

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









**5V PCI BUS QUAD UART** 

AUGUST 2005 REV. 1.3.2

#### GENERAL DESCRIPTION

The XR17C154<sup>1</sup> (154) is a guad PCI Bus Universal Asynchronous Receiver and Transmitter (UART) with same package and pin-out as the Exar XR17x158 octal UARTs. The device is designed to meet today's 32-bit PCI Bus and high bandwidth requirements in communication systems. The global interrupt source register provides a complete interrupt status indication for all 4 channels to speed up interrupt parsing. Each UART is independently controlled and has its own 16C550 compatible 5G register set, transmit and receive FIFOs of 64 bytes, fully programmable transmit and receive FIFO trigger levels, transmit and receive FIFO level counters, automatic hardware flow control with programmable hysteresis, automatic software (Xon/Xoff) flow control, IrDA (Infrared Data Association) encoder/decoder, 8 multi-purpose definable inputs/outputs, and a 16-bit general purpose timer/counter.

NOTE: 1 Covered by U.S. Patents #5,649,122, #5,949,787

#### **APPLICATIONS**

- · Remote Access Servers
- · Ethernet Network to Serial Ports
- Network Management
- Factory Automation and Process Control
- · Point-of-Sale Systems
- Multi-port RS-232/RS-422/RS-485 Cards

#### **FEATURES**

- High Performance Quad UART
- PCI Bus 2.2 Target Interface Compliance
- 5V PCI Bus Compliant up to 33MHz Clock
- 32-bit PCI Bus Interface with EEPROM Interface
- A Global Interrupt Source Register for all 4 UARTs
- · Data Transfer in Byte, Word and Double-word
- Data Read/Write Burst Operation
- · Each UART is independently Controlled with:
- 16C550 Compatible 5G (Fifth Gen Register Set
- · 64-byte Transmit and Receive FIFOs
- Transmit and Receive FIFO Level Counters
- Automatic RTS/CTS or DTR/DSR Flow Control
- Automatic Xon/Xoff Software Flow Control
- Automatic RS485 Half-duplex Control Output with 16 Selectable Turn-around Delay
- Infrared (IrDA 1.0) Data Encoder/Decoder
- · Programmable Data Rate with Prescaler
- Up to 6.25 Mbps Serial Data Rate at 8X and 5V
- Eight Multi-Purpose Inputs/outputs
- A General Purpose 16-bit Timer/Counter
- Sleep Mode with Automatic Wake-up Indicator
- Same Package and Pin-out as the XR17C158, XR17D154 and XR17D158 UART
- 20x20x1.4mm 144-LQFP package

FIGURE 1. BLOCK DIAGRAM

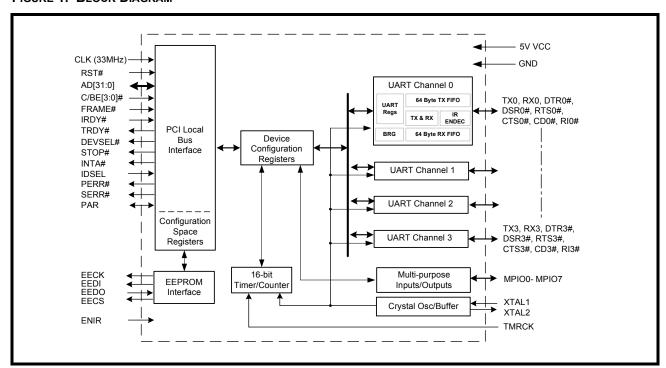
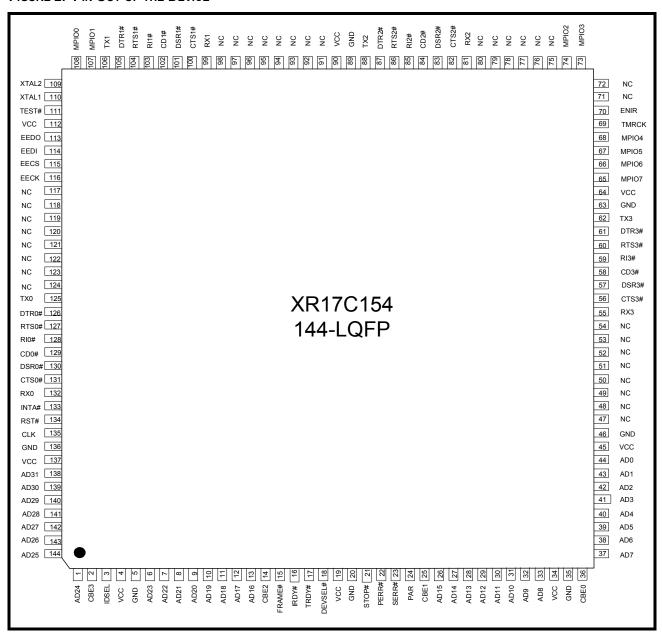






FIGURE 2. PIN OUT OF THE DEVICE



#### ORDERING INFORMATION

| PART NUMBER | PACKAGE       | PACKAGE OPERATING TEMPERATURE RANGE |        |
|-------------|---------------|-------------------------------------|--------|
| XR17C154CV  | 144-Lead LQFP | 0°C to +70°C                        | Active |
| XR17C154IV  | 144-Lead LQFP | -40°C to +85°C                      | Active |



# **PIN DESCRIPTIONS**

# Pin Description

| NAME                                                      | Pin#                                       | Түре     | DESCRIPTION                                                                                                                                                                                |
|-----------------------------------------------------------|--------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCI LOCAL BUS                                             | INTERFACE                                  | <u> </u> |                                                                                                                                                                                            |
| RST#                                                      | 134                                        | I        | Bus reset input (active low). It resets the PCI local bus configuration space registers, device configuration registers and UART channel registers to the default condition, see Table 19. |
| CLK                                                       | 135                                        | I        | Bus clock input of up to 33.34MHz at 5V.                                                                                                                                                   |
| AD31-AD25,<br>AD24,<br>AD23-AD16,<br>AD15-AD8,<br>AD7-AD0 | 138-144,<br>1,<br>6-13,<br>26-33,<br>37-44 | IO       | Address data lines [31:0] (bidirectional).                                                                                                                                                 |
| FRAME#                                                    | 15                                         | I        | Bus transaction cycle frame (active low). It indicates the beginning and duration of an access.                                                                                            |
| C/BE3#-C/BE0#                                             | 2, 14, 25, 36                              | I        | Bus Command/Byte Enable [3:0] (active low). This line is multiplexed for bus Command during the address phase and Byte Enables during the data phase                                       |
| IRDY#                                                     | 16                                         | I        | Initiator Ready (active low). During a write, it indicates that valid data is present on data bus. During a read, it indicates the master is ready to accept data.                         |
| TRDY#                                                     | 17                                         | 0        | Target Ready (active low).                                                                                                                                                                 |
| STOP#                                                     | 21                                         | 0        | Target request to stop current transaction (active low). 5                                                                                                                                 |
| IDSEL                                                     | 3                                          | ı        | Initialization device select (active high).                                                                                                                                                |
| DEVSEL#                                                   | 18                                         | 0        | Device select to the XR17C154 (active low).                                                                                                                                                |
| INTA#                                                     | 133                                        | OD       | Device interrupt from XR17C154 (open drain, active low).                                                                                                                                   |
| PAR                                                       | 24                                         | Ю        | Parity is even across AD[31:0] and C/BE[3:0]# (bidirectional, active high).                                                                                                                |
| PERR#                                                     | 22                                         | 0        | Parity error indicator to host (active low). Optional in bus target application.                                                                                                           |
| SERR#                                                     | 23                                         | OD       | System error indicator to host (open drain, active low). Optional in bus target application.                                                                                               |
| MODEM OR SE                                               | RIAL I/O INTERF                            | ACE      |                                                                                                                                                                                            |
| TX0                                                       | 125                                        | 0        | UART channel 0 Transmit Data or infrared transmit data. Normal TXD output idles HIGH while infrared TXD output idles LOW.                                                                  |
| RX0                                                       | 132                                        | I        | UART channel 0 Receive Data or infrared receive data. Normal RXD input idles HIGH. The infrared pulses typically idle LOW but can be inverted internally prior the decoder by FCTR[4].     |
| RTS0#                                                     | 127                                        | 0        | UART channel 0 Request to Send or general purpose output (active low).                                                                                                                     |
| CTS0#                                                     | 131                                        | I        | UART channel 0 Clear to Send or general purpose input (active low).                                                                                                                        |
| DTR0#                                                     | 126                                        | 0        | UART channel 0 Data Terminal Ready or general purpose output (active low)                                                                                                                  |
| DSR0#                                                     | 130                                        | I        | UART channel 0 Data Set Ready or general purpose input (active low).                                                                                                                       |
| CD0#                                                      | 129                                        | I        | UART channel 0 Carrier Detect or general purpose input (active low).                                                                                                                       |
| RI0#                                                      | 128                                        | I        | UART channel 0 Ring Indicator or general purpose input (active low).                                                                                                                       |
| TX1                                                       | 106                                        | 0        | UART channel 1 Transmit Data or infrared transmit data. Normal TXD output idles HIGH while infrared TXD output idles LOW.                                                                  |
| RX1                                                       | 99                                         | I        | UART channel 1 Receive Data or infrared receive data. Normal RXD input idles HIGH. The infrared pulses typically idle LOW but can be inverted internally prior the decoder by FCTR[4].     |
| RTS1#                                                     | 104                                        | 0        | UART channel 1 Request to Send or general purpose output (active low).                                                                                                                     |



