Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China **JULY 2009** ## TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER #### GENERAL DESCRIPTION The XR19L402 (L402) is a highly integrated device that combines a full-featured two channel Universal Asynchronous Receiver and Transmitter (UART) and RS-485 transceivers. The L402 is designed to operate with a single 3.3V or 5V power supply. The L402 is fully compliant with RS-485 Standards. The L402 operates in four different modes: Active, Partial Sleep, Full Sleep and Power-Save. Each mode can be invoked via hardware or software. Upon power-up, the L402 is in the Active mode where the UART and RS-485 transceiver function normally. In the Partial Sleep mode, the internal crystal oscillator of the UART or charge pump of the RS-485 transceiver is turned off. In Full Sleep mode, both the crystal oscillator and the charge pump are turned off. While the UART is in the Sleep mode, the Power-Save mode isolates the core logic from the control signals (chip select, read/write strobes, address and data bus lines) to minimize the power consumption. The RS-485 receivers remain active in any of these four modes. #### **APPLICATIONS** - Battery-Powered Equipment - Handheld and Mobile Devices - Handheld Terminals - Industrial Peripheral Interfaces - Point-of-Sale (POS) Systems #### **FEATURES** - Meets true RS-485 Standards at 3.3V or 5V operation - Up to 8 Mbps data transmission rate - 45us sleep mode exit (charge pump to full power) - ESD protection for RS-485 I/O pins at - +/-15kV Human Body Model - +/- 8kV IEC 61000-4-2, Contact Discharge - +/- 15kV IEC 61000-4-2, Air-Gap Discharge - Software compatible with industry standard 16550 UART - Intel/Motorola bus select - Complete modem interface - Sleep and Power-save modes to conserve battery power - Wake-up interrupt upon exiting low power modes FIGURE 1. BLOCK DIAGRAM FIGURE 2. PIN OUT OF THE DEVICE #### **ORDERING INFORMATION** | PART NUMBER | PACKAGE | OPERATING TEMPERATURE RANGE | DEVICE STATUS | | |--------------|------------|-----------------------------|---------------|--| | XR19L402IL48 | 48-pin QFN | -40°C to +85°C | Active | | # **PIN DESCRIPTIONS** # **Pin Descriptions** | NAME | 48-QFN
PIN# | Түре | DESCRIPTION | |--|---------------------------------|-----------|--| | DATA BUS | SINTERFA | CE (CI | MOS/TTL Voltage Levels) | | A2
A1
A0 | 47
48
1 | I | Address bus lines [2:0]. These 3 address lines select one of the internal registers in the UART during a data bus transaction. | | D7
D6
D5
D4
D3
D2
D1 | 9
8
7
6
5
4
3 | I/O | Data bus lines [7:0] (bidirectional). | | IOR#
(NC) | 16 | I | When I/M# pin is HIGH, the Intel bus interface is selected and this input becomes read strobe (active LOW). The falling edge instigates an internal read cycle and retrieves the data byte from an internal register pointed by the address lines [A2:A0], puts the data byte on the data bus to allow the host processor to read it on the rising edge. When I/M# pin is LOW, the Motorola bus interface is selected and this input is not used. | | IOW#
(R/W#) | 15 | I | When I/M# pin is HIGH, it selects Intel bus interface and this input becomes write strobe (active LOW). The falling edge instigates the internal write cycle and the rising edge transfers the data byte on the data bus to an internal register pointed by the address lines. When I/M# pin is LOW, the Motorola bus interface is selected and this input becomes read (HIGH) and write (LOW) signal. | | CSA#
(CS#) | 10 | I | When I/M# pin is HIGH, this input is chip select A (active low) to enable channel A in the device. When I/M# pin is LOW, this input becomes the chip select (active low) for the Motorola bus interface. | | CSB#
(A3) | 11 | I | When I/M# pin is HIGH, this input is chip select B (active low) to enable channel B in the device. When I/M# pin is LOW, this input becomes address line A3 which is used for channel selection in the Motorola bus interface. Input logic 0 selects channel A and logic 1 selects channel B. | | INTA
(IRQ#) | 46 | O
(OD) | When I/M# pin is HIGH, it selects Intel bus interface and this output become the active HIGH device interrupt output for channel A. This output is enabled through the software setting of MCR[3]: set to the active mode when MCR[3] is set to a logic 1, and set to the three state mode when MCR[3] is set to a logic 0. See MCR[3]. When I/M# pin is LOW, it selects Motorola bus interface and this output becomes the active LOW, open-drain interrupt output for both channels. An external pull-up resistor is required for proper operation. MCR[3] must be set to a logic 0 for proper operation of the interrupt. | | INTB
(NC) | 45 | O
(OD) | When I/M# pin is HIGH, it selects Intel bus interface and this output become the active HIGH device interrupt output for channel B. This output is enabled through the software setting of MCR[3]: set to the active mode when MCR[3] is set to a logic 1, and set to the three state mode when MCR[3] is set to a logic 0. See MCR[3]. When I/M# pin is LOW, it selects Motorola bus interface and this output is not used and can be left unconnected. | # XR19L402 # TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER REV. 1.0.3 # **Pin Descriptions** | NAME | 48-QFN
PIN# | ТҮРЕ | DESCRIPTION | | | | | | |-------------------|----------------|-------|--|--|--|--|--|--| | SERIAL I/O | O INTERFA | CE (R | S-485/RS-485 Voltage Levels) | | | | | | | TXA+
TXA- | 38
36 | 0 | Differential UART Channel A Transmit Data. | | | | | | | RXA+
RXA- | 34
33 | I | ferential UART Channel A Receive Data. | | | | | | | TXB+
TXB- | 23
25 | 0 | Differential UART Channel B Transmit Data. | | | | | | | RXB+
RXB- | 27
28 | I | Differential UART Channel B Receive Data. | | | | | | | | | CE (C | l
