imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product Specification

43 Gb/s High Gain Photoreceiver

XPRV2022A

PRODUCT FEATURES

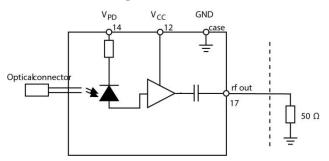
- PIN / TIA photoreceiver module
- 33 GHz bandwidth
- 500 V/W conversion gain
- SMD package with V[®] connector
- AC coupled output

APPLICATIONS

- 43 Gb/s communication systems (OC-768)
- Transponder and line card designs
- Laboratory test equipment

The photoreceiver module XPRV2022(A) is a single ended front-end with a high gain of typically 500 V/W and a bandwidth of 33 GHz. The photoreceiver module XPRV2022(A) contains a waveguide-integrated PIN-photodiode (PD) and a transimpedance amplifier (TIA) with limiting output buffer. An integrated feedback loop optimizes the performance in the frequency and/or time domain with respect to different optical input power. Due to the limiting output buffer the output voltage swing is limited to approx. 400 mV. Incorporated blocking capacitors enable AC output coupling.

ORDERING INFORMATION


XPRV	V2022A	-Vv-zz
A:		= AC coupled
Vy:	VF	= female \tilde{V} Connector [®] (standard)
•	VM	= male V Connector [®]
zz:	FP	= FC/PC (standard)
		other connectors available upon requ

I. Pin Description

# Pin	Symbol	Description
1,3,16	N/C	not connected, 100 nF to GND, max +5 V
2,4,5,6,11,13, 15	GND	ground
7,8,9,10	RFU	reserved for future use - please do not connect
12	V _{cc}	amplifier supply
14	V _{PD}	photodiode supply
17	out	inverting RF output, V [®] connector

II. Block Diagram

III. Absolute Maximum Ratings

Parameter	Symbo I	Condition	Min.	Тур.	Max.	Unit
Photodiode Reverse Voltage	V_{PD}	V _{CC} = Min to Max	2		4	V
Amplifier Supply Voltage	V _{CC}	V _{PD} = 2 V to Max	0		4	V
Maximum Average Optical Input Power	P _{opt}	NRZ			6	dBm
Electro Static Discharge	V_{ESD}	C= 100 pF, R= 1.5 kΩ HBM	-250		250	V
Fiber Bend Radius			16			mm

Notice

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability. The inherent design of this component causes it to be sensitive to

electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

IV. Environmental Conditions

Parameter	Symbo I	Condition	Min.	Тур.	Max.	Unit
Operating Case Temperature	T _{Case}		0		75	°C
Relative Humidity	RH	non condensing	5		85	%
Storage Temperature	T _{sto}		-40		85	°C

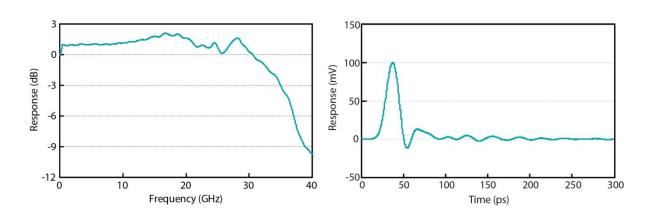
V. Operating Conditions

Parameter	Symbo I	Condition	Min.	Тур.	Max.	Unit
Amplifier Supply Voltage	V _{CC}		3.1	3.3	3.5	V
Operating Wavelength Range	λ		1480		1620	nm
Average Optical Input Power Range	P _{opt}		-10		3	dBm
Photodiode Reverse Voltage	V _{PD}		3.1	3.3	3.5	V

VI. Electro-Optical Specifications¹

Parameter	Symbo I	Condition	Min.	Тур.	Max.	Unit
Conversion Gain	CG	2)	300	500		V/W
Photodiode DC Responsivity	R	optimum polarization	0.5		0.75	A/W
Polarization Dependent Loss	PDL			0.3	0.9	dB
Optical Return Loss	ORL		27			dB
3dB Cut-off Frequency	f _{3dB}	2)	30	30		GHz
Lower Frequency cut off	f _{_3dB_L}				100	kHz
Output Deflection Coefficient	S ₂₂	0.5 - 15 GHz		-15	-10	dB
Output Reflection Coefficient		15 - 30 GHz		-6	-2	
Output Voltage Swing	V _{out}	P _{opt} ≥ 0 dBm		400	600	mV
Equivalent Input Noise Density	i _{noise}				40	pA/√ Hz
Overload	P _{overl}	3)	3			dBm
Photodiode Dark Current	l _{dark}	T _{Case} = 25 °C		8	200	nA
Power Consumption	P _{con}	V _{cc} = max			0.4	W
Notes:		•		•		

1. $\lambda = 1550 \text{ nm}, \text{ V}_{\text{bias}} = 3.3 \text{ V}, \text{ T} = 25 \text{ °C}$


2. Measured using Agilent 860330A 50 GHz Lightwave component analyzer

3. Evaluated from NRZ eye diagram and BER measurement at 40 Gb/s (BER 10⁻¹², PRBS 2³¹-1, back to back)


Frequency Response

VII. Typical Performance Curves

Pulse Response

VIII. Mechanical Specifications

All dimensions in mm.

IX. Accessories

The Finisar Evaluation Kit EVA-XPRV serves as an easy-to-use utility to characterize the Finisar photoreceiver XPRV2022A under laboratory conditions. The kit consists of a PCB (printed circuit board), a DC cable set and 4 socket head screws 4-40 UNC.

ORDERING INFORMATION

X. Revision History

Revision	Date	Description			
A1	04/09/2014	Document created.			
A2 05/18/2017		Updated version with new Finisar Logo			
AZ	05/16/2017	Modified block diagram and removed DC coupled version (EOL'd)			

Notes

- Any trademarks used in this document are properties of their respective owners.
- Finisar Corporation reserves the right to make changes without notice.

For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> <u>www.finisar.com</u>