# **Pin Description**

| NAME          | Pin#  | Түре | DESCRIPTION                                                                                                                                                                            |
|---------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTS1#         | 100   | I    | UART channel 1 Clear to Send or general purpose input (active low).                                                                                                                    |
| DTR1#         | 105   | 0    | UART channel 1 Data Terminal Ready or general purpose output (active low).                                                                                                             |
| DSR1#         | 101   | I    | UART channel 1 Data Set Ready or general purpose input (active low).                                                                                                                   |
| CD1#          | 102   | I    | UART channel 1 Carrier Detect or general purpose input (active low).                                                                                                                   |
| RI1#          | 103   | I    | UART channel 1 Ring Indicator or general purpose input (active low).                                                                                                                   |
| TX2           | 88    | 0    | UART channel 2 Transmit Data or infrared transmit data. Normal TXD output idles HIGH while infrared TXD output idles LOW.                                                              |
| RX2           | 81    | I    | UART channel 2 Receive Data or infrared receive data. Normal RXD input idles HIGH. The infrared pulses typically idle LOW but can be inverted internally prior the decoder by FCTR[4]. |
| RTS2#         | 86    | 0    | UART channel 2 Request to Send or general purpose output (active low).                                                                                                                 |
| CTS2#         | 82    | I    | UART channel 2 Clear to Send or general purpose input (active low).                                                                                                                    |
| DTR2#         | 87    | 0    | UART channel 2 Data Terminal Ready or general purpose output (active low).                                                                                                             |
| DSR2#         | 83    | I    | UART channel 2 Data Set Ready or general purpose input (active low).                                                                                                                   |
| CD2#          | 84    | I    | UART channel 2 Carrier Detect or general purpose input (active low).                                                                                                                   |
| RI2#          | 85    | I    | UART channel 2 Ring Indicator or general purpose input (active low).                                                                                                                   |
| TX3           | 62    | 0    | UART channel 3 Transmit Data or infrared transmit data. Normal TXD output idles HIGH while infrared TXD output idles LOW.                                                              |
| RX3           | 55    | I    | UART channel 3 Receive Data or infrared receive data. Normal RXD input idles HIGH. The infrared pulses typically idle LOW but can be inverted internally prior the decoder by FCTR[4]. |
| RTS3#         | 60    | 0    | UART channel 3 Request to Send or general purpose output (active low).                                                                                                                 |
| CTS3#         | 56    | I    | UART channel 3 Clear to Send or general purpose input (active low).                                                                                                                    |
| DTR3#         | 61    | 0    | UART channel 3 Data Terminal Ready or general purpose output (active low).                                                                                                             |
| DSR3#         | 57    | I    | UART channel 3 Data Set Ready or general purpose input (active low).                                                                                                                   |
| CD3#          | 58    | I    | UART channel 3 Carrier Detect or general purpose input (active low).                                                                                                                   |
| RI3#          | 59    | I    | UART channel 3 Ring Indicator or general purpose input (active low).                                                                                                                   |
| ANCILLARY SIG | SNALS |      |                                                                                                                                                                                        |
| MPIO0         | 108   | I/O  | Multi-purpose input/output 0. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT                                        |
| MPIO1         | 107   | I/O  | Multi-purpose input/output 1. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO2         | 74    | I/O  | Multi-purpose input/output 2. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO3         | 73    | I/O  | Multi-purpose input/output 3. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO4         | 68    | I/O  | Multi-purpose input/output 4. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO5         | 67    | I/O  | Multi-purpose input/output 5. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO6         | 66    | I/O  | Multi-purpose input/output 6. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |
| MPIO7         | 65    | I/O  | Multi-purpose input/output 7. The function of this pin is defined thru the Configuration Register MPIOSEL, MPIOLVL, MPIOINV, MPIO3T and MPIOINT.                                       |



# **Pin Description**

| NAME  | Pin#                                        | Түре | DESCRIPTION                                                                                                                                                                                                                                                                                                                                  |
|-------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EECK  | 116                                         | 0    | Serial clock to EEPROM. An internal clock of CLK divide by 256 is used for reading the vendor and sub-vendor ID during power up or reset. However, it can be manually clocked thru the Configuration Register REGB.                                                                                                                          |
| EECS  | 115                                         | 0    | Chip select to a EEPROM device like 93C46. It is manually selectable thru the Configuration Register REGB. Requires a pull-up 4.7K ohm resister for external sensing of EEPROM during power up. See DAN112 for further details.                                                                                                              |
| EEDI  | 114                                         | 0    | Write data to EEPROM device. It is manually accessible thru the Configuration Register REGB. The 154 auto-configuration register interface logic uses the 16-bit format.                                                                                                                                                                     |
| EEDO  | 113                                         | I    | Read data from EEPROM device. It is manually accessible thru the Configuration Register REGB.                                                                                                                                                                                                                                                |
| XTAL1 | 110                                         | I    | Crystal or external clock input of up to 50MHz for data rate of 3.125Mbps at 5V.                                                                                                                                                                                                                                                             |
| XTAL2 | 109                                         | 0    | Crystal or buffered clock output.                                                                                                                                                                                                                                                                                                            |
| TMRCK | 69                                          | I    | 16-bit timer/counter external clock input.                                                                                                                                                                                                                                                                                                   |
| ENIR  | 70                                          | ı    | Infrared mode enable (active high). This pin is sampled during power up, following a hardware reset (RST#) or soft-reset (register RESET). It can be used to start up all 4 UARTs in the infrared mode. The sampled logic state is transferred to MCR bit-6 in the UART. Software can override this pin thereafter and enable or disable it. |
| TEST# | 111                                         | I    | Factory Test. Connect to VCC for normal operation.                                                                                                                                                                                                                                                                                           |
| VCC   | 4,19,34,45,64,<br>90,112,137                | PWR  | +5V (PCI Compliance). For 3.3V operation, see the XR17D154.                                                                                                                                                                                                                                                                                  |
| GND   | 5,20,35,46,63,<br>89,136                    | PWR  | Power supply common, ground.                                                                                                                                                                                                                                                                                                                 |
| NC    | 47-54,<br>71,72,75-80,<br>91-98,<br>117-124 |      | No Connection. These pins are reserved and used by the octal PCI UART XR17C158.                                                                                                                                                                                                                                                              |

**Note:** Pin type: I=Input, O=Output, IO= Input/output, OD=Output Open Drain.



## **FUNCTIONAL DESCRIPTION**

The XR17C154 (154) integrates the functions of 4 enhanced 16550 UARTs with the PCI Local Bus interface and a non-volatile memory interface for PCI bus's plug-and-play auto-configuration, a 16-bit timer/counter, 8 multi-purpose inputs/outputs, and an on-chip oscillator. The PCI local bus is a synchronous timing bus where all bus transactions are associated to the bus clock of up to 33.34MHz. The 154 supports 32-bit wide read and write data transfer operations including data burst mode through the PCI Local Bus interface. Read and write data operations may be in byte, word or double-word (DWORD) format. A single 32-bit interrupt status register provides interrupts status for all 4 UARTs, timer/counter, multipurpose inputs/outputs, and a special sleep wake up indicator. There are three sets of register in the device. First, the PCI local bus configuration registers for PCI auto configuration. A set of device configuration registers for overall control, 32-bit wide transmit and receive data transfer, and monitoring of the 4 UART channels. Lastly, each UART channel has its own 16550 UART compatible configuration register set for individual channel control, status, and byte wide data transfer.