MOS/TTL Voltage Levels) | | | | | | | TXB | 17 | 0 | UART Channel B Transmit Data. This pin can be used to communicate with external IR or RS-485 transceiver. | | | | | | | RXB | 43 | I | UART Channel B Receive Data. This pin can be used to communicate with external IR or RS-485 transceiver. | | | | | | | ANCILLAF | RY SIGNAL | S (CM | IOS/TTL Voltage Levels) | | | | | | | HALF/
FULLA# | 41 | I | When HALF/FULLA# is HIGH, half-duplex mode is enabled for channel A. When HALF/FULLA# is LOW, full-duplex mode is enabled for channel A. | | | | | | | HALF/
FULLB# | 40 | I | When HALF/FULLB# is HIGH, half-duplex mode is enabled for channel B. When HALF/FULLB# is LOW, full-duplex mode is enabled for channel B. | | | | | | | TEST_EN | 42 | I | For factory test mode only. For normal operation, connect to GND. | | | | | | | XTAL1 | 13 | I | Crystal or external clock input. | | | | | | | XTAL2 | 14 | 0 | Crystal or buffered clock output. | | | | | | | PwrSave | 12 | I | Power-Save (active high). This feature isolates the L402's data bus interface from the host preventing other bus activities that cause higher power drain during sleep mode. | | | | | | | ACP | 20 | I | Autosleep for Charge Pump (active HIGH). When this pin is HIGH, the charge pump is shut off if the UART is already in sleep mode, i.e. the XTAL2 output is LOW. | | | | | | | I/M# | 18 | I | Intel or Motorola Bus Select. When I/M# pin is HIGH, 16 or Intel Mode, the device will operate in the Intel bus type of interface. When I/M# pin is LOW, 68 or Motorola mode, the device will operate in the Motorola bus type of interface. | | | | | | | RESET
(RESET#) | 19 | I | When I/M# pin is HIGH for Intel bus interface, this input becomes RESET (active high). When I/M# pin is LOW for Motorola bus interface, this input becomes RESET# (active low). A 40 ns minimum active pulse on this pin will reset the internal registers and all outputs of the UART. The UART transmitter output will be
held HIGH, the receiver input will be ignored and outputs are reset during reset period. | | | | | | | C1+
C1- | 31
30 | - | Charge pump capacitors. As shown in Figure 1 , a 0.22 uF capacitor should be placed between these 2 pins. | | | | | | | R_EN | 21 | I | When the supply voltage is < 3.6V, connect R_EN to GND. When the supply voltage is > 3.6V, connect R_EN to VCC. | | | | | | ## **Pin Descriptions** | NAME | 48-QFN
PIN# | Түре | DESCRIPTION | |--------|-------------------|------|--| | RXBSEL | 44 | I | When RXBSEL is HIGH, RXB is the receive data input. | | | | | When RXBSEL is LOW, RXB+ and RXB- are the receive data inputs. | | VCC33 | 22 | Pwr | 3.3V power supply. When VCC33 is used, R_EN pin should be connected to GND. A 0.1 uF capacitor to GND is recommended on this power supply pin. If VCC33 is not used as the power supply pin, VCC33 should be left unconnected. See Figure 3 below. All CMOS/TTL input pins, except XTAL1, are 5V tolerant. | | VCC50 | 39 | Pwr | 5.0V power supply. When VCC50 is used, R_EN pin should be connected to VCC. A 1uF capacitor to GND is recommended on the VCC50 power supply pin. The 1uF capacitor is recommended whether VCC33 or VCC50 is used as the power supply pin. See Figure 3 below. All CMOS/TTL input pins, except XTAL1, are 5V tolerant. | | GND | 24, 37 | Pwr | Power supply common, ground. | | - | PAD | Pwr | The center pad on the backside of the 64-QFN package is metallic and is not electrically connected to anything inside the device. It must be soldered on to the PCB and may be optionally connected to GND on the PCB. The thermal pad size on the PCB should be the approximate size of this center pad and should be solder mask defined. The solder mask opening should be at least 0.0025" inwards from the edge of the PCB thermal pad. | | NC | 26, 29, 32,
35 | - | No Connect. Note that in Motorola mode, the IOR# pin also becomes an NC pin. | **Note:** Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain. For CMOS/TTL Voltage levels, 'LOW' indicates a voltage in the range VIH to VCC. FIGURE 3. RECOMMENDED 3.3V OR 5V POWER SUPPLY CONNECTIONS #### 1.0 PRODUCT DESCRIPTION The XR19L402 consists of a two-channel UART and RS-485 transceivers. It operates from a single +3.3V or 5.5V supply with data rates up to 8Mbps, while meeting all EIA RS-485 specifications. The configuration register set is 16550 UART compatible for control, status and data transfer. Also, the L402 has 64-bytes of transmit and receive FIFOs, automatic Xon/Xoff character software flow control, transmit and receive FIFO trigger levels, and a programmable fractional baud rate generator with a prescaler of divide by 1 or 4. Additionally, the L402 includes the ACP pin which the user can shut down the charge pump for the RS-485 drivers (when operating at 3.3V). In the UART portion, the Power-Save feature isolates the databus interface to further reduce power consumption in the Sleep mode. The L402 is fabricated using an advanced CMOS process. #### **Enhanced Features** The L402 UART provides a solution that supports 64 bytes of transmit and receive FIFO. Increased performance is realized in the L402 by the transmit and receive FIFOs, FIFO trigger level controls and automatic flow control mechanism. This allows the external processor to handle more networking tasks within a given time. This increases the service interval giving the external CPU additional time for other applications and reducing the overall UART interrupt servicing time. In addition, the L402 provides the ACP and Power-Save modes that drastically reduces the power consumption when the device is not used. The combination of the above greatly reduces the CPU's bandwidth requirement, increases performance, and reduces power consumption. #### Intel or Motorola Data Bus Interface The L402 provides a host interface that supports Intel or Motorola microprocessor (CPU) data bus interface. The Intel bus compatible interface allows direct interconnect to Intel compatible type of CPUs using IOR#, IOW# and CS# inputs for data bus operation. The Motorola bus compatible