

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

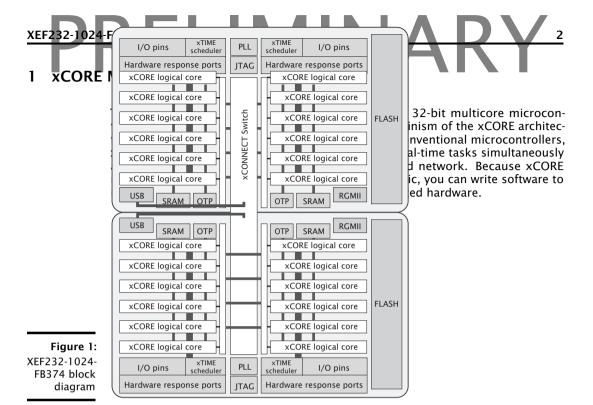
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PRELIMINARY

XEF232-1024-FB374 Datasheet

Table of Contents


1	xCORE Multicore Microcontrollers
2	XEF232-1024-FB374 Features
3	Pin Configuration
4	Signal Description
5	Example Application Diagram
6	Product Overview
7	PLL
8	Boot Procedure
9	Memory
10	USB PHÝ
11	RGMII
12	JTAG
13	Board Integration
14	DC and Switching Characteristics
15	Package Information
16	Ordering Information
App	endices
Α΄	Configuration of the XEF232-1024-FB374
В	Processor Status Configuration
С	Tile Configuration
D	Node Configuration
Е	USB Node Configuration
F	USB PHY Configuration
Ğ	Device Errata
Н	JTAG, xSCOPE and Debugging
1	Schematics Design Check List
Ĺ	PCB Layout Design Check List
K	Associated Design Documentation
ï	Related Documentation
M	Revision History 79

TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

Key features of the XEF232-1024-FB374 include:

- ► Tiles: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- ▶ Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1
- ▶ xTIME scheduler The xTIME scheduler performs functions similar to an RTOS, in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2
- ▶ Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- ➤ xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6

- ▶ Ports The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3
- ► Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4
- ▶ Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9
- ▶ PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7
- ▶ **USB** The USB PHY provides High-Speed and Full-Speed, device, host, and on-thego functionality. Data is communicated through ports on the digital node. A library is provided to implement USB device functionality. Section 10
- ▶ **RGMII** The device has a set of pins that can be dedicated to communicate with an RGMII, including Gbit Ethernet PHYs, according to the RGMII v1.3 specification. Section 11
- ▶ Flash The device has a built-in 4MBflash. Section 8
- ▶ JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 12

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X and available at no cost from xmos.com/downloads. Information on using the tools is provided in the xTIMEcomposer User Guide, X3766.

2 XEF232-1024-FB374 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 32 real-time logical cores on 4 xCORE tiles
- Cores share up to 2000 MIPS
 - Up to 4000 MIPS in dual issue mode
- Each logical core has:
 - Guaranteed throughput of between 1/5 and 1/6 of tile MIPS
 - 16x32bit dedicated registers
- 167 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32→64-bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions
- ▶ USB PHY, fully compliant with USB 2.0 specification
- ▶ RGMII support, compliant with RGMII v1.3 specification
- ► Programmable I/O
 - 176 general-purpose I/O pins, configurable as input or output
 - Up to 59 x 1bit port, 22 x 4bit port, 15 x 8bit port, 8 x 16bit port, 4 x 32bit port
 - 10 xCONNECT links
 - Port sampling rates of up to 60 MHz with respect to an external clock
 - 64 channel ends for communication with other cores, on or off-chip

▶ Memory

- 1024KB internal single-cycle SRAM (max 256KB per tile) for code and data storage
- 32KB internal OTP (max 8KB per tile) for application boot code
- 4MB internal flash for application code and overlays

▶ Hardware resources

- 24 clock blocks (6 per tile)
- 40 timers (10 per tile)
- 16 locks (4 per tile)

▶ JTAG Module for On-Chip Debug

▶ Security Features

- Programming lock disables debug and prevents read-back of memory contents
- AES bootloader ensures secrecy of IP held on external flash memory