Each UART has 64-byte FIFOs, automatic RTS/CTS or DTR/DSR hardware flow control with hysteresis control, automatic Xon/Xoff and special character software flow control, programmable transmit and receive FIFO trigger level, FIFO level counters, infrared encoder and decoder (IrDA ver. 1.0), programmable baud rate generator with a prescaler of 1X or 4X, and data rate up to 6.25 Mbps at 8X sampling clock. The XR17C154 bus timing and drive capability meets the PCI local bus specification revision 2.2 for 5 volt operation over the temperature range. For a pin-to-pin compatible part that can operate at 3.3V, see the XR17D154. The XR17C154 is available in a thin 144-pin LQFP (20x20x1.4mm) package in commercial and industrial temperature ranges.

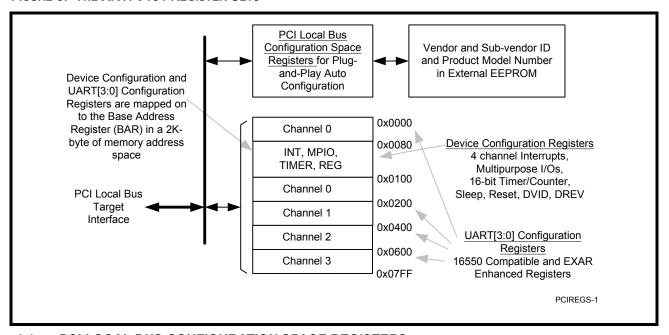
#### **PCI LOCAL BUS INTERFACE**

This is the host interface and it meets the PCI Local Bus Specification revision 2.2. The PCI local bus operations are synchronous meaning each transaction is associated to the bus clock. The XR17C154 can operate with the bus clock of up to a 33.34MHz. Data transfers operation can be formatted in 8-bit, 16-bit, 24-bit or 32-bit wide. With 32-bit data operations, it pushes the data transfer rate on the bus up to 132 MByte/sec. This increases the overall system's communication performance up to 16 times better than the 8-bit ISA bus. See PCI local bus specification revision 2.2 for bus operation details.

#### **PCI Local Bus Configuration Space Registers**

A set of PCI local bus configuration space register is provided. These registers provide the PCI local bus operating system with the card's vendor ID, device ID, sub-vendor ID, product model number, and resources and capabilities. The PCI local bus operating system collects this data from all the cards on the bus during the auto configuration phase that follows immediately after a power up or system reset/reboot. After it has sorted out all devices on the bus, it defines and download the operating conditions to the cards. One of the definitions is the base address loaded into the Base Address Register (BAR) where the card will be operating in the PCI local bus memory space.

#### **EEPROM Interface**


An external 93C46 EEPROM is only used to store the vendor's ID and model number, and the sub-vendor's ID and product model number. This information is only used with the plug-and-play auto configuration of the PCI local bus. These data provide automatic hardware installation onto the PCI bus. The EEPROM interface consists of 4 signals, EEDI, EEDO, EECS, and EECK. The EEPROM is not needed when auto configuration is not required in the application. However, If your design requires non-volatile memory for other purpose. It is possible to store and retrieve data on the EEPROM through a special PCI device configuration register. See application note DAN112 for its programming details.



#### 1.0 XR17C154 REGISTERS

The XR17C154 UART has three different sets of registers as shown in Figure 3. The PCI local bus configuration space registers are for plug-and-play auto-configuration when connecting the device to the PCI bus. This auto-configuration feature makes installation very easy into a PCI system and it is part of the PCI local bus specification. The second register set is the device configuration registers that are accessible directly from the PCI bus for programming general operating conditions of the device and monitoring the status of various functions. These registers are mapped into 2K of the PCI bus memory address space. These functions include all 4 channel UART's interrupt control and status, 16-bit general purpose timer control and status, multipurpose inputs/outputs control and status, sleep mode, soft-reset, and device identification and revision. And lastly, each UART channel has its own set of 5G internal UART configuration registers for its own operation control and status reporting. All 4 sets of channel registers are embedded inside the device configuration registers space, which provides faster access. The following paragraphs describe all 3 sets of registers in detail.

FIGURE 3. THE XR17C154 REGISTER SETS



# 1.1 PCI LOCAL BUS CONFIGURATION SPACE REGISTERS

The PCI local bus configuration space registers are responsible for setting up the device's operating environment in the PCI local bus. The pre-defined operating parameters of the device are read by the PCI bus plugand-play auto-configuration manager in the operating system. After the PCI bus has collected all data from every device/card on the bus, it defines and downloads the memory mapping information to each device/card about their individual operation memory address location and conditions. The operating memory mapped address location is downloaded into the Base Address Register (BAR) register, 0x10. The plug-and-play auto configuration feature is only available when an external 93C46 EEPROM is used. The EEPROM contains the device vendor and sub-vendor data required by the auto-configuration setup.



# TABLE 1: PCI LOCAL BUS CONFIGURATION SPACE REGISTERS

| ADDRESS | Вітѕ               | Түре             | DESCRIPTION                                                                                                              | RESET VALUE<br>(HEX) |
|---------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|
| 0x00    | 31:16              | RWR <sup>1</sup> | Device ID (Exar device ID number or from EEPROM)                                                                         | 0x0154               |
|         | 15:0               | RWR <sup>1</sup> | Vendor ID (Exar ID or from EEPROM) specified by PCISIG                                                                   | 0x13A8               |
| 0x04    | 31:28              | RO               | Status bits (error reporting bits)                                                                                       | 0000                 |
|         | 27                 | R-Reset          | Target Abort. Set whenever 154 terminates with a target abort.                                                           | 0                    |
|         | 26:25              | RO               | DEVSEL# timing.                                                                                                          | 00                   |
|         | 24                 | RO               | Unimplemented bus master error reporting bit                                                                             | 0                    |
|         | 23                 | RO               | Fast back to back transactions are supported                                                                             | 1                    |
|         | 22:16              | RO               | Reserved Status bits                                                                                                     | 000 0000             |
|         | 15:9,7,<br>5,4,3,2 | RO               | Command bits (reserved)                                                                                                  | 0x0000               |
|         | 8                  | WO               | SERR# driver enable. Logic 1=enable driver and 0=disable driver                                                          | 0                    |
|         | 6                  | WO               | Parity error enable. Logic 1=respond to parity error and 0=ignore                                                        | 0                    |
|         | 1                  | RWR              | Command controls a device's response to mem space accesses: 0=disable mem space accesses, 1=enable mem space accesses    | 0                    |
|         | 0                  | RO               | Command controls a device's response to I/O space accesses: 0 = disable I/O space accesses 1 = enable I/O space accesses | 0                    |
| 0x08    | 31:8               | RO               | Class Code (Simple 550 Communication Controller).                                                                        | 0x070002             |
|         | 7:0                | RO               | Revision ID (Exar device revision number)                                                                                | Current Rev. value   |
| 0x0C    | 31:24              | RO               | BIST (Built-in Self Test)                                                                                                |                      |
|         | 23:16              | RO               | Header Type (a single function device with one BAR)                                                                      | 0x00                 |
|         | 15:8               | RO               | Unimplemented Latency Timer (needed only for bus master)                                                                 | 0x00                 |
|         | 7:0                | RO               | Unimplemented Cache Line Size                                                                                            | 0x00                 |
| 0x10    | 31:11              | RW               | Memory Base Address Register (BAR)                                                                                       | 0x00                 |
|         | 10:0               | RO               | Claims a 2K address space for the memory mapped UARTs                                                                    | 0xX000               |
| 0x14    | 31:0               | RO               | Unimplemented Base Address Register (returns zeros)                                                                      | 0x00000000           |
| 0x18h   | 31:0               | RO               | Unimplemented Base Address Register (returns zeros)                                                                      | 0x00000000           |
| 0x1C    | 31:0               | RO               | Unimplemented Base Address Register (returns zeros)                                                                      | 0x00000000           |
| 0x20    | 31:0               | RO               | Unimplemented Base Address Register (returns zeros)                                                                      | 0x00000000           |
| 0x24    | 31:0               | RO               | Unimplemented Base Address Register (returns zeros)                                                                      | 0x00000000           |
| 0x28    | 31:0               | RO               | Reserved                                                                                                                 | 0x00000000           |