interface instead uses the R/W# and CS# signals for data bus transactions. See pin description section for details on all the control signals. The Intel and Motorola bus interface selection is made through the pin, I/M#. #### **Data Rate** The L402 is capable of operation up to 8 Mbps data rate. The device can operate either with a crystal on pins XTAL1 and XTAL2, or external clock source on XTAL1 pin. #### **Internal Enhanced Register Sets** The L402 UART has a set of enhanced registers providing control and monitoring functions. Interrupt enable/ disable and status, FIFO enable/disable, selectable TX and RX FIFO trigger levels, automatic hardware/ software flow control enable/disable, programmable baud rates, modem interface controls and status, sleep mode and infrared mode are all standard features. #### **RS-485 Interface** The L402 includes RS-485 drivers/receivers for the interface. This feature eliminates the need for an external RS-485 transceiver. The RS-485 transceiver can be selected to operate in either the half-duplex or full-duplex mode via the HALF/FULL# pins. The RS-485 drivers guarantee a data rate of up to 8 Mbps. All RS-485 drivers and receivers are protected to ±15kV using the Human Body Model ground combination, ±8kV using IEC 61000-4-2 Contact Discharge, and ±15kV using IEC 61000-4-2 Air-Gap Discharge. For more information, send an e-mail to uarttechsupport@exar.com. #### 2.0 FUNCTIONAL DESCRIPTIONS #### 2.1 CPU Interface The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and write transactions. The L402 data interface supports the Intel compatible types of CPUs and it is compatible to the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus transaction. Each bus cycle is asynchronous using CS#, IOR# and IOW# or R/W# inputs. A typical data bus interconnection for Intel and Motorola mode is shown in Figure 4. FIGURE 4. XR19L402 TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS #### 2.2 5-Volt Tolerant Inputs The CMOS/TTL level inputs of the L402 can accept up to 5V inputs when operating at 3.3V. Note that the XTAL1 pin is not 5V tolerant when an external clock supply is used. #### Device Hardware Reset The RESET or RESET# input resets the internal registers and the serial interface outputs in both channels to their default state (see Table 16). An active pulse of longer than 40 ns duration will be required to activate the reset function in the device. #### 2.4 Device Identification and Revision The XR19L402 provides a Device Identification code and a Device Revision code to distinguish the part from other devices and revisions. To read the identification code from the part, it is required to set the baud rate generator registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x0A and reading the content of DLL will provide the revision of the part; for example, a reading of 0x01 means revision A. #### 2.5 Channel A and B Selection The XR19L402 provides the user with the capability to bi-directionally transfer information between an external CPU and an external serial communication device. During Intel Bus Mode (I/M# pin connected to VCC), a LOW on chip select pins, CSA# or CSB#, allows the user to select UART channel A or B to configure, send transmit data and/or unload receive data to/from the UART. Selecting both UARTs can be useful during power up initialization to write to the same internal registers, but do not attempt to read from both UARTs simultaneously. Individual channel select functions are shown in Table 1. TABLE 1: CHANNEL A AND B SELECT IN 16 MODE | CSA# | CSB# | Function | | | | |------|------|--------------------------|--|--|--| | 1 | 1 | UART de-selected | | | | | 0 | 1 | Channel A selected | | | | | 1 | 0 | Channel B selected | | | | | 0 | 0 | Channel A and B selected | | | | During Motorola Bus Mode (I/M# pin connected to GND), the package interface pins are configured for connection with Motorola and other popular microprocessor bus types. In this mode the XR19L402 decodes an additional address, A3, to select one of the UART ports. The A3 address decode function is used only when in the Motorola Bus Mode. See Table 2. TABLE 2: CHANNEL A AND B SELECT IN 68 MODE | CS# | А3 | Function | | | | | |-----|-----|--------------------|--|--|--|--| | 1 | N/A | UART de-selected | | | | | | 0 | 0 | Channel A selected | | | | | | 0 | 1 | Channel B selected | | | | | #### 2.6 Channel A and B Internal Registers Each UART channel in the L402 has a set of enhanced registers for control, monitoring and data loading and unloading. The configuration register set is compatible to those already available in the standard single 16C550. These registers function as data holding registers (THR/RHR), interrupt status and control registers (ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/LCR), modem status and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/DLM), and an user accessible Scratchpad register (SPR). Beyond the general 16C550 features and capabilities, the L402 offers enhanced feature registers, namely, EFR, Xon/Xoff 1, Xon/Xoff 2, FCTR, TRG, EMSR and FC that provide Xon/Xoff software flow control, FIFO trigger level control and FIFO level counters. All the register functions are discussed in full detail later in
"Section 3.0, UART Internal Registers" on page 22. ## 2.7 INT (IRQ#) Output The interrupt output changes according to the operating mode and enhanced features setup. Table 3 and Table 4 below summarize the operating behavior for the transmitter and receiver in the Intel and Motorola modes. Also see Figures 19 through 22. TABLE 3: INT (IRQ#) PIN OPERATION FOR TRANSMITTER | | FCR Bit-0 = 0 (FIFO DISABLED) | FCR Bit-0 = 1 (FIFO ENABLED) | |------------|-------------------------------|--| | INT Pin | 0 = one byte in THR | 0 = FIFO above trigger level | | (I/M# = 1) | 1 = THR empty | 1 = FIFO below trigger level or FIFO empty | | IRQ# Pin | 1 = one byte in THR | 1 = FIFO above trigger level | | (I/M# = 0) | 0 = THR empty | 0 = FIFO below trigger level or FIFO empty | TABLE 4: INT (IRQ#) PIN OPERATION FOR RECEIVER | | FCR BIT-0 = 0