▶ Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C

▶ Speed Grade

40: 2000 MIPS

▶ Power Consumption

- 1140 mA (typical)
- ▶ 374-pin FBGA package 0.8 mm pitch

3 Pin Configuration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
А	GND	VDDIO	X1D11	X1D32	X1D26	VDDIOT _0	X1D41	X0D31	X0D29	TDI	VDDIO	CLK	TDO	X3D32	X3D30	VDDIOT _1	X2D31	X2D29	X2D32	VDDIO	GND
В	X0D37	X0D36	X1D10	X1D33	X1D27	X1D42	X1D40	X0030	X0D28	X2D36	GND	RST_N	тск	X3D33	X3D31	X3D27	X2D30	X2D28	X2D27	X2D26	X2D35
С	X0D39	X0D38	VDD	X1D30	X1D28	X1D43	GND	X0D33	X0D32	MODE1	OTP VCC	TRST	X3D10	X3D29	GND	X3D43	X3D41	X2D33	VDD	X2D25	X2D34
D	X0D41	X0D40 x;	X1D34	X1D31	X1D29	GND	VDDIO	NC	GLOBAL _DEBUG	MODEO		TMS	X3D11	X3D28	X3D26	X3D42	X3D40	X2D70 XL ^a _a	X3D00 xc7	X3D01	X2D24
E	X0D43	X0D42	X1D35 322	VDD	VDD	GND	OIDDO	VDD	VDD				VDD	VDD	VDDIO	GND	VDD	VDD	X2D69	X3D08 X27	X3D09
F	X1D36	VDDIO	GND	VDD	VDD	VDD	VDD	VDD	VDD	PLL AGND	PLL AVDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	GND	VDDIO	X2D68
G	X1D49	X1D50	X1D51	NC	NC	NC NC XX ₀	NC XI,5	NC NC	NC NC XC				NC XC	NG XX ₃	NG NG XG	NC XX ₅	NC	NG	X2D67	X2D66 X2T	X2D65
Н	X1D53	X1D52	VDD																VDD	X2D63	X2D64 X2,
J	X1D54	X1D55	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	X2D62 X2g	X2D61
к	X1D58	X1D57	X1D56		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		X2D56	X2D57	X2D58 X2D58
L	VDDIO	GND	X1D61 X1 ₂		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		X2D55	GND	VDDIO
М	X1D64	X1D63	X1D62 X1Z		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		X2D54 X2T	X2D53	X2D52
N	X1D65	X1D66	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	X2D50 X2 ²	X2D51
Р	X1D68	X1D67	VDD																VDD	X3D06	X3D07
R	X1D69	X1D70 X1 ₂	X1D37	NC	NC	NC	NC	924	NG NG				NG NG XII	NC NC XX	NC	NC	NC	NC	X2D49	X3D04	X3D05
Т	X1D38	VDDIO	GND	VDD	VDD	VDD	USB VDD_0	VDD	VDD	VDD	GND	VDD	VDD	VDD	USB VDD_1	VDD	VDD	VDD	GND	VDDIO	X3D03 XX ⁺ XX ⁺
U	X1D17	X1D16	X1D39	VDD	VDD	GND	OIDDO	NC	VDD		VDDIO		VDD	VDD	VDDIO	GND	VDD	VDD	NC	X2D19	X3D02
V	X1D19	X1D18	X0001 X2 ²¹	X0D02	X0D08	X0D11	USB_ID_0	X1D14	X1D25	X0D21	NC	X3D23	X2D05	X2D07	USB ID_F	NC	X3D15	X3D21	X2D12	X2D17	X2D18
w	X0D10 xc ²¹	X1D22	USB VDD33_ 0	X0D03	X0D09	USB RTUNE_ 0	GND	X1D15	X0D14	X0D12	X0D23	X2D00	X2D04	X2D06	GND	USB RTUNE_ 1	X3D14	X3D20	USB VDD33_ 1	X2D23	X2D16
Y	X1D23	X0D00	X0D04	X0D06	X1D12	USB_ VBUS_0	X1D24	X1D20	X0D15	X0D13	GND	X2D11	X2D02	X2D08	X3D13	VUSB BUS_T	X2D14	X2D20	X3D24	X2D13	X2D22
AA	GND	VDDIO	X0D05	X0D07	X1D13	USB DM_0	USB DP_0	X1D21	X0D20	X0D22	VDDIO	X3D12	X2D03	X2D09	USB DM_T	USB DP_T	X2D15	X2D21	X3D25	VDDIO	GND

4 Signal Description

This section lists the signals and I/O pins available on the XEF232-1024-FB374. The device provides a combination of 1bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

- ▶ PD/PU: The IO pin a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled.
- ▶ ST: The IO pin has a Schmitt Trigger on its input.

	Power pins (12)		
Signal	Function	Type	Properties
GND	Digital ground	GND	
OTP_VCC	OTP power supply	PWR	
PLL_AGND	Analog ground for PLL	PWR	
PLL_AVDD	Analog PLL power	PWR	
USB_VDD33_0		PWR	
USB_VDD33_1		PWR	
USB_VDD_0		PWR	
USB_VDD_1		PWR	
VDD	Digital tile power	PWR	
VDDIO	Digital I/O power	PWR	
VDDIOT_0		PWR	
VDDIOT_1		PWR	

	JTAG pins (6)		
Signal	Function	Type	Properties
RST_N	Global reset input	Input	IOL, PU, ST
TCK	Test clock	Input	IOL, PD, ST
TDI	Test data input	Input	IOL, PU
TDO	Test data output	Output	IOL, PD
TMS	Test mode select	Input	IOL, PU
TRST		Input	IOL, PU, ST

	I/O pins (17	76)	
Signal	Function	Туре	Properties
X0D00	1A ⁰	I/O	IOL, PD
X0D01	XL3 ² _{out} 1B ⁰	1/0—	IOL, PD

(continued)