REV. 1.3.2

TABLE 1: PCI LOCAL BUS CONFIGURATION SPACE REGISTERS

| Вітѕ                   | Түре                                                            | DESCRIPTION                                                                                    | RESET VALUE<br>(HEX)                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 RWR <sup>1</sup> |                                                                 | Subsystem ID (write from external EEPROM by customer)                                          | 0x0000                                                                                                                                                                                                                                                                                                                                                                                    |
| 15:0                   | RWR <sup>1</sup>                                                | Subsystem Vendor ID (write from external EEPROM by customer)                                   | 0x0000                                                                                                                                                                                                                                                                                                                                                                                    |
| 31:0                   | RO                                                              | Expansion ROM Base Address (Unimplemented)                                                     | 0x00000000                                                                                                                                                                                                                                                                                                                                                                                |
| 31:0                   | RO                                                              | Reserved (returns zeros)                                                                       | 0x00000000                                                                                                                                                                                                                                                                                                                                                                                |
| 31:0                   | RO                                                              | Reserved (returns zeros)                                                                       | 0x00000000                                                                                                                                                                                                                                                                                                                                                                                |
| 31:24                  | RO                                                              | Unimplemented MAXLAT                                                                           | 0x00                                                                                                                                                                                                                                                                                                                                                                                      |
| 23:16                  | RO                                                              | Unimplemented MINGNT                                                                           | 0x00                                                                                                                                                                                                                                                                                                                                                                                      |
| 15:8                   | RO                                                              | Interrupt Pin, use INTA#.                                                                      | 0x01                                                                                                                                                                                                                                                                                                                                                                                      |
| 7:0                    | RWR                                                             | Interrupt Line.                                                                                | 0xXX                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | 31:16<br>15:0<br>31:0<br>31:0<br>31:0<br>31:24<br>23:16<br>15:8 | 31:16 RWR <sup>1</sup> 15:0 RWR <sup>1</sup> 31:0 RO 31:0 RO 31:0 RO 31:24 RO 23:16 RO 15:8 RO | 31:16 RWR <sup>1</sup> Subsystem ID (write from external EEPROM by customer)  15:0 RWR <sup>1</sup> Subsystem Vendor ID (write from external EEPROM by customer)  31:0 RO Expansion ROM Base Address (Unimplemented)  31:0 RO Reserved (returns zeros)  31:0 RO Reserved (returns zeros)  31:24 RO Unimplemented MAXLAT  23:16 RO Unimplemented MINGNT  15:8 RO Interrupt Pin, use INTA#. |

#### 1.2 DEVICE CONFIGURATION REGISTER SET

The device configuration registers and a special way to access each of the UART's transmit and receive data FIFOs are accessible directly from the PCI data bus. This provides easy programming of general operating parameters to the 154 UART and for monitoring the status of various functions. The registers occupy 2K of PCI bus memory address space. These addresses are offset onto the basic memory address, a value loaded into the Memory Base Address Register (BAR) in the PCI local bus configuration register set. These registers control or report on all 4 channel UARTs functions that include interrupt control and status, 16-bit general purpose timer control and status, multipurpose inputs/outputs control and status, sleep mode control, soft-reset control, and device identification and revision, and others.

The registers set is mapped into 4 address blocks where each UART channel occupies 512 bytes memory space for its own 16550 compatible configuration registers. The device configuration and control registers are embedded inside the UART channel zero's address space between 0x0080 to 0x0093. All these registers can be accessed in 8, 16, 24 or 32 bit width depending on the starting address given by the host at beginning of the bus cycle. Transmit and receive data may be loaded or unloaded in 8, 16, 24 or 32 bit format to the register's address. Every time a read or write operation is made to the transmit or receive register, its FIFO data pointer is automatically bumped to the next sequential data location either in byte, word or dword. One special case applies to the receive data unloading when reading the receive data together with its LSR register content. The host must read them in 16 or 32 bits format in order to maintain integrity of the data byte with its associated error flags.



TABLE 2: XR17C154 DEVICE CONFIGURATION REGISTERS

| OFFSET ADDRESS | MEMORY SPACE                                 | READ/WRITE               | DATA WIDTH                               | COMMENT                           |
|----------------|----------------------------------------------|--------------------------|------------------------------------------|-----------------------------------|
| 0x000 - 0x00F  | UART channel 0 Regs                          | (Table 11 &<br>Table 12) | 8/16/24/32                               | First 8 regs are 16550 compatible |
| 0x010 - 0x07F  | Reserved                                     |                          |                                          |                                   |
| 0x080 - 0x093  | DEVICE CONFIG.<br>REGISTERS                  | (Table 3)                | 8/16/24/32                               |                                   |
| 0x094 - 0x0FF  | Reserved                                     |                          |                                          |                                   |
| 0x100 - 0x13F  | UART 0 – Read FIFO                           | Read-Only                | 8/16/24/32                               | 64 bytes of RX FIFO data          |
| 0x100 - 0x13F  | UART 0 – Write FIFO                          | Write-Only               | 8/16/24/32                               | 64 bytes of TX FIFO data          |
| 0x140 - 0x17F  | Reserved                                     |                          |                                          |                                   |
| 0x180 - 0x1FF  | UART 0 – Read FIFO with errors               | Read-Only                | 16/32                                    | 64 bytes of RX FIFO data + LSR    |
|                |                                              |                          |                                          |                                   |
| 0x200 - 0x20F  | UART channel 1 Regs                          | (Table 11 &<br>Table 12) | 8/16//24/32                              | First 8 regs are 16550 compatible |
| 0x210 - 0x2FF  | Reserved                                     |                          |                                          |                                   |
| 0x300 - 0x33F  | UART 1 – Read FIFO                           | Read-Only                | 8/16/24/32                               | 64 bytes of RX FIFO data          |
| 0x300 - 0x33F  | UART 1 – Write FIFO                          | Write-Only               | 8/16/24/32                               | 64 bytes of TX FIFO data          |
| 0x340 - 0x37F  | Reserved                                     |                          |                                          |                                   |
| 0x380 - 0x3FF  | UART 1 – Read FIFO with errors               | Read-Only                | 16/32                                    | 64 bytes of RX FIFO data + LSR    |
|                |                                              |                          |                                          |                                   |
| 0x400 - 0x40F  | UART channel 2 Regs                          | (Table 11 & Table 12)    | 8/16/24/32 First 8 regs are 16550 compar |                                   |
| 0x410 - 0x4FF  | Reserved                                     |                          |                                          |                                   |
| 0x500 - 0x53F  | UART 2 – Read FIFO                           | Read-Only                | 8/16/24/32                               | 64 bytes of RX FIFO data          |
| 0x500 - 0x53F  | UART 2 – Write FIFO                          | Write-Only               | 8/16/24/32                               | 64 bytes of TX FIFO data          |
| 0x540 - 0x57F  | Reserved                                     |                          |                                          |                                   |
| 0x580 - 0x5FF  | 0x580 - 0x5FF UART 2 – Read FIFO with errors |                          | 16/32                                    | 64 bytes of RX FIFO data + LSR    |
|                |                                              |                          |                                          |                                   |
| 0x600 - 0x60F  | UART channel 3 Regs                          | (Table 11 &<br>Table 12) | 8/16/24/32                               | First 8 regs are 16550 compatible |
| 0x610 - 0x6FF  | Reserved                                     |                          |                                          |                                   |
| 0x700 - 0x73F  | UART 3 – Read FIFO                           | Read-Only                | 8/16/24/32                               | 64 bytes of RX FIFO data          |
| 0x700 - 0x73F  | UART 3 – Write FIFO                          | Write-Only               | 8/16/24/32                               | 64 bytes of TX FIFO data          |