(FIFO DISABLED) | FCR Bit-0 = 1
(FIFO ENABLED) | |------------|----------------------------------|---------------------------------| | INT Pin | 0 = no data | 0 = FIFO below trigger level | | (I/M# = 1) | 1 = 1 byte | 1 = FIFO above trigger level | | IRQ# Pin | 1 = no data | 1 = FIFO below trigger level | | (I/M# = 0) | 0 = 1 byte | 0 = FIFO above trigger level | ## 2.8 Crystal or External Clock Input The L402 includes an on-chip oscillator (XTAL1 and XTAL2) to generate a clock when a crystal is connected between the XTAL1 and XTAL2 pins of the device. Alternatively, an external clock can be supplied through the XTAL1 pin. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the oscillator or external clock input and XTAL2 pin is the bufferred output which can be used as a clock signal for other devices in the system. Please note that the input XTAL1 is not 5V tolerant and therefore, the maximum voltage at the pin should be 3.3V when an external clock is supplied. For programming details, see "Programmable Baud Rate Generator." FIGURE 5. TYPICAL CRYSTAL CONNECTIONS The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant, fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency tolerance) connected externally between the XTAL1 and XTAL2 pins. When VCC = 5V, the on-chip oscillator can operate with a crystal whose frequency is not greater than 24 MHz. On the other hand, the L402 can accept an external clock of up to 64 MHz at XTAL1 pin which results in a maximum data rate of 8 Mbps. For further reading on the oscillator circuit please see DAN108 on EXAR's web site at http://www.exar.com. #### 2.9 Programmable Baud Rate Generator with Fractional Divisor Each UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter and receiver. The prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG further divides this clock by a programmable divisor between 1 and (2¹⁶ - 0.0625) in increments of 0.0625 (1/16) to obtain a 16X or 8X sampling clock of the serial data rate. The sampling clock is used by the transmitter for data bit shifting and receiver for data sampling. The BRG divisor (DLL, DLM and DLD registers) defaults to the value of '1' (DLL = 0x01, DLM = 0x00 and DLD = 0x00) upon reset. Therefore, the BRG must be programmed during initialization to the operating data rate. The DLL and DLM registers provide the integer part of the divisor and the DLD register provides the fractional part of the dvisior. Only the four lower bits of the DLD are implemented and they are used to select a value from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming the Baud Rate Generator Registers DLL, DLM and DLD provides the capability for selecting the operating data rate. Table 5 shows the standard data rates available with a 24MHz crystal or external clock at 16X clock rate. If the pre-scaler is used (MCR bit-7 = 1), the output data rate will be 4 times less than that shown in Table 5. At 8X sampling rate, these data rates would double. Also, when using 8X sampling mode, please note that the bittime will have a jitter (+/- 1/16) whenever the DLD is non-zero and is an odd number. When using a nonstandard data rate crystal or external clock, the divisor value can be calculated with the following equation(s): Required Divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16), with 16X mode EMSR[7] = 1 Required Divisor (decimal) = (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8X mode EMSR[7] = 0 ## TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER The closest divisor that is obtainable in the L402 can be calculated using the following formula: ROUND((Required Divisor - TRUNC(Required Divisor))*16)/16 + TRUNC(Required Divisor), where DLM = TRUNC(Required Divisor) >> 8 DLL = TRUNC(Required Divisor) & 0xFF DLD = ROUND((Required Divisor-TRUNC(Required Divisor))*16) In the formulas above, please note that: TRUNC (N) = Integer Part of N. For example, TRUNC (5.6) = 5. ROUND (N) = N rounded towards the closest integer. For example, ROUND (7.3) = 7 and ROUND (9.9) = 10. A >> B indicates right shifting the value 'A' by 'B' number of bits. For example, 0x78A3 >> 8 = 0x0078. #### FIGURE 6. BAUD RATE GENERATOR TABLE 5: TYPICAL DATA RATES WITH A 24 MHz CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING | Required
Output Data
Rate | Divisor for 16x
Clock
(Decimal) | DIVISOR
OBTAINABLE IN
L402 | DLM PROGRAM
VALUE (HEX) | DLL PROGRAM
VALUE (HEX) | DLD PROGRAM
VALUE (HEX) | DATA ERROR
RATE (%) | |---------------------------------|---------------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|------------------------| | 400 | 3750 | 3750 | E | A6 | 0 | 0 | | 2400 | 625 | 625 | 2 | 71 | 0 | 0 | | 4800 | 312.5 | 312 8/16 | 1 | 38 | 8 | 0 | | 9600 | 156.25 | 156 4/16 | 0 | 9C | 4 | 0 | | 10000 | 150 | 150 | 0 | 96 | 0 | 0 | | 19200 | 78.125 | 78 2/16 | 0 | 4E | 2 | 0 | | 25000 | 60 | 60 | 0 | 3C | 0 | 0 | | 28800 | 52.0833 | 52 1/16 | 0 | 34 | 1 | 0.04 | | 38400 | 39.0625 | 39 1/16 | 0 | 27 | 1 | 0 | | 50000 | 30 | 30 | 0 | 1E | 0 | 0 | | 57600 | 26.0417 | 26 1/16 | 0 | 1A | 1 | 0.08 | | 75000 | 20 | 20 | 0 | 14 | 0 | 0 | | 100000 | 15 | 15 | 0 | F | 0 | 0 | | 115200 | 13.0208 | 13 | 0 | D | 0 | 0.16 | | 153600 | 9.7656 | 9 12/16 | 0 | 9 | С | 0.16 | | 200000 | 7.5 | 7 8/16 | 0 | 7 | 8 | 0 | | 225000 | 6.6667 | 6 11/16 | 0 | 6 | В | 0.31 | | 230400 | 6.5104 | 6 8/16 | 0 | 6 | 8 | 0.16 | | 250000 | 6 | 6 | 0 | 6 | 0 | 0 | | 300000 | 5 | 5 | 0 | 5 | 0 | 0 | | 400000 | 3.75 | 3 12/16 | 0 | 3 | С | 0 | | 460800 | 3.2552 | 3 4/16 | 0 | 3 | 4 | 0.16 | | 500000 | 3 | 3 | 0 | 3 | 0 | 0 | | 750000 | 2 | 2 | 0 | 2 | 0 | 0 | | 921600 | 1.6276 | 1 10/16 | 0 | 1 | Α | 0.16 | | 1000000 | 1.5 | 1 8/16 | 0 | 1 | 8 | 0 | FIGURE 