =  $620k\Omega$ .

When  $V_{\text{SEL}}$ =Low

$$V_{OUT} = V_{FB} \times \frac{R1 + R2}{R2} [V]$$

When  $V_{\text{SEL}}$ =High

$$V_{OUT} = V_{FB} \times \frac{R1 + (R2 // R3)}{R2 // R3} [V]$$


<Reference>

| V <sub>OUT</sub> [V] | R1 [Ω] | R2 [Ω] |
|----------------------|--------|--------|
| 2.5                  |        | 155k   |
| 3.0                  |        | 124k   |
| 3.3                  |        | 110.7k |
| 3.7                  | 620k   | 96.9k  |
| 4.0                  |        | 88.6k  |
| 4.5                  |        | 77.5k  |
| 5.0                  |        | 68.9k  |

### ■OPERATIONAL DESCRIPTION

This IC consists of a reference voltage (Vref), error amplifier, phase compensation circuit, MOSFET (SW1 to SW5), oscillator circuit, UVLO circuit, gate control circuit, current limiting circuit, and other components.

An internal PWM controller monitors the input/output voltage, and operation takes place in either step-up or step-down mode. The states of the MOSFET (SW1 to SW5) during operation are shown below.



<Reference voltage source>

This is the reference voltage that keeps the output voltage of the IC stable.

#### <Oscillator>

The internal oscillator output a 5.8MHz (TYP.) clock signal to set a switching frequency.

#### <Error amp>

The error amp monitors the output voltage. The voltage divided by the internal R1 and R2 resistors is a feedback voltage for Error Amp. and compared to the reference voltage. The output voltage of the error amp becomes higher when the feedback voltage is higher than the reference voltage.

#### <UVLO>

To prevent unstable operation of the internal circuitry when the input voltage drops below 1.9V (TYP.), this function forcibly stops operation. When the input voltage rises above 2.0V (TYP.), switching operation takes place.

#### <Gate control circuit>

Controls ON/OFF of the MOSFET of SW1 to SW5.

#### <Soft-start>

XC9306B05G0R-G has the soft-start function to prevent rush current upon turning on of the power. The startup time is approximately 0.1ms.

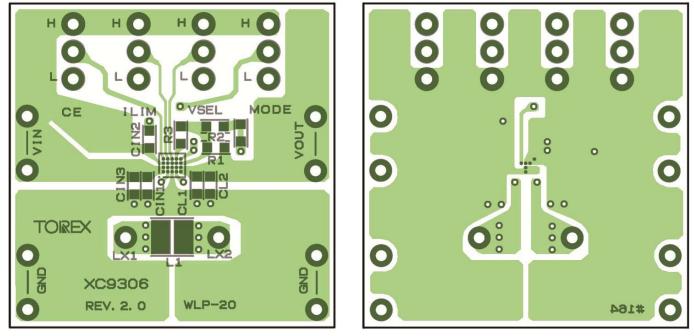
#### <Thermal Shutdown>

The over temperature protection circuit is built-in as a protection circuit. When junction temperature reaches +135°C, the over temperature protection circuit turns off MOSFET. Also, when the junction temperature falls to +110°C, this IC operates normally.

#### <Over current protection circuit>

The over current protection circuit detects peak value (ILpeak) of the inductor current flowing through the inductor from the internal MOSFET (SW1).

#### <PFM mode>


To improve efficiency when the load is light, the IC has PFM mode. This mode is enabled by setting the MODE pin to "Low" voltage. When in PFM mode, the mode will automatically change to PWM mode if the load current increases. The maximum output current of PFM mode is lower than PWM mode.

### ■NOTE ON USE

- 1) For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications.
- 2) The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high.
- 3) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
- 4) Instructions of pattern layouts

Please place the input capacitor ( $C_{IN}$ ) and the output capacitor ( $C_L$ ) as close to the IC as possible. Route a large current flows, please wiring short in the surface layer. The pattern on which the IC is mounted should be sufficiently large to allow the IC to dissipate heat.