# TABLE 2: XR17C154 DEVICE CONFIGURATION REGISTERS

| OFFSET ADDRESS | MEMORY SPACE                   | READ/WRITE | Data Width | Соммент                        |
|----------------|--------------------------------|------------|------------|--------------------------------|
| 0x740 - 0x77F  | Reserved                       |            |            |                                |
| 0x780 - 0x7FF  | UART 3 – Read FIFO with errors | Read-Only  | 16/32      | 64 bytes of RX FIFO data + LSR |



TABLE 3: DEVICE CONFIGURATION REGISTERS SHOWN IN BYTE ALIGNMENT

| Address [A7:A0] | REGISTER     | READ/WRITE COMMENT                                     | RESET STATE       |
|-----------------|--------------|--------------------------------------------------------|-------------------|
| Ox080           | INT0 [7:0]   | Read-only Interrupt [3:0], Reserved [7:4]              | Bits 7-0 = 0x00   |
| Ox081           | INT1 [15:8]  | Read-only                                              | Bits 7-0 = 0x00   |
| Ox082           | INT2 [23:16] | Read-only [3:0], Reserved [7:4]                        | Bits 7-0 = 0x00   |
| Ox083           | INT3 [31:24] | Reserved                                               | Bits 7-0 = 0x00   |
|                 |              |                                                        |                   |
| Ox084           | TIMERCNTL    | Read/Write Timer Control                               | Bits $7-0 = 0x00$ |
| Ox085           | TIMER        | Reserved                                               | Bits $7-0 = 0x00$ |
| Ox086           | TIMERLSB     | Read/Write Timer LSB                                   | Bits 7-0 = 0x00   |
| Ox087           | TIMERMSB     | Read/Write Timer MSB                                   | Bits 7-0 = 0x00   |
|                 |              |                                                        |                   |
| Ox088           | 8XMODE       | Read/Write                                             | Bits $7-0 = 0x00$ |
| Ox089           | REGA         | Reserved                                               | Bits $7-0 = 0x00$ |
| Ox08A           | RESET        | Write-only Self clear bits after executing Reset [3:0] | Bits 7-0 = 0x00   |
| Ox08B           | SLEEP        | Read/Write Sleep mode [3:0]                            | Bits 7-0 = 0x00   |
|                 |              |                                                        |                   |
| Ox08C           | DREV         | Read-only Device revision                              | Bits $7-0 = 0x04$ |
| Ox08D           | DVID         | Read-only Device identification                        | Bits 7-0 = 0x24   |
| Ox08E           | REGB         | Write-only                                             | Bits 7-0 = 0x00   |
| Ox08F           | MPIOINT      | Read/Write MPIO interrupt mask                         | Bits 7-0 = 0x00   |
|                 |              |                                                        |                   |
| Ox090           | MPIOLVL      | Read/Write MPIO level control                          | Bits 7-0 = 0x00   |
| Ox091           | MPIO3T       | Read/Write MPIO output control                         | Bits 7-0 = 0x00   |
| Ox092           | MPIOINV      | Read/Write MPIO input polarity select                  | Bits 7-0 = 0x00   |
| Ox093           | MPIOSEL      | Read/Write MPIO select                                 | Bits 7-0 = 0xFF   |

TABLE 4: DEVICE CONFIGURATION REGISTERS SHOWN IN DWORD ALIGNMENT

| Address   | REGISTER                | Вуте 3 [31:24] | Вүте 2 [23:16] | BYTE 1 [15:8]    | Вуте 0 [7:0] |
|-----------|-------------------------|----------------|----------------|------------------|--------------|
| 0x080-083 | INTERRUPT (read-only)   | INT3           | INT2           | INT1             | INT0         |
| 0x084-087 | TIMER (read/write)      | TIMERMSB       | TIMERLSB       | TIMER (reserved) | TIMERCNTL    |
| 0x088-08B | ANCILLARY1 (read/write) | SLEEP          | RESET          | REGA (reserved)  | 8XMODE       |
| 0x08C-08F | ANCILLARY2 (read-only)  | MPIOINT        | REGB           | DVID             | DREV         |
| 0x090-093 | MPIO (read/write)       | MPIOSEL        | MPIOINV        | MPIO3T           | MPIOLVL      |

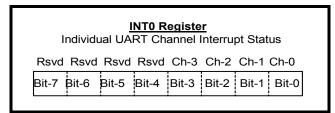


#### 1.2.1 The Interrupt Status Register

The XR17C154 has a 32-bit wide register [INT0, INT1, INT2 and INT3] to provide interrupt information and supports two interrupt schemes. The first scheme uses bits 0 to 3 of an 8-bit indicator (INT0) representing channels 0 to 3 of the XR17C154, respectively. This permits the interrupt routine to quickly vector and serve that UART channel and determine the source(s) in each individual routines. INT0 bit-0 represents the interrupt status for UART channel 0 when its transmitter, receiver, line status, or modem port status requires service. Other bits in the INT0 register provide indication for the other channels with bit-3 representing UART channel 3 respectively. Bits 4 through 7 are reserved and remain at a logic 0.

The second scheme provides detail about the source of the interrupts for each UART channel. All the interrupts are encoded into a 3-bit code. This 3-bit code represents 7 interrupts corresponding to individual UART's transmitter, receiver, line status, modem port status. INT1 and INT2 registers provide the 12-bit interrupt status for all 4 channels. Bits 8, 9 and 10 representing channel 0 and bits 17, 18 and 19 representing channel 3 respectively. Bits 20 to 31 are reserved and remain at a logic 0. All 4 channel interrupts status are available with a single DWORD read operation. This feature allows the host quickly vectors and serves the interrupts, reducing service interval, hence, reduce host bandwidth requirement. Figure 4 shows the 4-byte interrupt register and its make up.

# GLOBAL INTERRUPT REGISTER (DWORD) [default 0x00-00-00-00]


| INT3 [31:24] | INT2 [23:16] | INT1 [15:8] | INT0 [7:0] |
|--------------|--------------|-------------|------------|

A special interrupt condition is generated by the 154 when it wakes up from sleep mode. This special interrupt is cleared by reading the INT0 register. If there are not any other interrupts pending, the value read from INT0 would be 0x00.

# INT0 [7:0] Channel Interrupt Indicator

Each bit gives an indication of the channel that has requested for service. Bit-0 represents channel 0 and bit-3 indicates channel 3. Logic 1 indicates that a channel has called for service. Bits 4 to 7 are reserved and remain at a logic 0. The interrupt bit clears after reading the appropriate register of the interrupting channel register, see Interrupt Clearing section.

The INTO register provides individual status for each channel



#### INT3, INT2 and INT1 [32:8]

Twenty four bit encoded interrupt indicator. Each channel's interrupt is encoded into 3 bits for receive, transmit, and status. Bit [10:8] represent channel 0 and go up to channel 3 with bits [19:17]. The 3 bit encoding and their priority order are shown below in **Table 5**. The Timer and MPIO interrupts are for the device and therefore they exist within channel 0 space (bits [10:8]) and not in other channel.