7. XR19L402 TRANSMITTER AND RECEIVER #### 2.10 Transmitter The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 64 bytes of FIFO which includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X/8X internal clock. A bit time is 16 (8) clock periods (see EMSR bit-7). The transmitter sends the start-bit followed by the number of data bits, inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in the Line Status Register (LSR bit-5 and bit-6). ## 2.10.1 Transmit Holding Register (THR) - Write Only The transmit holding register is an 8-bit register providing a data interface to the host processor. The host writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits, parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input register to the transmit FIFO of 64 bytes when FIFO operation is enabled by FCR bit-0. Every time a write operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data location. ## 2.10.2 Transmitter Operation in non-FIFO Mode The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty. FIGURE 8. TRANSMITTER OPERATION IN NON-FIFO MODE #### 2.10.3 **Transmitter Operation in FIFO Mode** The host may fill the transmit FIFO with up to 64 bytes of transmit data. The THR empty flag (LSR bit-5) is set whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by IER bit-1. The Transmitter Empty Flag (LSR bit-6) is set when both the TSR and the FIFO become empty. FIGURE 9. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE #### 2.11 Receiver The receiver section contains an 8-bit Receive Shift Register (RSR) and 64 bytes of FIFO which includes a byte-wide Receive Holding Register (RHR). The RSR uses the 16X/8X clock (EMSR bit-7) for timing. It verifies and validates every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit, an internal receiver counter starts counting at the 16X/8X clock rate. After 8 clocks (or 4 if 8X) the start bit period should be at the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating the start bit in this manner prevents the receiver from assembling a false character.
The rest of the data bits and stop bits are sampled and validated in this same manner to prevent false framing. If there were any error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay until it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a receive data ready time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus 12 bits time. This is equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0. #### 2.11.1 Receive Holding Register (RHR) - Read-Only The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift Register. It provides the receive data interface to the host processor. The RHR register is part of the receive FIFO of 64 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data byte are immediately updated in the LSR bits 2-4. #### 2.11.2 Selectable Input to RX of Channel B There is an input (RXBSEL) that selects whether the signal going to the RXB input of the UART will be the signal from the RS-485 transceiver or not. If RXBSEL is LOW, then the signal to the RXB input is the RXB+ and RXB- signals from the RS-485 transceiver. When RXB+ and RXB- are used, the RXB input should be left floating. The signal received at the UART can be probed at the RXB pin. If RXBSEL is HIGH, then the RXB+ and RXB- pins are tri-stated and RXB can be used with an external Infrared transceiver or RS-232 transceiver. If RXB is selected but is unused, RXB should be connected to VCC. See Figure 7 for a detailed drawing. FIGURE 10. RECEIVER OPERATION IN NON-FIFO MODE #### 2.12 Auto Xon/Xoff (Software) Flow Control When software flow control is enabled (See Table 15), the L402 compares one or two sequential receive data characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the programmed values, the L402 will halt transmission (TX) as soon as the current character has completed transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output pin will be activated. Following a suspension due to a match of the Xoff character, the L402 will monitor the receive data stream for a match to the Xon-1,2 character. If a match is found, the L402 will resume operation and clear the flags (ISR bit-4). Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/Xoff characters (See Table 15) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are selected, the L402 compares two consecutive receive characters with two software flow control 8-bit values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO. In the event that the receive buffer is overfilling and flow control needs to be executed, the L402 automatically sends an Xoff message (when enabled) via the serial TX output to the remote modem. The L402 sends the Xoff-1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate) after the receive FIFO crosses the programmed trigger level (for all trigger tables A-D). To clear this condition, the L402 will transmit the programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level below the programmed trigger level (for Trigger Tables A, B, and C) or when receive FIFO is less than the ## XR19L402 ## TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER REV. 1.0.3 trigger level minus the hysteresis value (for Trigger Table D). These hysteresis values are shown in Table 13. Table 6 below explains this when Trigger Table-B (See Table 14) is selected. TABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL | RX TRIGGER LEVEL | INT PIN ACTIVATION | XOFF CHARACTER(S) SENT
(CHARACTERS IN RX FIFO) | XON CHARACTER(S) SENT