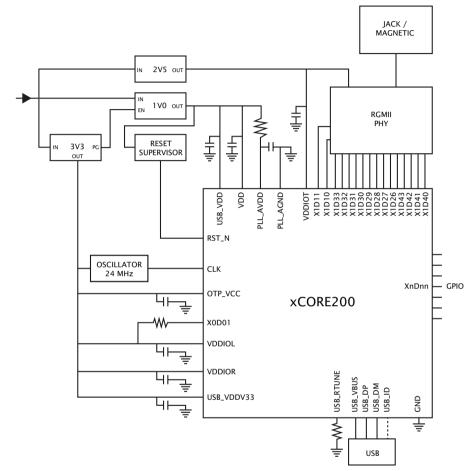
X009587, XS2-UEF32A-1024-FB374

			_					
Signal	Function						Type	Properties
X0D02			4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOL, PD
X0D03			4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IOL, PD
X0D04			4B ⁰	8A ²	16A ²	32A ²²	I/O—	IOL, PD
X0D05			4B ¹	8A ³	16A ³	32A ²³	1/0—	IOL, PD
X0D06			4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O—	IOL, PD
X0D07			4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O—	IOL, PD
X0D08			4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOL, PD
X0D09			4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IOL, PD
X0D10	XL3 _{out}	1C ⁰					I/O—	IOL, PD
X0D11		1D ⁰					I/O	IOL, PD
X0D12		1 E ⁰					I/O	IOR, PD
X0D13		1F ⁰					I/O	IOR, PD
X0D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
X0D15			4C ¹	8B ¹	16A ⁹	32A ²⁹	I/O	IOR, PD
X0D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
X0D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IOR, PD
X0D22		1G ⁰					I/O	IOR, PD
X0D23		1H ⁰					I/O	IOR, PD
X0D28			4F ⁰	8C ²	16B ²		I/O	IOR, PD
X0D29			4F ¹	8C ³	16B ³		I/O	IOR, PD
X0D30			4F ²	8C ⁴	16B ⁴		I/O	IOR, PD
X0D31			4F ³	8C ⁵	16B ⁵		I/O	IOR, PD
X0D32			4E ²	8C ⁶	16B ⁶		I/O	IOR, PD
X0D33			4E ³	8C ⁷	16B ⁷		I/O	IOR, PD
X0D36		1 M ⁰		8D ⁰	16B ⁸		I/O	IOL, PD
X0D37	XL0 ⁴ _{in}	1 N ⁰		8D ¹	16B ⁹		I/O	IOL, PD
X0D38	XL0 ³	10 ⁰		8D ²	16B ¹⁰		I/O	IOL, PD
X0D39	XL0 ²	1P ⁰		8D ³	16B ¹¹		I/O	IOL, PD
X0D40	XL0 ¹			8D ⁴	16B ¹²		I/O	IOL, PD
X0D41	XL0 ⁰ in			8D ⁵	16B ¹³		I/O	IOL, PD
X0D42	XL0 _{out}			8D ⁶	16B ¹⁴		I/O	IOL, PD
X0D43	XL0 _{out}			8D ⁷	16B ¹⁵		I/O	IOL, PD
X1D10		1C ⁰					I/O	IOT, PD
XIDII		1D ⁰					I/O	IOT, PD
X1D12		1E ⁰					I/O	IOL, PD
X1D13		1F ⁰					I/O	IOL, PD
X1D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
X1D15			4C ¹	8B ¹	16A ⁹	32A ²⁹	I/O	IOR, PD
X1D16	XL3 ¹		4D ⁰	8B ²	16A ¹⁰		I/O	IOL, PD
XID17	XL3 ⁰ _{in}		4D ¹	8B ³	16A ¹¹		I/O	IOL, PD
XID18	XL3 _{out}		4D ²	8B ⁴	16A ¹²		I/O	IOL, PD
X1D19	XL3 _{out}		4D ³	8B ⁵	16A ¹³		I/O	IOL, PD
X1D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD

Signal Function Type Properties X1D21 4C3 8B7 16A15 32A31 1/O 1OR, PD X1D22 XL3401 1G0 1/O 1OL, PD X1D23 1H0 1/O 1OL, PD X1D24 1I0 1/O 1OR, PD X1D25 1J0 1/O 1OR, PD X1D26 tx_clk (rgmii) 4E0 8C0 16B0 1/O 1OT, PD X1D27 tx_ctl (rgmii) 4E1 8C1 16B1 1/O 1OT, PD X1D28 rx_clk (rgmii) 4F0 8C2 16B2 1/O 1OT, PD X1D29 rx_ctl (rgmii) 4F1 8C3 16B3 1/O 1OT, PD X1D30 rx0 (rgmii) 4F2 8C4 16B4 1/O 1OT, PD X1D31 rx1 (rgmii) 4F3 8C5 16B5 1/O 1OT, PD X1D32 rx2 (rgmii) 4E2 8C6 16B6 1/O 1OT, PD	
X1D22 XL3 ⁴ _{out} 1G ⁰ I/O IOL, PD X1D23 1H ⁰ I/O IOL, PD X1D24 1I ⁰ I/O IOR, PD X1D25 1J ⁰ I/O IOR, PD X1D26 tx_clk (rgmii) 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X1D27 tx_ctl (rgmii) 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD X1D28 rx_clk (rgmii) 4F ⁰ 8C ² 16B ² I/O IOT, PD X1D29 rx_ctl (rgmii) 4F ¹ 8C ³ 16B ³ I/O IOT, PD X1D30 rx0 (rgmii) 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F ³ 8C ⁵ 16B ⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
X1D23 1H ⁰ I/O IOL, PD X1D24 1I ⁰ I/O IOR, PD X1D25 1J ⁰ I/O IOR, PD X1D26 tx_clk (rgmii) 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X1D27 tx_ctl (rgmii) 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD X1D28 rx_clk (rgmii) 4F ⁰ 8C ² 16B ² I/O IOT, PD X1D29 rx_ctl (rgmii) 4F ¹ 8C ³ 16B ³ I/O IOT, PD X1D30 rx0 (rgmii) 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F ³ 8C ⁵ 16B ⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
X1D24	
X1D25	
X1D26 tx_clk (rgmii) 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X1D27 tx_ctl (rgmii) 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD X1D28 rx_clk (rgmii) 4F ⁰ 8C ² 16B ² I/O IOT, PD X1D29 rx_ctl (rgmii) 4F ¹ 8C ³ 16B ³ I/O IOT, PD X1D30 rx0 (rgmii) 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F ³ 8C ⁵ 16B ⁶ I/O IOT, PD X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
X1D27 tx_ctl (rgmii) 4E¹ 8C¹ 16B¹ I/O IOT, PD X1D28 rx_clk (rgmii) 4F⁰ 8C² 16B² I/O IOT, PD X1D29 rx_ctl (rgmii) 4F¹ 8C³ 16B³ I/O IOT, PD X1D30 rx0 (rgmii) 4F² 8C⁴ 16B⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F³ 8C⁵ 16B⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E² 8C⁶ 16B⁶ I/O IOT, PD	
X1D28 rx_clk (rgmii) 4F ⁰ 8C ² 16B ² I/O IOT, PD X1D29 rx_ctl (rgmii) 4F ¹ 8C ³ 16B ³ I/O IOT, PD X1D30 rx0 (rgmii) 4F ² 8C ⁴ 16B ⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F ³ 8C ⁵ 16B ⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
X1D29 rx_ctl (rgmii) 4F¹ 8C³ 16B³ I/O IOT, PD X1D30 rx0 (rgmii) 4F² 8C⁴ 16B⁴ I/O IOT, PD X1D31 rx1 (rgmii) 4F³ 8C⁵ 16B⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E² 8C⁶ 16B⁶ I/O IOT, PD	
X1D30 rx0 (rgmii) 4F2 8C4 16B4 I/O IOT, PD X1D31 rx1 (rgmii) 4F3 8C5 16B5 I/O IOT, PD X1D32 rx2 (rgmii) 4E2 8C6 16B6 I/O IOT, PD	
X1D31 rx1 (rgmii) 4F ³ 8C ⁵ 16B ⁵ I/O IOT, PD X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
X1D32 rx2 (rgmii) 4E ² 8C ⁶ 16B ⁶ I/O IOT, PD	
$X1D33$ rx3 (rgmii) $4E^3$ $8C^7$ $16B^7$ I/O IOT, PD	
X1D34 XL0 _{out} 1K ⁰ I/O IOL, PD	
X1D35 XL0 ³ _{out} 1L ⁰ I/O IOL, PD	
X1D36 XL0 _{out} ⁴ 1M ⁰ 8D ⁰ 16B ⁸ I/O IOL, PD	
X1D37 XL3 ⁴ _{in} 1N ⁰ 8D ¹ 16B ⁹ I/O IOL, PD	-
X1D38 XL3 ³ _{in} 1O ⁰ 8D ² 16B ¹⁰ I/O IOL, PD	
X1D39 XL3 ² _{in} 1P ⁰ 8D ³ 16B ¹¹ I/O IOL, PD	
X1D40 tx3 (rgmii) 8D ⁴ 16B ¹² I/O IOT, PD	
X1D41 tx2 (rgmii) 8D ⁵ 16B ¹³ I/O IOT, PD	
X1D42 tx1 (rgmii) 8D ⁶ 16B ¹⁴ I/O IOT, PD	
X1D43 tx0 (rgmii) 8D ⁷ 16B ¹⁵ I/O IOT, PD	-
X1D49 XL1 ⁴ _{in} 32A ⁰ I/O IOL, PD	
X1D50 XL1 ³ 32A ¹ I/O IOL, PD	
X1D51	
X1D52	
$X1D53$ $XL1_{in}^{0}$ $32A^{4}$ I/O IOL, PD	
X1D54 XL1 ⁰ _{out} 32A ⁵ I/O IOL, PD	
X1D55 XL1 ¹ _{out} 32A ⁶ I/O IOL, PD	
X1D56 XL1 ² _{out} 32A ⁷ I/O IOL, PD	
X1D57 XL1 ³ _{out} 32A ⁸ I/O IOL, PD	
X1D58 XL1 ⁴ _{out} 32A ⁹ I/O IOL, PD	
X1D61 XL2 ⁴ _{in} 32A ¹⁰ I/O IOL, PD	
X1D62 XL2 ³ 32A ¹¹ I/O IOL, PD	
X1D63	
X1D64 XL2 ¹ _{in} 32A ¹³ I/O IOL, PD	
X1D65 XL2 ⁰ 32A ¹⁴ I/O IOL, PD	
X1D66 XL20 _{out} 32A ¹⁵ I/O IOL, PD	
X1D67 XL2 ¹ _{out} 32A ¹⁶ I/O IOL, PD	
X1D68 XL2 ² _{out} 32A ¹⁷ I/O IOL, PD	
X1D69 XL2 ³ _{out} 32A ¹⁸ I/O IOL, PD	
X1D70 XL2 ⁴ _{out} 32A ¹⁹ I/O IOL, PD	