FIGURE 4. THE GLOBAL INTERRUPT REGISTER, INTO, INT1, INT2 AND INT3

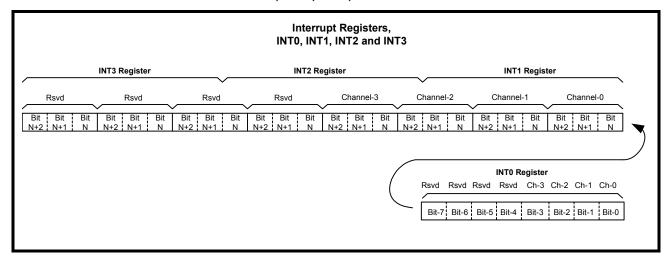
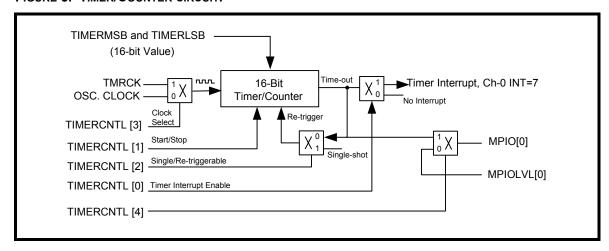



TABLE 5: UART CHANNEL [3:0] INTERRUPT SOURCE ENCODING

| PRIORITY | Bit[N+2] | Bit[n+1] | Віт[и] | INTERRUPT SOURCE(S)                                                          |
|----------|----------|----------|--------|------------------------------------------------------------------------------|
| х        | 0        | 0        | 0      | None                                                                         |
| 1        | 0        | 0        | 1      | RXRDY and RX Line Status (logic OR of LSR[4:1])                              |
| 2        | 0        | 1        | 0      | RXRDY Time-out                                                               |
| 3        | 0        | 1        | 1      | TXRDY, THR or TSR (auto RS485 mode) empty                                    |
| 4        | 1        | 0        | 0      | MSR, RTS/CTS or DTR/DSR delta or Xoff/Xon det. or special char. detected     |
| 5        | 1        | 0        | 1      | Reserved.                                                                    |
| 6        | 1        | 1        | 0      | MPIO pin(s). Available only within channel 0, reserved in other channels.    |
| 7        | 1        | 1        | 1      | TIMER Time-out. Available only within channel 0, reserved in other channels. |

TABLE 6: UART CHANNEL [3:0] INTERRUPT CLEARING


| RXRDY is cleared by reading data in the RX FIFO until it falls below the trigger level.                                |
|------------------------------------------------------------------------------------------------------------------------|
| RXRDY Time-out is cleared by reading data until the RX FIFO is empty.                                                  |
| RX Line Status interrupt clears after reading the LSR register.                                                        |
| TXRDY interrupt clears after reading ISR register that is in the UART channel register set.                            |
| Modem Status Register interrupt clears after reading MSR register that is in the UART channel register set.            |
| RTS/CTS or DTR/DSR delta interrupt clears after reading MSR register that is in the UART channel register set.         |
| Xoff/Xon interrupt clears after reading the ISR register that is in the UART channel register set.                     |
| Special character detect interrupt is cleared by a read to ISR or after the next character is received.                |
| TIMER Time-out interrupt clears after reading the TIMERCNTL register that is in the Device Configuration register set. |
| MPIO interrupt clears after reading the MPIOLVL register that is in the Device Configuration register set.             |



# 1.2.2 General Purpose 16-bit Timer/Counter [TIMERMSB, TIMELSB, TIMER, TIMECNTL] (DEFAULT 0xXX-XX-00-00)

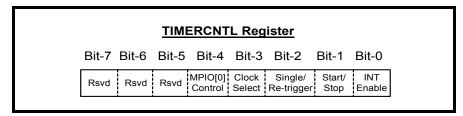
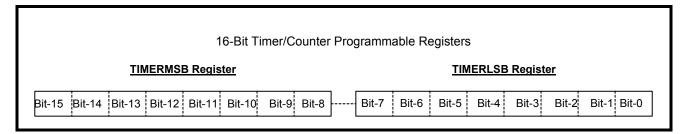

A 16-bit down-count timer for general purpose timer or counter. Its clock source may be selected from internal crystal oscillator or externally on pin TMRCK. The timer can be set to be a single-shot for a one-time event or re-triggerable for continue interval. An interrupt may be generated in the INT Register when the timer times out. It is controlled through 4 configuration registers [TIMERCNTL, TIMER, TIMELSB, TIMERMSB]. These registers provide start/stop and re-triggerable or one-shot operation. The time-out output of the Timer can be set to generate an interrupt for system or event alarm.

FIGURE 5. TIMER/COUNTER CIRCUIT.



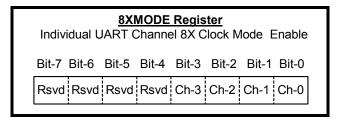
**TABLE 7: TIMER CONTROL REGISTERS** 

| TIMERCNTL [0]   | Logic 0 (default) disables Timer-Counter interrupt and logic one enables the interrupt, reading the TIMERCNTL clears the interrupt. |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| TIMERCNLT [1]   | Logic 0 (default) stops/pauses the timer and logic one starts/re-starts the timer/counter.                                          |
| TIMERCNTL [2]   | Logic 0 (default) selects re-trigger timer function and logic one selects one-shot (timer function.                                 |
| TIMERCNTL [3]   | Logic 0 (default) selects internal and logic one selects external clock to the timer/counter.                                       |
| TIMERCNTL [4]   | Routes the Timer-Counter interrupt to MPIO[0] if MPIOSEL[0]=0 for external event control.                                           |
| TIMERCNTL [7:5] | Reserved (defaults to zero)                                                                                                         |




TIMER [15:8] Reserved




## **TIMERMSB** [31:24] and **TIMERLSB** [23:16]

TIMERMSB and TIMERLSB form a 16-bit value. The least-significant bit of the timer is being bit [0] of the TIMERLSB with most-significant-bit being bit [7] in TIMERMSB. Notice that these registers do not hold the current counter value when read. Reading the TIMERCNTL register will clear its interrupt. Default value is zero (timer disabled) upon powerup and reset.



#### 1.2.3 8XMODE [7:0] (default 0x00)

Each bit selects 8X or 16X sampling rate for that UART channel, bit-0 is channel 0. Logic 0 (default) selects normal 16X sampling with logic one selects 8X sampling rate. Transmit and receive data rates will double by selecting 8X.



# 1.2.4 REGA [15:8] Reserved

# 1.2.5 RESET [23:16] (default 0x00)

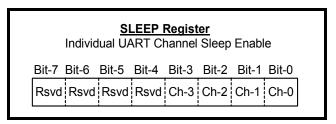
Bits 0 to 3 of the Reset register [RESET] provides the software with the ability to reset the UART(s) when there is a need. Each bit is self-resetting after it is written a logic 1 to perform a reset to that channel. All registers in that channel will be reset to the default condition, see **Table 19** for details. Bit-0 =1 resets UART channel 0 with bit-3=1 resets channel 3

| RESET Register Individual UART Channel Reset Enable |       |       |       |       |       |       |       |
|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Bit-7                                               | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 |
| Rsvd                                                | Rsvd  | Rsvd  | Rsvd  | Ch-3  | Ch-2  | Ch-1  | Ch-0  |



### 1.2.6 SLEEP [31:24](default 0x00)

Each UART can be separately enabled to enter Sleep mode through the Sleep register. Sleep mode reduces power consumption when the system needs to put the UART(s) to idle. All of these conditions must be satisfied for the 154 to enter sleep mode:


- no interrupts pending (INT0 = 0x00)
- divisor is a non-zero value for all channels (ie. DLL = 0x1)
- sleep mode is enabled (SLEEP = 0x0F)
- modem inputs for all channels are not toggling (MSR bits 0-3 = 0)
- RX input pins for all channels are idling HIGH

The 154 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for no clock output as an indication that the device has entered the sleep mode.

The 154 resumes normal operation by any of the following:

- a receive data start bit transition (HIGH to LOW)
- a data byte is loaded to the transmitter, THR or FIFO
- a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#

If the 154 is awakened by any one of the above conditions, it will return to the sleep mode automatically after all interrupting conditions have been serviced and cleared. If the 154 is awakened by the modem inputs, a read to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an interrupt is pending from any channel. The 154 will stay in the sleep mode of operation until it is disabled by setting Sleep = 0x00. In this case, the quad UART is awaken by any of the UART channel from a receive data byte or a change on the serial port. The UART is ready after 32 crystal clocks to ensure full functionality. Also, a special interrupt is generated with an indication of no pending interrupt. Reading INT0 will clear this special interrupt. Logic 0 (default) is disable and logic 1 is enable to sleep mode.



## 1.2.7 Device Identification and Revision

There are two internal registers that provide device identification and revision, DVID and DREV registers. The 8-bit content in the DVID register provides device identification. A return value of 0x24 from this register indicates the device is a XR17C154. The DREV register returns an 8-bit value of 0x01 for revision A with 0x02 equals to revision B and so forth. This information is very useful to the software driver for identifying which device it is communicating with and to keep up with revision changes.

#### **DVID** [15:8]

Device identification for the type of UART. The upper nibble indicates it is a XR17Cxxx series with lower nibble indicating the number of channels.