(CHARACTERS IN RX FIFO) | |------------------|--------------------|---|--| | 8 | 8 | 8* | 0 | | 16 | 16 | 16* | 8 | | 24 | 24 | 24* | 16 | | 28 | 28 | 28* | 24 | ^{*} After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2 characters); for example, after 2.083ms has elapsed for 9600 baud and 8-bit word length, no parity and 1 stop bit setting. #### TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER #### 2.13 Sleep Mode, ACP Mode and Power-Save Feature with Wake-Up Interrupt #### 2.13.1 UART sleep mode (3.3V or 5V operation) The UART portion in the L402 can enter sleep mode if all of these conditions are satisfied: - no interrupts pending (ISR bit-0 = 1) - the 16-bit divisor programmed in DLM and DLL registers is a non-zero value - sleep mode is enabled (IER bit-4 = 1) - modem inputs are not toggling (MSR bits 0-3 = 0) - RX input pins are idle The L402 stops its crystal oscillator to conserve power in this mode. The user can check the XTAL2 pin for no clock output as an indication that the device has entered the partial sleep mode. The UART portion in the L402resumes normal operation or active mode by any of the following: - a receive data start bit transition on the RX inputs - a data byte is loaded to the transmitter, THR or FIFO - a change of logic state on any of the modem or general purpose serial inputs: i.e., any of the MSR bits 0-3 shows a '1' (in internal loopback mode) If the sleep mode is enabled and the L402 is awakened by one of the conditions described above, an interrupt is issued by the L402 to signal to the CPU that it is awake. The lower nibble of the interrupt source register (ISR) will read a value of 0x1 for this interrupt and reading the ISR clears this interrupt. Since the same value (0x1) is also used to indicate no pending interrupt, users should exercise caution while using the sleep mode. The UART portion in the L402 will return to the sleep mode automatically after all interrupting conditions have been serviced and cleared. If the UART portion of the L402 is awakened by the modem inputs, a read to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an interrupt is pending. The UART portion of the L402 will stay in the sleep mode of operation until it is disabled by setting IER bit-4 to a logic 0. #### 2.13.1.1 Receiving data in UART sleep mode There is a start-up delay for the crystal oscillator after waking up from sleep mode, therefore the first few receive characters may be lost. The number of characters lost during the restart also depends on your operating data rate. More characters are lost when operating at higher data rate. If an external oscillator is used, any data received will be transferred to/from the UART without any issues. ## UART active, Charge pump of RS-485 transceiver shut down (3.3V operation only) If the ACP pin is HIGH and the UART portion of the L402 is not in sleep mode, then the charge pump will automatically shut down to conserve power if the following conditions are true: - no activity on the TX output signals - modem inputs have been idle for approximately 30 seconds When these conditions are satisfied, the L402 shuts down the charge pump and tri-states the RS-485 drivers to conserve power. In this mode, the RS-485 receivers are fully active and the internal registers of the L402 can be accessed. The time for the charge pump to resume normal operation after exiting the sleep mode is typically 45µs. It will wake up by any of the following: - a receive data start bit transition on the RX input (LOW to HIGH) - a data byte is loaded to the transmitter, THR or FIFO - a LOW to HIGH transition on any of the modem or general purpose serial inputs Because the receivers are fully active when the charge pump is turned off, any data received will be transferred to/from the UART without any issues. #### 2.13.2.1 Transmitting data in ACP Mode ## XR19L402 # EXAR Powering Connectivity # TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER REV. 1.0.3 Since it takes the charge pump typically $45\mu s$ to resume normal operation after ACP mode has been disabled. It is recommended that data not be transmitted until after this time. #### TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER #### UART sleep, Charge pump of RS-485 transceiver shut down (3.3V operation only) 2.13.3 If the ACP pin is HIGH and the UART portion of the L402 is in sleep mode, then the charge pump will shut down immediately. In this mode, the L402 shuts down the charge pump and tri-states the RS-485 drivers to conserve power. In this mode, the RS-485 receivers are fully active and the internal registers of the L402 can be accessed. The time for the charge pump to resume normal operation after exiting the sleep mode is typically 45µs. It will wake up by any of the following: - a receive data start bit transition on the RX input (LOW to HIGH) - a data byte is loaded to the transmitter, THR or FIFO - a LOW to HIGH transition on any of the modem or general purpose serial inputs #### Receiving data in UART sleep mode 2.13.3.1 There is a start-up delay for the crystal oscillator after waking up from sleep mode, therefore the first few receive characters may be lost. The number
of characters lost during the restart also depends on your operating data rate. More characters are lost when operating at higher data rate. If an external oscillator is used, any data received will be transferred to/from the UART without any issues. #### 2.13.3.2 Transmitting data in ACP mode Since it takes the charge pump typically 45µs to resume normal operation after ACP mode has been disabled. It is recommended that data not be transmitted until after this time. #### 2.13.4 Power-Save Feature This mode is in addition to the sleep mode and in this mode, the core logic of the L402 is isolated from the CPU interface. If the address lines, data bus lines, IOW#, IOR# and CS# remain steady when the L402 is in full sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical Characteristics on page 40. However, if the input lines are floating or are toggling while the L402 is in sleep mode, the current can be up to 100 times more. If not using the Power-Save feature, an external buffer would be required to keep the address and data bus lines from toggling or floating to achieve the low