			_	_			_	
Signal	Function						Type	Properties
X2D00		1A ⁰					I/O	IOL, PD
X2D02			4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOL, PD
X2D03			4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IOL, PD
X2D04			4B ⁰	8A ²	16A ²	32A ²²	I/O	IOL, PD
X2D05			4B ¹	8A ³	16A ³	32A ²³	I/O	IOL, PD
X2D06			4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IOL, PD
X2D07			4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IOL, PD
X2D08			4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOL, PD
X2D09			4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IOL, PD
X2D11		1 D ⁰					I/O	IOL, PD
X2D12		1 E ⁰					I/O	IOR, PD
X2D13		1F ⁰					I/O	IOR, PD
X2D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
X2D15			4C ¹	8B ¹	16A ⁹	32A ²⁹	I/O	IOR, PD
X2D16	XL4 ⁴		4D ⁰	8B ²	16A ¹⁰		I/O	IOR, PD
X2D17	XL4 ³ _{in}		4D ¹	8B ³	16A ¹¹		I/O	IOR, PD
X2D18	XL4 ²		4D ²	8B ⁴	16A ¹²		I/O	IOR, PD
X2D19	XL4 ¹		4D ³	8B ⁵	16A ¹³		I/O	IOR, PD
X2D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
X2D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IOR, PD
X2D22		1G ⁰					I/O	IOR, PD
X2D23		1 H ⁰					I/O	IOR, PD
X2D24	XL7 ⁰	11 ⁰					I/O	IOR, PD
X2D25	XL7 _{out}	1J ⁰					I/O	IOR, PD
X2D26	XL7 ³ out		4E ⁰	8C ⁰	16B ⁰		I/O	IOR, PD
X2D27	XL7 _{out}		4E ¹	8C ¹	16B ¹		I/O	IOR, PD
X2D28			4F ⁰	8C ²	16B ²		I/O	IOR, PD
X2D29			4F ¹	8C ³	16B ³		I/O	IOR, PD
X2D30			4F ²	8C ⁴	16B ⁴		I/O	IOR, PD
X2D31			4F ³	8C ⁵	16B ⁵		I/O	IOR, PD
X2D32			4E ²	8C ⁶	16B ⁶		I/O	IOR, PD
X2D33			4E ³	8C ⁷	16B ⁷		I/O	IOR, PD
X2D34	XL7 ¹ out	1K ⁰					I/O	IOR, PD
X2D35	XL7 ² _{out}	1L ⁰					I/O	IOR, PD
X2D36		1M ⁰		8D ⁰	16B ⁸		I/O	IOL, PD
X2D49	XL5 ⁴ _{in}					32A ⁰	I/O	IOR, PD
X2D50	XL5 ³					32A ¹	I/O	IOR, PD
X2D51	XL5 ²					32A ²	I/O	IOR, PD
X2D52	XL5 ¹					32A ³	I/O	IOR, PD
X2D53	XL5 ⁰					32A ⁴	I/O	IOR, PD
X2D54	XL5 _{out}					32A ⁵	I/O	IOR, PD
X2D55	XL5 ¹ _{out}					32A ⁶	I/O	IOR, PD
X2D56	XL5 ² _{out}					32A ⁷	I/O	IOR, PD

		_	_				
Signal	Function					Type	Properties
X2D57	XL5 ³ _{out}				32A ⁸	1/0	IOR, PD
X2D58	XL5 ⁴ _{out}				32A ⁹	I/O	IOR, PD
X2D61	XL6 ⁴ _{in}				32A ¹⁰	I/O	IOR, PD
X2D62	XL6 ³				32A ¹¹	I/O	IOR, PD
X2D63	XL6 ²				32A ¹²	1/0	IOR, PD
X2D64	XL6 ¹				32A ¹³	1/0	IOR, PD
X2D65	XL6 ⁰ in				32A ¹⁴	1/0	IOR, PD
X2D66	XL6 _{out}				32A ¹⁵	I/O	IOR, PD
X2D67	XL6 ¹ _{out}				32A ¹⁶	I/O	IOR, PD
X2D68	XL6 ² _{out}				32A ¹⁷	I/O	IOR, PD
X2D69	XL6 ³ _{out}				32A ¹⁸	1/0	IOR, PD
X2D70	XL6 ⁴ _{out}				32A ¹⁹	1/0	IOR, PD
X3D00	XL7 ² 1A ⁰					I/O	IOR, PD
X3D01	XL7 ¹ 1B ⁰					I/O	IOR, PD
X3D02	XL4 ⁰ _{in}	4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOR, PD
X3D03	XL4 ⁰ _{out}	4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IOR, PD
X3D04	XL4 ¹ _{out}	4B ⁰	8A ²	16A ²	32A ²²	I/O	IOR, PD
X3D05	XL4 ² _{out}	4B ¹	8A ³	16A ³	32A ²³	I/O	IOR, PD
X3D06	XL4 ³ _{out}	4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IOR, PD
X3D07	XL4 ⁴ _{out}	4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IOR, PD
X3D08	XL7 ⁴ _{in}	4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOR, PD
X3D09	XL7 ³ _{in}	4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IOR, PD
X3D10	1C ⁰					1/0	IOT, PD
X3D11	1D ⁰					I/O	IOT, PD
X3D12	1E ⁰					I/O	IOL, PD
X3D13	1F ⁰					I/O	IOL, PD
X3D14		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
X3D15		4C ¹	8B ¹	16A ⁹	32A ²⁹	I/O	IOR, PD
X3D20		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
X3D21		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IOR, PD
X3D23	1H ⁰					I/O	IOL, PD
X3D24	110					I/O	IOR, PD
X3D25	1J ⁰					I/O	IOR, PD
X3D26	tx_clk (rgmii)	4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD
X3D27	tx_ctl (rgmii)	4E ¹	8C1	16B ¹		I/O	IOT, PD
X3D28	rx_clk (rgmii)	4F ⁰	8C ²	16B ²		I/O	IOT, PD
X3D29	rx_ctl (rgmii)	4F ¹	8C ³	16B ³		I/O	IOT, PD
X3D30	rx0 (rgmii)	4F ²	8C ⁴	16B ⁴		I/O	IOT, PD
X3D31	rx1 (rgmii)	4F ³	8C ⁵	16B ⁵		I/O	IOT, PD
X3D32	rx2 (rgmii)	4E ²	8C ⁶	16B ⁶		I/O	IOT, PD
X3D33	rx3 (rgmii)	4E ³	8C ⁷	16B ⁷		I/O	IOT, PD
X3D40	tx3 (rgmii)		8D ⁴	16B ¹²		I/O	IOT, PD
X3D41	tx2 (rgmii)		8D ⁵	16B ¹³		I/O	IOT, PD