#### Examples:

XR17C158 or XR17D158 = 0x28

XR17C154 or XR17D154 = 0x24

XR17C152 or XR17D152 = 0x22

#### **DREV** [7:0]

Revision number of the XR17C154. A 0x01 represents "revision-A" with 0x02 for rev-B and so forth.



## **REGB** [23:16] (default 0x00)

REGB register provides a control for simultaneous write to all 8 UARTs configuration register or individually. This is very useful for device initialization in the power up and reset routines. Also, the register provides a facility to interface to the non-volatile memory device such as a 93C46 EEPROM. In embedded applications, the user can use this facility to store proprietary data.

#### 1.2.8 REGB Register

| REGB[16](Read/Write)  | Logic 0 (default) write to each UART configuration registers individually. |  |
|-----------------------|----------------------------------------------------------------------------|--|
|                       | Logic 1 enables simultaneous write to all 8 UARTs configuration register.  |  |
| REGB[19:17]           | Reserved                                                                   |  |
| REGB[20] (Write-Only) | Control the EECK, clock, output (pin 116) on the EEPROM interface.         |  |
| REGB[21] (Write-Only) | Control the EECS, chips select, output (pin 115) to the EEPROM device.     |  |
| REGB[22] (Write-Only) | EEDI (pin 114) data input. Write data to the EEPROM device.                |  |
| REGB[23] (Read-Only)  | EEDO (pin 113) data output. Read data from the EEPROM device.              |  |

### 1.2.9 Multi-Purpose Inputs and Outputs

The 154 provides 8 multi-purpose inputs/outputs [MPIO7:0] for general use. Each pin can be programmed to be an input or output function. The input logic state can be set for normal or inverted level, and optionally set to generate an interrupt. The outputs can be set to be normal HIGH or LOW state, or 3-state. Their functions and definitions are programmed through 5 registers: MPIOINT, MPIOLVL, MPIO3T, MPIOINV and MPIOSEL. If all 8 pins are set for inputs, all 8 interrupts would be OR'ed together. The Or'ed interrupt is reported in the channel 0 UART interrupt status (3-bit interrupt encoding, bits [10:8], in the global interrupt status register. The pins may also be programmed to be outputs and to the 3-state condition for signal sharing.

#### 1.2.10 MPIO REGISTER

Bit 7 represents MPIO7 pin and bit 0 represents MPIO0 pin. There are 5 registers that select, control and monitor the 8 multipurpose inputs and outputs. Figure 6 shows the internal circuitry.

**EXAR** *REV.* 1.3.2

MPIOINT [7:0] -Rising Edge AND Detection **MPIO** MPIOLVL [7:0] Pin [7:0] Read Input Level **MPIOINV [7:0]** (Input Inversion Enable =1) MPIOLVL [7:0] (Output Level) MPIO3T [7:0] (3-state Enable =1) OR MPIOSEL [7:0] (Select Input=1, Output=0) **MPIOCKT** 

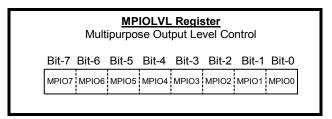
FIGURE 6. MULTIPURPOSE INPUT/OUTPUT INTERNAL CIRCUIT

## MPIOINT [7:0] (default 0x00)

Enable multipurpose input pin interrupt. If the MPIO pin is selected by MPIOSEL as input then bit-0 enables input pin 0 for interrupt, and bit-7 enables input pin 7. No interrupt is enable if the pin is selected to be an output. The interrupt is edge sensing and determined by MPIOINV and MPIOLVL registers. The MPIO interrupt clears after a read to register MPIOLVL. The combination of MPIOLVL and MPIOINV determines the interrupt being active low or active high, it's level trigger. Logic 0 (default) disables the pin's interrupt and logic 1 enables it.

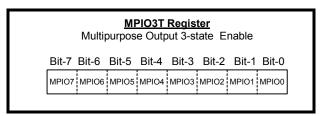
MPIOINT Register

Multipurpose Input/Output Interrupt Enable


Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

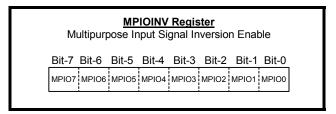
MPIO7 MPIO6 MPIO5 MPIO4 MPIO3 MPIO2 MPIO1 MPIO0




# MPIOLVL [7:0] (default 0x00)

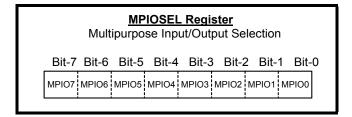
Output pin level control and input level status. The status of the input pin(s) is read on this register and output pins are controlled on this register. A logic 0 (default) sets the output to low and a logic 1 sets the output pin to high. The MPIO interrupt will clear upon reading this register.




## MPIO3T [7:0] (default 0x00)

Output pin tri-state control. A logic 0 (default) sets the output to active level per register MPIO3T settling, a logic 1 sets the output pin to tri-state.




# MPIOINV [7:0] (default 0x00)

Input inversion control. A logic 0 (default) does not invert the input pin logic. A logic 1 inverts the input logic level.



## MPIOSEL [7:0] (default 0xFF)

Multipurpose input/output pin select. This register defines the functions of the pins. A logic 1 (default) defines the pin for input and a logic 0 for output.





#### 2.0 CRYSTAL OSCILLATOR / BUFFER

The 154 includes an on-chip oscillator (XTAL1 and XTAL2). The crystal oscillator provides the system clock to the Baud Rate Generators (BRG) in each of the 4 UARTs, the 16-bit general purpose timer/counter and internal logics. XTAL1 is the input to the oscillator or external clock buffer input with XTAL2 pin being the output. See Programmable Baud Rate Generator in the UART section for programming details.

The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant with 10-22 pF capacitance load, 100ppm) connected externally between the XTAL1 and XTAL2 pins (see Figure 7). Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal 4 baud rate generators for standard or custom rates. However, for external clock frequencies greater than 24MHz, a 2K pull-up may be necessary on the XTAL2 output (see Figure 8). Typical oscillator connections are shown in Figure 7. For further reading on oscillator circuit please see application note DAN108 on EXAR's web site.

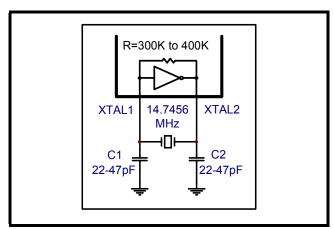
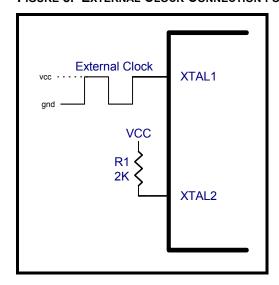




FIGURE 7. TYPICAL OSCILLATOR CONNECTIONS

FIGURE 8. EXTERNAL CLOCK CONNECTION FOR EXTENDED DATA RATE





#### 3.0 TRANSMIT AND RECEIVE DATA

There are two methods to load transmit data and unload receive data from each UART channel. First, there is a transmit data register and receive data register for each UART channel in the device configuration register set to ease programming. These registers support 8, 16, 24 and 32 bits wide format. In the 32-bit format, it increases the data transfer rate on the PCI bus. Additionally, a special register location provides receive data byte with its associated error flags. This is a 16-bit or 32-bit read operation where the Line Status Register (LSR) content in the UART channel register is paired along with the data byte. This operation further facilitates data unloading with the error flags without having to read the LSR register separately. Furthermore, the XR17C154 supports PCI burst mode for read/write operation of up to 64 bytes of data.

The second method is through each UART channel's transmit holding register (THR) and receive holding register (RHR). The THR and RHR registers are 16550 compatible so their access is limited to 8-bit format. The software driver must separately read the LSR content for the associated error flags before reading the data byte.