current. But if the Power-Save feature is enabled (PwrSave pin connected to VCC), this will eliminate the need for an external buffer by internally isolating the address, data and control signals from other bus activities that could cause wasteful power drain (see Figure 1). The L402 enters Power-Save mode when this pin is connected to VCC, and the UART portion of the L402 is already in sleep mode. Since Power-Save mode isolates the address, data and control signals, the device will wake-up only by: - a receive data start bit transition, or - a change of logic state on any of the modem or general purpose serial inputs: i.e., any of the MSR bits 0-3 shows a '1' The L402 will return to the Power-Save mode automatically after a read to the MSR (to reset the modem inputs) and all interrupting conditions have been serviced and cleared. The L402 will stay in the Power-Save mode of operation until it is disabled by setting IER bit-4 to a logic 0 and/or the Power-Save pin is connected to GND. If the L402 is awakened by any one of the above conditions, it issues an interrupt as soon as the oscillator circuit is up and running and the device is ready to transmit/receive. This interrupt has the same encoding (bit-0 of ISR register = 1) as "no interrupt pending" and will clear when the ISR register is read. This will show up in the ISR register only if no other interrupts are enabled. ## 2.14 Infrared Mode (UART Channel B Only) The L402 includes an infrared encoder and decoder compatible to the IrDA (Infrared Data Association) version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-pulse for each "0" bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED, hence reduces the power consumption. See Figure 11 below. The infrared encoder and decoder are enabled by setting MCR register bit-6 to a '1'. When the infrared feature is enabled, the transmit data output, TXB, idles at logic zero level. Likewise, the RX input assumes an idle level of logic zero from a reset and power up, see Figure 11. Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RXB pin. Each time it senses a light pulse, it returns a HIGH to the data bit stream. However, this is not true with some infrared modules on the market which indicate a LOW by a light pulse. So the L402 has a provision to invert the input polarity to accommodate this. In this case user can enable FCTR bit-2 to invert the input signal. The Infrared Mode can only be used with channel B of the L402 using the TXB output and the RXB input pins. FIGURE 11. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING ## 2.15 Internal Loopback The L402 UART provides an internal loopback capability for system diagnostic purposes. The internal loopback mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally. Figure 12 shows how the modem port signals are re-configured. Transmit data from the transmit shift register output is internally routed to the receive shift register input allowing the system to receive the same data that it was sending. FIGURE 12. INTERNAL LOOP BACK ## 3.0 UART INTERNAL REGISTERS The L402 has a set of configuration registers selected by address lines A0, A1 and A2 with CS# asserted. The complete register set is shown on Table 7 and Table 8. **TABLE 7: UART INTERNAL REGISTERS** | Addresses
A2 A1 A0 | REGISTER | READ/WRITE | COMMENTS | |-----------------------|--|-------------------------|---------------------------------------| | | 16C550 COMPATIBLE REGISTE | ERS | | | 0 0 0 | RHR - Receive Holding Register THR - Transmit Holding Register | Read-only
Write-only | LCR[7] = 0 | | 0 0 0 | DLL - Divisor LSB | Read/Write | LCR[7] = 1, LCR ≠ 0xBF | | 0 0 1 | DLM - Divisor MSB | Read/Write | LON[/] - I, LON + UXBI | | 0 1 0 | DLD - Divisor Fractional | Read/Write | LCR[7] = 1, LCR ≠ 0xBF,
EFR[4] = 1 | | 0 0 0 | DREV - Device Revision Code | Read-only | DLL, DLM = 0x00, | | 0 0 1 | DVID - Device Identification Code | Read-only | LCR[7] = 1, LCR ≠ 0xBF | | 0 0 1 | IER - Interrupt Enable Register | Read/Write | LCR[7] = 0 | | 0 1 0 | ISR - Interrupt Status Register Read-only FCR - FIFO Control Register Write-only | | LCR ≠ 0xBF | | 0 1 1 | LCR - Line Control Register | Read/Write | | | 1 0 0 | MCR - Modem Control Register | Read/Write | | | 1 0 1 | LSR - Line Status Register | Read-only | LCR ≠ 0xBF | | 1 1 0 | MSR - Modem Status Register | Read-only | | | 1 1 1 | SPR - Scratch Pad Register | Read/Write | $LCR \neq 0xBF, FCTR[6] = 0$ | | 1 1 1 | FLVL - RX/TX FIFO Level Counter Register | Read-only | LCR ≠ 0xBF, FCTR[6] = 1 | | 1 1 1 | EMSR - Enhanced Mode Select Register | Write-only | LOIN # UNDI, I OTINIO] - I | | | ENHANCED REGISTERS | | | | 0 0 0 | TRG - RX/TX FIFO Trigger Level Register FC - RX/TX FIFO Level Counter Register | Write-only
Read-only | | | 0 0 1 | FCTR - Feature Control Register | Read/Write | | | 0 1 0 | EFR - Enhanced Function Register | Read/Write | 100 25- | | 1 0 0 | Xon-1 - Xon Character 1 | Read/Write | LCR = 0xBF | | 1 0 1 | Xon-2 - Xon Character 2 | Read/Write | | | 1 1 0 | Xoff-1 - Xoff Character 1 | Read/Write | | | 1 1 1 | Xoff-2 - Xoff Character 2 | Read/Write | | TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1 | ADDRESS
A2-A0 | REG
NAME | READ/
WRITE | Віт-7 | Віт-6 | Віт-5 | Віт-4 | Віт-3 | Віт-2 | Віт-1 | Віт-0 | COMMENT | |------------------|-------------|----------------|--------------------------------------|---|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|------------------------------|------------------------------|-------------------------| | | | | • | 16C | 550 Comp | atible Reg | gisters | • | | • | | | 000 | RHR | RD | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 000 | THR | WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 001 | IER | RD/WR | 0/
Rsrvd | 0/
Rsrvd | 0/
Xoff Int.
Enable | 0/
Sleep
Mode
Enable | Modem
Stat. Int.
Enable | RXLine
Stat.
Int.
Enable | TX
Empty
Int
Enable | RX
Data
Int.