Signal	Function		Type	Properties
X3D42	tx1 (rgmii)	8D ⁶ 16B ¹⁴	I/O	IOT, PD
X3D43	tx0 (rgmii)	8D ⁷ 16B ¹⁵	I/O	IOT, PD

	System pins (4)		
Signal	Function	Type	Properties
CLK	PLL reference clock	Input	IOL, PD, ST
GLOBAL_DEBUG	Multi-chip debug	I/O	IOL, PU
MODE0	Boot mode select	Input	PU
MODE1	Boot mode select	Input	PU

usb pins (10)						
Signal	Function	Туре	Properties			
USB_DM_0		I/O				
USB_DM_1		I/O				
USB_DP_0		I/O				
USB_DP_1		I/O				
USB_ID_0		I/O				
USB_ID_1		I/O				
USB_RTUNE_0		I/O				
USB_RTUNE_1		I/O				
USB_VBUS_0		I/O				
VUSB_BUS_1		I/O				

5 Example Application Diagram

The XEF232-1024-FB374 is a powerful device that consists of four xCORE Tiles, each comprising a flexible logical processing cores with tightly integrated I/O and on-chip memory.

6.1 Logical cores

Each tile has 6 active logical cores, which issue instructions down a shared five-stage pipeline. Instructions from the active cores are issued round-robin. If up to five logical cores are active, each core is allocated a fifth of the processing cycles. If more than five logical cores are active, each core is allocated at least 1/n cycles (for n cores). Figure 3 shows the guaranteed core performance depending on the number of cores used.

Figure 3: Logical core performance

Speed	MIPS	Frequency	Mi	Minimum MIPS per core (for <i>n</i> cores)												
grade			1	2	3	4	5	6	7	8						

There is no way that the performance of a logical core can be reduced below these predicted levels (unless *priority threads* are used: in this case the guaranteed minimum performance is computed based on the number of priority threads as defined in the architecture manual). Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than five logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed.

The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event.

6.2 xTIME scheduler

The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel.

Tasks do not need to be prioritised as each of them runs on their own logical xCORE. It is possible to share a set of low priority tasks on a single core using cooperative multitasking.

6.3 Hardware Response Ports

Hardware Response ports connect an xCORE tile to one or more physical pins and as such define the interface between hardware attached to the XEF232-1024-FB374, and the software running on it. A combination of 1 bit, 4 bit, 8 bit, 16 bit and 32 bit

ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port.

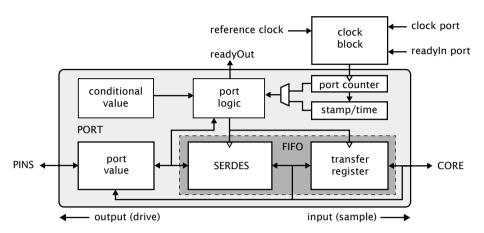


Figure 4: Port block diagram

The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as *open collector* outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis.

Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data.

Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times.

The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port.

6.4 Clock blocks

xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies.

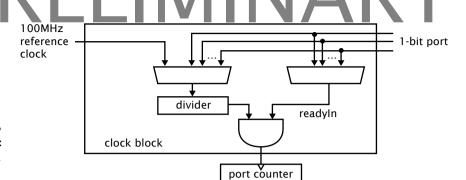


Figure 5: Clock block diagram

A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyln and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each \times CORE device has an on-chip switch that can set up circuits or route data. The switches are connected by \times Connect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

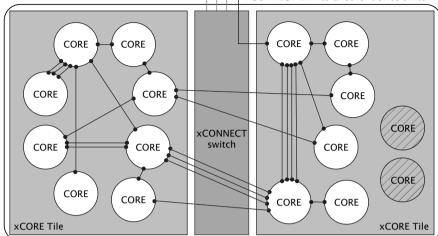


Figure 6: Switch, links and channel ends

and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link.

Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-UEF Link Performance and Design Guide, X2999.

7 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock. The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 7:

Figure 7: PLL multiplier values and MODE pins

Oscillator	MC	DDE	Tile	PLL Ratio	PLL settings							
Frequency	1	0	Frequency		OD	F	R					
3.25-10 MHz	0	0	130-400 MHz	40	1	159	0					
9-25 MHz	1	1	144-400 MHz	16	1	63	0					
25-50 MHz	1	0	167-400 MHz	8	1	31	0					
50-100 MHz	0	1	196-400 MHz	4	1	15	0					

Figure 7 also lists the values of *OD*, *F* and *R*, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

OD, F and R must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The OD, F, and R values can be modified by writing to the digital node PLL configuration register.