# 3.1 DATA LOADING AND UNLOADING VIA 32-BIT PCI BURST TRANSFERS

The XR17C154 supports PCI Burst Read and PCI Burst Write transactions anywhere in the mapped memory region (except reserved areas). In addition, to utilize this feature fully, the device provides a separate memory location (apart from the 16550 register set) where the RX and the TX FIFO can be read from/written to, as shown in Table 2. The following is an extract from the table showing the burstable memory locations:

Channel 0:

RX FIFO : 0x100 - 0x13F (64 bytes)

TX FIFO : 0x100 - 0x13F (64 bytes)

RX FIFO + status : 0x180 - 0x1FF (64 bytes data + 64 bytes status)

Channel 1:

RX FIFO : 0x300 - 0x33F (64 bytes)

TX FIFO : 0x300 - 0x33F (64 bytes)

RX FIFO + status : 0x380 - 0x3FF (64 bytes data + 64 bytes status)

Channel 2:

RX FIFO : 0x500 - 0x53F (64 bytes)

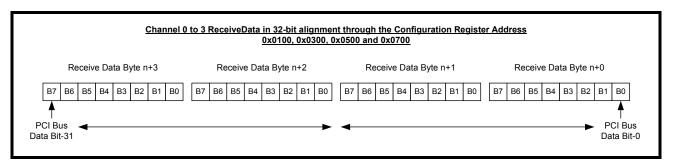
TX FIFO : 0x500 - 0x53F (64 bytes)

RX FIFO + status : 0x580 - 0x5FF (64 bytes data + 64 bytes status)

Channel 3:

RX FIFO : 0x700 - 0x73F (64 bytes)

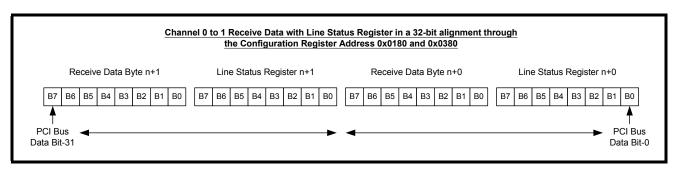
TX FIFO : 0x700 - 0x73F (64 bytes)


RX FIFO + status : 0x780 - 0x7FF (64 bytes data + 64 bytes status)

## 3.1.1 Normal Rx FIFO Data Unloading at locations 0x100, 0x300, 0x500, 0x700

The RX FIFO data (up to the maximum 64 bytes) can be read out in a single burst 32-bit read operation (maximum 16 DWORD reads) at memory locations 0x100 (channel 0), 0x300 (channel 1), 0x500 (channel 2), and 0x700 (channel 3). This operation is at least 16 times faster than reading the data in 64 separate 8-bit memory reads of RHR register (0x000 for channel 0, 0x200 for channel 1, 0x400 for channel 2, and 0x600 for channel 3).



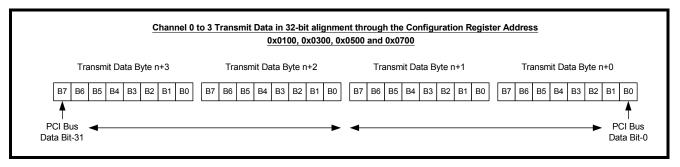

| READ RX FIFO,<br>WITH NO ERRORS | Вуте 3        | Вуте 2        | Вуте 1        | Вуте 0        |
|---------------------------------|---------------|---------------|---------------|---------------|
| Read n+0 to n+3                 | FIFO Data n+3 | FIFO Data n+2 | FIFO Data n+1 | FIFO Data n+0 |
| Read n+4 to n+7                 | FIFO Data n+7 | FIFO Data n+6 | FIFO Data n+5 | FIFO Data n+4 |
| Etc.                            |               |               |               |               |



## 3.1.2 Special Rx FIFO Data Unloading at locations 0x180, 0x380, 0x580, and 0x780

The XR17C154 also provides the same RX FIFO data along with the LSR status information of each byte side-by-side, at locations 0x180 (channel 0), 0x380 (channel 1), 0x580 (channel 2), and 0x780 (channel 3). The entire RX data along with the status can be downloaded in a single PCI Burst Read operation of 32 DWORD reads. The Status and Data bytes must be read in 16 or 32 bits format to maintain data integrity. The following tables show this clearly.

| READ RX FIFO,<br>WITH LSR ERRORS | Вуте 3        | Вуте 2  | Вуте 1        | Вуте 0  |
|----------------------------------|---------------|---------|---------------|---------|
| Read n+0 to n+1                  | FIFO Data n+1 | LSR n+1 | FIFO Data n+0 | LSR n+0 |
| Read n+2 to n+3                  | FIFO Data n+3 | LSR n+3 | FIFO Data n+2 | LSR n+2 |
| Etc                              |               |         |               |         |




#### 3.1.3 Tx FIFO Data Loading at locations 0x100, 0x300, 0x500, 0x700

The TX FIFO data (up to the maximum 64 bytes) can be loaded in a single burst 32-bit write operation (maximum 16 DWORD writes) at memory locations 0x100 (channel 0), 0x300 (channel 1), 0x500 (channel 2), and 0x700 (channel 3).



| WRITE TX FIFO    | Вуте 3        | Вуте 2        | Вуте 1        | Вуте 0        |
|------------------|---------------|---------------|---------------|---------------|
| Write n+0 to n+3 | FIFO Data n+3 | FIFO Data n+2 | FIFO Data n+1 | FIFO Data n+0 |
| Write n+4 to n+7 | FIFO Data n+7 | FIFO Data n+6 | FIFO Data n+5 | FIFO Data n+4 |
| Etc.             |               |               |               |               |



# 3.2 FIFO DATA LOADING AND UNLOADING THROUGH THE UART CHANNEL REGISTERS, THR AND RHR IN 8-BIT FORMAT

The THR and RHR register address for channel 0 to channel 3 is shown in Table 8 below. The THR and RHR for each channel 0 to 3 are located sequentially at address 0x0000, 0x0200, 0x0400 and 0x0600. Transmit data byte is loaded to the THR when writing to that address and receive data is unloaded from the RHR register when reading that address. Both THR and RHR registers are 16C550 compatible in 8-bit format, so each bus operation can only write or read in bytes.

TABLE 8: TRANSMIT AND RECEIVE DATA REGISTER IN BYTE FORMAT, 16C550 COMPATIBLE

|     | THR and RHR Add | ress Locations For CH0 to CH3 (16C550 Compatible)             |
|-----|-----------------|---------------------------------------------------------------|
| CH0 | 0x000 Write THR | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH0 | 0x000 Read RHR  | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH1 | 0x200 Write THR | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH1 | 0x200 Read RHR  | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH2 | 0x400 Write THR | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH2 | 0x400 Read RHR  | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| СНЗ | 0x600 Write THR | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
| CH3 | 0x600 Read RHR  | Bit-7   Bit-6   Bit-5   Bit-4   Bit-3   Bit-2   Bit-1   Bit-0 |
|     |                 | 784THRRHR1                                                    |



#### **4.0 UART**

There are 4 UARTs [channel 3:0] in the 154. Each has its own 64-byte of transmit and receive FIFO, a set of 16550 compatible control and status registers, and a baud rate generator for individual channel data rate setting. Eight additional registers per UART were added for the EXAR enhanced features.

#### 4.1 Programmable Baud Rate Generator

Each UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter and receiver. The prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG further divides this clock by a programmable divisor between 1 and (2<sup>16</sup> -1) to obtain a 16X or 8X sampling clock of the serial data rate. The sampling clock is used by the transmitter for data bit shifting and receiver for data sampling. The BRG divisor (DLL and DLM registers) defaults to a random value upon power up. Therefore, the BRG must be programmed during initialization to the operating data rate.

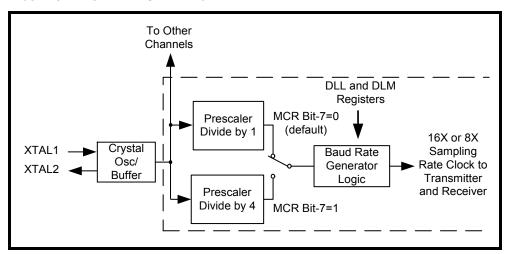



FIGURE 9. BAUD RATE GENERATOR

Programming the Baud Rate Generator Registers DLM and DLL provides the capability for selecting the operating data rate. Table 9 shows the standard data rates available with a 14.7456 MHz crystal or external clock at 16X clock rate. At 8X sampling rate, these data rates would double. When using a non-standard data rate crystal or external clock, the divisor value can be calculated with the following equation(s).

divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16), with 8XMODE [7:0] is 0 divisor (decimal) = (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8XMODE [7:0] is 1