#### <Reference pattern layout>



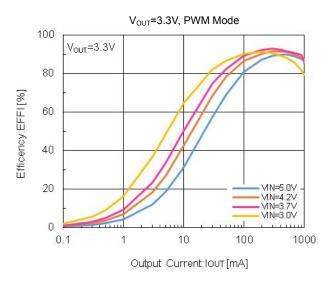
#### 5) NOTES ON MOUNTING

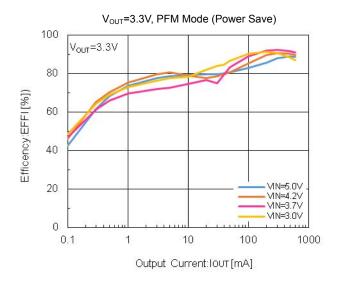
In general, the underfill material and sealing method affect the reliability of mounting. Spansion does not evaluate the mounting using the underfill material. It is advisable for each customer to evaluate the mounting enough.

6) Handling cautions

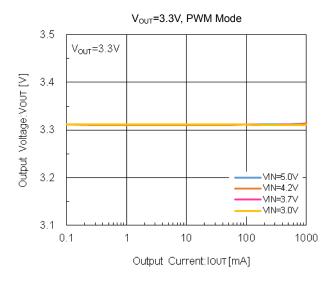
The structure of the wafer-level CSP (WLP) is such that the silicon chip is exposed at the back and on the side of the package. Silicon is a hard and brittle substance. When handling, take care that the silicon is not subjected to mechanical shock. Silicon is also a conductor, and thus this should be taken into consideration when developing the design.

#### 6)-1

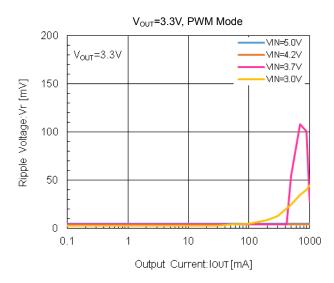

Do not use metal tweezers or other sharp tool or jig to handle the product. Use a tool such as suction-type tweezers with plastic or soft rubber tips.


#### 6)-2

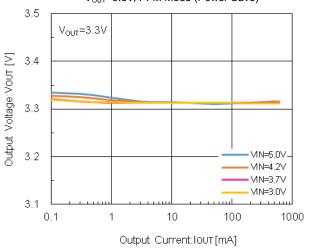
Take care that the silicon parts are not subjected to mechanical shock after mounting on the board.

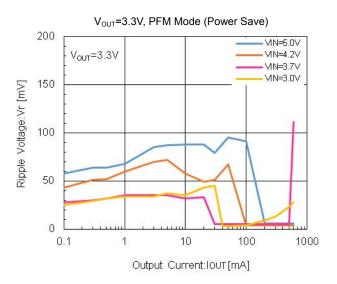

### TYPICAL PERFORMANCE CHARACTERISTICS

### (1) Efficiency vs. Output Current







#### (2) Output Voltage vs. Output Current

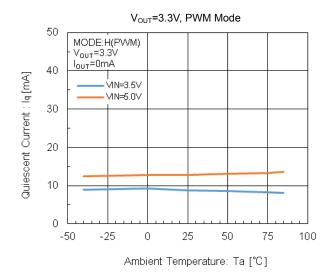




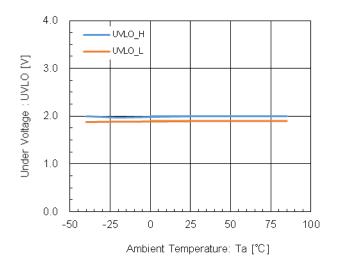



V<sub>OUT</sub>=3.3V, PFM Mode (Power Save)