The MODE pins must be held at a static value during and after deassertion of the system reset. If the USB PHY is used, then either a 24 MHz or 12 MHz oscillator must be used.

If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the xCORE-200 Clock Frequency Control document.

8 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins have a pull-down enabled. The processor must be held in reset until VDDIOL is in spec for at least 1 ms. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock) the processor boots.

The device boots from a QSPI flash that is embedded in the device. The QSPI flash is connected to the ports on Tile 0 as shown in Figure 8. An external 1K resistor must connect X0D01 to VDDIOL. X0D10 should ideally not be connected. If X0D10 is connected, then a 150 ohm series resistor close to the device is recommended. X0D04..X0D07 should be not connected.

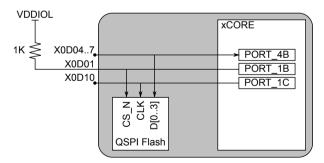
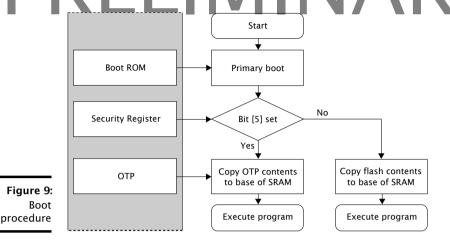



Figure 8: QSPI port connectivity

The xCORE Tile boot procedure is illustrated in Figure 9. If bit 5 of the security register (see §9.1) is set, the device boots from OTP. Otherwise, the device boots from the internal flash.

The boot image has the following format:

- ▶ A 32-bit program size *s* in words.
- ▶ Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

8.1 Security register

The security register enables security features on the xCORE tile. The features shown in Figure 10 provide a strong level of protection and are sufficient for providing strong IP security.

9 Memory

9.1 OTP

Each xCORE Tile integrates 8 KB one-time programmable (OTP) memory along with a security register that configures system wide security features. The OTP holds data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (see §8).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables updates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG interface to this OTP.
	2115	General purpose software accessable security register available to end-users.
	3122	General purpose user programmable JTAG UserID code extension.

Figure 10: Security register features

The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

9.2 SRAM

Each xCORE Tile integrates a single 256KB SRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

10 USB PHY

The USB PHY provides High-Speed and Full-Speed, device, host, and on-the-go functionality. The PHY is configured through a set of peripheral registers (Appendix F),

and data is communicated through ports on the digital node. A library, libxud_s.a, is provided to implement USB device functionality.

The USB PHY is connected to the ports on Tile 0 and Tile 1 as shown in Figure 11. When the USB PHY is enabled on Tile 0, the ports shown can on Tile 0 only be used with the USB PHY. When the USB PHY is enabled on Tile 1, then the ports shown can on Tile 1 only be used with the USB PHY. All other IO pins and ports are unaffected. The USB PHY should not be enabled on both tiles.

An external resistor of 43.2 ohm (1% tolerance) should connect USB_TUNE to ground, as close as possible to the device.

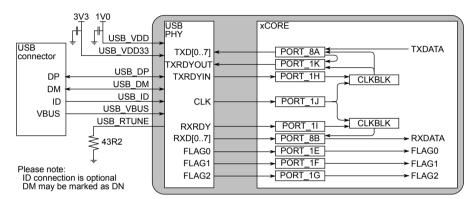


Figure 11: USB port functions

Figure 11 shows how two clock blocks can be used to clock the USB ports. One clock block for the TXDATA path, and one clock block for the RXDATA path. Details on how to connect those ports are documented in an application note on USB for xCORE-200.

10.1 Logical Core Requirements

The XMOS XUD software component runs in a single logical core with endpoint and application cores communicating with it via a combination of channel communication and shared memory variables.

Each IN (host requests data from device) or OUT (data transferred from host to device) endpoint requires one logical core.

11 RGMII

The device has a series of pins that are dedicated to communicate with an RGMII PHY, as per the RGMII v1.3 spec. This can be used to communicate with GBit Ethernet PHYs. The pins and functions are listed in Figure 12. When RGMII mode is enabled (using processor status register 2) these pins can no longer be used as GPIO pins, and will instead be driven directly from an RGMII block that provides DDR to SDR conversion, which in turn is interfaced to a set of ports on Tile 1.

Pin	RGMII Fu	ınction
X1D40	TX3	Transmit bit 3
X1D41	TX2	Transmit bit 2
X1D42	TX1	Transmit bit 1
X1D43	TX0	Transmit bit 0
X1D26	TX_CLK	Receive clock (125 MHz)
X1D27	TX_CTL	Transmit data valid/error
X1D28	RX_CLK	Receive clock (125 MHz)
X1D29	RX_CTL	Receive data valid/error
X1D30	RX0	Receive bit 0
X1D31	RX1	Receive bit 1
X1D32	RX2	Receive bit 2
X1D33	RX3	Receive bit 3

Figure 12: RGMII block pin functions

The RGMII block is connected to the ports on Tile 1 as shown in Figure 13. When the RGMII block is enabled, the ports shown can only be used with the RGMII block, and IO pins X1D26..X1D33/X1D40..X1D43 can only be used with the RGMII block. Other IO pins and ports are unaffected.