Enable | LCR[7]=0 | | 010 | ISR | RD | FIFOs
Enabled | FIFOs
Enabled | 0/
INT
Source
Bit-5 | 0/
INT
Source
Bit-4 | INT
Source
Bit-3 | INT
Source
Bit-2 | INT
Source
Bit-1 | INT
Source
Bit-0 | LCR ≠ 0xBF | | 010 | FCR | WR | RXFIFO
Trigger | RXFIFO
Trigger | 0/
TXFIFO
Trigger | 0/
TXFIFO
Trigger | DMA
Mode
Enable | TX
FIFO
Reset | RX
FIFO
Reset | FIFOs
Enable | EGIT F GABI | | 011 | LCR | RD/WR | Divisor
Enable | Set TX
Break | Set Par-
ity | Even
Parity | Parity
Enable | Stop
Bits | Word
Length
Bit-1 | Word
Length
Bit-0 | | | 100 | MCR | RD/WR | 0/
BRG
Pres-
caler | 0/
IR Mode
(Ch B
Only) | 0/
XonAny | Internal
Lopback
Enable | OP2#/INT
Output
Enable | Rsrvd
(OP1#) | RTS#
Output
Control | DTR#
Output
Control | | | 101 | LSR | RD | RX FIFO
Global
Error | THR &
TSR
Empty | THR
Empty | RX
Break | RX Fram-
ing Error | RX
Parity
Error | RX
Over-
run
Error | RX
Data
Ready | LCR ≠ 0xBF | | 110 | MSR | RD | CD#
Input | RI#
Input | DSR#
Input | CTS#
Input | Delta
CD# | Delta
RI# | Delta
DSR# | Delta
CTS# | | | 111 | SPR | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | LCR ≠ 0xBF
FCTR[6]=0 | | 111 | EMSR | WR | 16X
Sam-
pling
Rate
Mode | LSR
Error
Inter-
rupt.
Imd/Dly# | Auto
RTS
Hyst.
bit-3 | Auto
RTS
Hyst.
bit-2 | Rsrvd | Rsrvd | Rx/Tx
FIFO
Count | Rx/Tx
FIFO
Count | LCR ≠ 0xBF
FCTR[6]=1 | | 111 | FLVL | RD | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1 | Address
A2-A0 | REG
NAME | READ/
WRITE | Віт-7 | Віт-6 | Віт-5 | Віт-4 | Віт-3 | Віт-2 | Віт-1 | Віт-0 | COMMENT | |-----------------------------|-------------|----------------|---------------|---------------|------------------------|---|--|--|--|--|---| | Baud Rate Generator Divisor | | | | | | | | | | | | | 000 | DLL | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3
 Bit-2 | Bit-1 | Bit-0 | LCR[7]=1
-LCR ≠ 0xBF | | 0 0 1 | DLM | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 0 1 0 | DLD | RD/WR | 0 | 0 | 0 | 0 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | LCR[7]=1
LCR ≠ 0xBF
EFR[4] = 1 | | 0 0 0 | DREV | RD | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | LCR[7]=1
-LCR≠0xBF
DLL=0x00
DLM=0x00 | | 0 0 1 | DVID | RD | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | | Enhanced Registers | | | | | | | | | | | | | 0 0 0 | TRG | WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 0 0 0 | FC | RD | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 001 | FCTR | RD/WR | RX/TX
Mode | SCPAD
Swap | Trig
Table
Bit-1 | Trig
Table
Bit-0 | Auto Half-
Duplex
Direction
Control | RX IR
Input
Inv.
(Ch B
Only) | Auto
RTS
Hyst
Bit-1 | Auto
RTS
Hyst
Bit-0 | | | 010 | EFR | RD/WR | Rsrvd | Rsrvd | Rsrvd | Enable
IER [7:4],
ISR [5:4],
FCR[5:4],
MCR[7:5],
DLD | Soft-
ware
Flow
Cntl
Bit-3 | Soft-
ware
Flow
Cntl
Bit-2 | Soft-
ware
Flow
Cntl
Bit-1 | Soft-
ware
Flow
Cntl
Bit-0 | LCR=0xBF | | 100 | XON1 | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 1 0 1 | XON2 | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 110 | XOFF1 | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | | 111 | XOFF2 | RD/WR | Bit-7 | Bit-6 | Bit-5 | Bit-4 | Bit-3 | Bit-2 | Bit-1 | Bit-0 | | ## 4.0 INTERNAL REGISTERS DESCRIPTION ## 4.1 Receive Holding Register (RHR) - Read- Only **SEE"RECEIVER" ON PAGE 14.** ## 4.2 Transmit Holding Register (THR) - Write-Only **SEE"TRANSMITTER" ON PAGE 13.** ## 4.3 Interrupt Enable Register (IER) - Read/Write The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR). #### TWO CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER #### 4.3.1 **IER versus Receive FIFO Interrupt Mode Operation** When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts (see ISR bits 2 and 3) status will reflect the following: - A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed trigger level. It will be cleared when the FIFO drops below the programmed trigger level. - B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register status bit and the interrupt will be cleared when the FIFO drops below the trigger level. - C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receive FIFO. It is reset when the FIFO is empty. #### 4.3.2 IER versus Receive/Transmit FIFO Polled Mode Operation When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR19L402 in the FIFO polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can be used in the polled mode by selecting respective transmit or receive control bit(s). - A. LSR BIT-0 indicates there is data in RHR or RX FIFO. - B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid. - **C.** LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any. - **D.** LSR BIT-5 indicates THR is empty. - **E.** LSR BIT-6 indicates when both the transmit FIFO and TSR are empty. - F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO. ## IER[0]: RHR Interrupt Enable The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when the receive FIFO has reached the programmed trigger level in the FIFO mode. - Logic 0 = Disable the receive data ready interrupt (default). - Logic 1 = Enable the receiver data ready interrupt. #### IER[1]: THR Interrupt Enable This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is empty when this bit is enabled, an interrupt will be generated. - Logic 0 = Disable Transmit Ready interrupt (default). - Logic 1 = Enable Transmit Ready interrupt. ## IER[2]: Receive Line Status Interrupt Enable If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the character has been received. LSR bits 2-4 generate an interrupt when the character with errors is read out of the FIFO (default). Instead, LSR bits 2-4 can be programmed to generate an interrupt immediately, by setting EMSR bit-6 to a logic 1. - Logic 0 = Disable the receiver line status interrupt (default). - Logic 1 = Enable the receiver line status interrupt. #### IER[3]: Modem Status Interrupt Enable - Logic 0 = Disable the modem status register interrupt (default). - Logic 1 = Enable the modem status register interrupt.