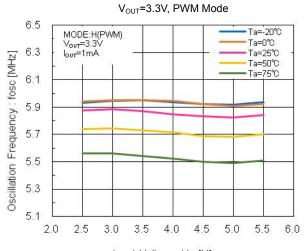




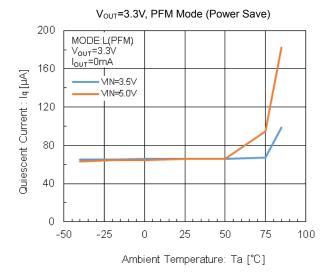

### ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


(4) Oscillation Frequency vs. Ambient Temperature

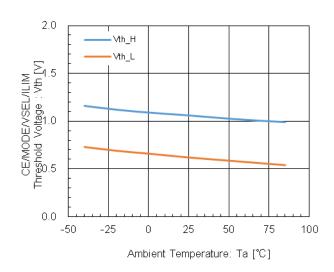
V<sub>OUT</sub>=3.3V, PWM Mode 6.5 . MN=5.5∨ . MODE:H(PVM) Vouτ=3.3V Iouτ=1mA VIN=4.5V 6.3 Oscillation Frequency : fosc [MHz] MN=3.5V MN=2.5V 6.1 5.9 5.7 5.5 5.3 5.1 -25 25 50 75 100 0 -50 Ambient Temperature: Ta [°C]


#### (6) Quiescent Current vs. Ambient Temperature




#### (7) UVLO Voltage vs. Ambient Temperature

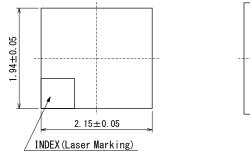


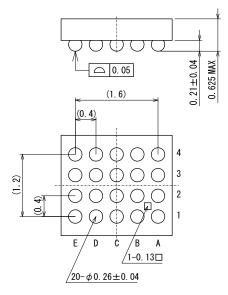

(5) Oscillation Frequency vs. Input Voltage

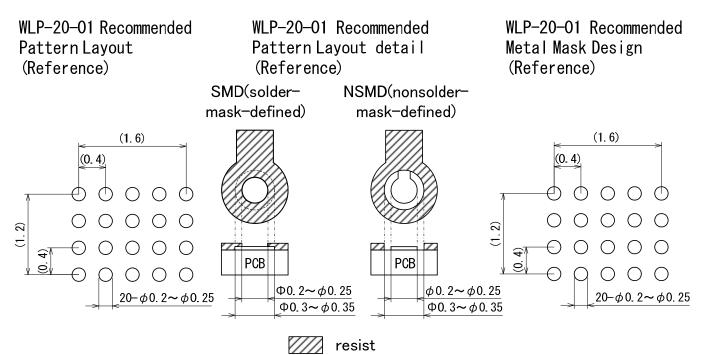


Input Voltage: V<sub>IN</sub> [V]



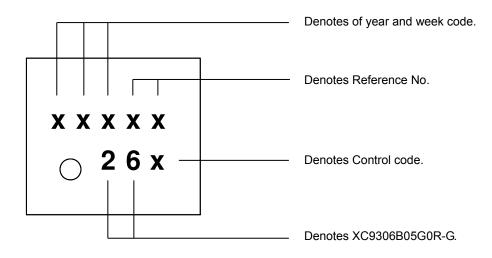

#### (8) CE/MODE/VSEL/ILIM Threshold Voltage vs. Ambient Temperature

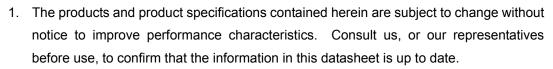




TOIREX 11/14

### ■PACKAGING INFORMATION

•WLP-20-01 (unit: mm)






### ■MARKING RULE

WLP-20-01





- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
  (e.g. Atomic energy; aerospace; transport; combustion and associated safety
- equipment thereof.)5. Please use the products listed in this datasheet within the specified ranges.Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

### TOREX SEMICONDUCTOR LTD.