The RGMII block generates a clock (configured using processor status register 2), and has the facility to delay the outgoing clock edge, putting it out of phase with the data. The RGMII block translates the double data-rate 4-wire data signals and 1-wire control signal into single-data rate 8-wire TX and DX signals and two control signals. Figure 13 shows how four clock blocks can be used to clock the RGMII ports. One clock block for the TXDATA path, one clock block for the RXDATA path, one clock block to delay the TX_CLK, and one clock block clocked on a negative valid signal to enable mode switching between 10/100/1000 speeds. Details on how to connect those ports are documented in an application note on RGMII for xCORE-200. The XMOS RGMII software component runs a MAC layer on tile 1.

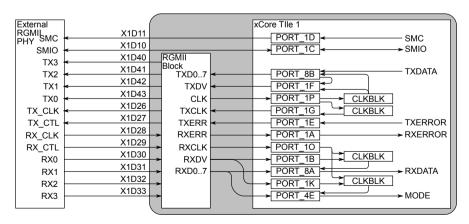


Figure 13: RGMII port functions

The SMI interface should be connected to two one-bit ports that are configured as open-drain IOs, using external pull-ups to 2.5V. Ports 1C and 1D on Tile 1 are notionally allocated for this, but any GPIO can be used for this purpose.

The bundles of RX and TX pins should be wired using matched trace-lengths over an uninterrupted ground-plane. The RGMII pins are supplied through the VDDIOT supply pins, which should be provided with 2.5V. Decouplers should be placed with a short path to VDDIOT and ground. If the PHY supports a 3.3V IO voltage, then a 3.3V supply can be used for VDDIOT.

The RGMII PHY should be configured so that RX_CLK is low during reset of the xCORE. This can be achieved by putting a pull-down resistor on the reset of the PHY, keeping the PHY in reset until the RGMII layer on the xCORE takes the PHY out of reset.

12 JTAG

The JTAG module can be used for loading programs, boundary scan testing, incircuit source-level debugging and programming the OTP memory.

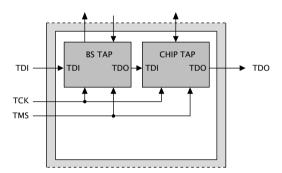


Figure 14: JTAG chain structure

The JTAG chain structure is illustrated in Figure 14. Directly after reset, two TAP controllers are present in the JTAG chain for each xCORE Tile: the boundary scan TAP and the chip TAP. The boundary scan TAP is a standard 1149.1 compliant TAP that can be used for boundary scan of the I/O pins. The chip TAP provides access into the xCORE Tile, switch and OTP for loading code and debugging.

The JTAG module can be reset by holding TMS high for five clock cycles.

The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 15.

Figure 15: IDCODE return value

Bi	Bit31 Device Identification Register																	Е	3itO												
Version Part Number														Manufacturer Identity										1							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1
0			0 0								0 6								- 6	5				3		3					

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 16. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, see §9.1 (all zero on unprogrammed devices).

Figure 16: USERCODE return value

В	Bit31 Usercode Register																Bit0															
OTP User ID Unused												Silicon Revision																				
C	0	0	C)	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0					()			()			- 2	2				8			()			()		0			

13 Board Integration

The device has the following power supply pins:

- ▶ VDD pins for the xCORE Tile
- ▶ VDDIO pins for the I/O lines
- ▶ PLL_AVDD pins for the PLL
- ▶ OTP_VCC pins for the OTP

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0 V to its final value within 10 ms to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.

The PLLVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a $4.7\,\Omega$ resistor and multi-layer ceramic capacitor) is recommended on this pin.

The following ground pins are provided:

- ▶ PLL_AGND for PLL_AVDD
- ► GND for all other supplies

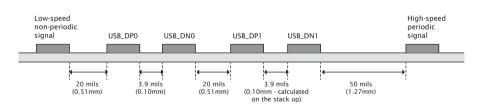
All ground pins must be connected directly to the board ground.

The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 4x100nF 0402 low inductance MLCCs per supply rail). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

13.1 USB connections

USB_VBUS should be connected to the VBUS pin of the USB connector. A 2.2 uF capacitor to ground is required on the VBUS pin. A ferrite bead may be used to reduce HF noise.


For self-powered systems, a bleeder resistor may be required to stop VBUS from floating when no USB cable is attached.

USB_DP and USB_DN should be connected to the USB connector. USB_ID does not need to be connected.

13.2 USB signal routing and placement

The USB_DP and USB_DN lines are the positive and negative data polarities of a high speed USB signal respectively. Their high-speed differential nature implies that they must be coupled and properly isolated. The board design must ensure that the board traces for USB_DP and USB_DN are tightly matched. In addition, according to the USB 2.0 specification, the USB_DP and USB_DN differential impedance must be $90\ \Omega.$

Figure 17:
USB trace
separation
showing a
low speed
signal, two
differential
pairs and a
high-speed
clock

13.2.1 General routing and placement guidelines

The following guidelines will help to avoid signal quality and EMI problems on high speed USB designs. They relate to a four-layer (Signal, GND, Power, Signal) PCB.

For best results, most of the routing should be done on the top layer (assuming the USB connector and XS2-UEF32A-1024-FB374 are on the top layer) closest to GND. Reference planes should be below the transmission lines in order to maintain control of the trace impedance.