imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.0 INTRODUCTION

This user's manual is for the XR21V1410 evaluation board. It will describe the hardware setup required to operate the part.

2.0 OVERVIEW

The XR21V1410 evaluation board has one 16-QFN package on it. **Figure 1** shows a top view of XR21V1410 evaluation board layout.

FIGURE 1. TOP VIEW OF XR21V1410 EVALUATION BOARD LAYOUT

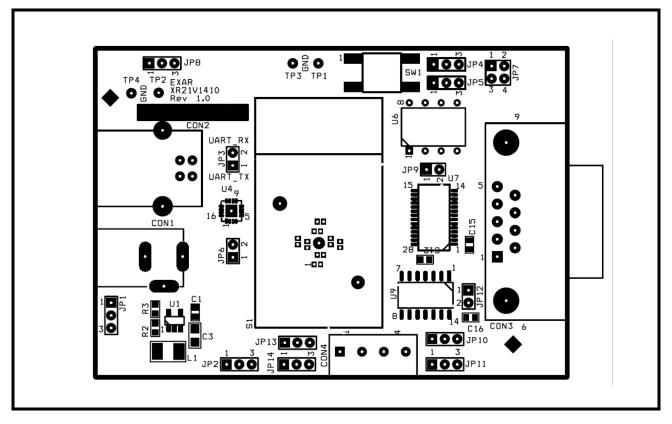
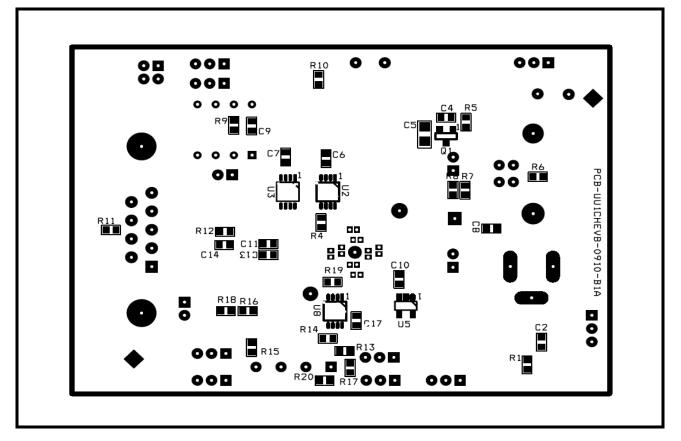



Figure 2 shows a bottom view of XR21V1410 evaluation board layout.

2.1 Evaluation Board Components

On the XR21V1410 evaluation board, some componets are required to install. Some are optional and some are not installed. Table 1 shows the components:

Unit	LOCATION	PART	FUNCTION
U1	Тор	SP6669AEK-L/TRR3	Exar's Voltage converter to step down voltage from 5V to 3.3V.
U2 U3	Bottom	SN74LVC2G53DCTR	Multiplexer to switch between RS-232 and RS-485 mode.
U4	Тор	XR21V1410IL16-F	Exar's USB 1 channel UART.
U5	Bottom	NC7SZ14M5X	Invert LowPower (suspend) signal.
U6	Тор	AT24C02B	I2C EEPROM.
U7	Тор	SP3245EEY-L	Exar's RS-232 transceiver.
U8	Bottom	SN74LVC2G66DCT	Analog switch.
U9	Тор	SP3497EEN-L	Exar's RS-485 transceiver.
CON1	Тор	PJ-002A	External power input.

TABLE 1.	COMPONENTS OF	THE XR21V1410	EVALUATION BOARD
IADLE I. V			LVALUATION DUARD

TABLE 1: COMPONENTS OF THE XR21V1410 EVALUATION BOARD

Unit	LOCATION	Part	FUNCTION
CON2	Тор	690-004-621-023	USB B-Type connector. Communication with USB host (USBD+, USBD-) and power source for evaluation board (V_{Bus}).
CON3	Тор	182-009-113R161	RS-232 mode DB9 male connector.
CON4	Тор	ED555/4DS	RS-485 mode 4X1 terminal block.

Notes:1) An external pull-up is required on the LOWPOWER pin for proper functionality. The external pull-up is not shown in the evaluation board schematics, but has been added on the evaluation board. 2) An external pull-up is required on any GPIO pins that is used as an input. In the suspend mode, the internal pull-up resistor is disabled and the input will be floating if there is no external pull-up resistor. The external pull-ups have not been added to the GPIOs used as inputs on this evaluation board.

2.2 Jumper Settings

2.2.1 Common jumpers

Common jumpers are those jumpers which should be set the same for both RS-232 and RS-485 mode. The **Table 2** shows the common jumpers setting on the evaluation board:

JUMPERS	LOCATION	FUNCTIONS	Comments
JP1	Тор	Power select	Jumper in 1&2 selects power from external power supply of 5V Jumper in 2&3 selects power from USB $\rm V_{BUS}$ power
JP2	Тор	Selects RS-232 or RS-485 mode	Jumper in 1&2 selects RS-485 mode Jumper in 2&3 selects RS-232 mode (default)
JP3	Тор	External loopback or test header	Jumper in 1&2 selects external loopback
JP4	Тор	SCL pull-up/pull-down select	Jumper in 1&2 selects pull-up resistor Jumper in 2&3 selects pull-down resistor
JP5	Тор	SDA pull-up/pull-down select	Jumper in 1&2 selects pull-up resistor Jumper in 2&3 selects pull-down resistor
JP6	Тор	Power supply for XR21V1410	Not installed. Trace between pin 1 & 2
JP7	Тор	I2C EEPROM header	Jumper in 1&2 connects SCL to I2C EEPROM Jumper in 3&4 connects SDA to I2C EEROM Note: I2C EEPROM has not been programmed

TABLE 2: COMMON JUMPERS SETTINGS

2.2.2 Remote wakeup and jumper

The SDA and SCL are used to specify whether Remote Wakeup and/or Bus Powered configurations are to be supported. These pins are sampled at power-up. The following **Table 3** describes how Remote Wakeup and Bus Powered support.

SDA	SCL	REMOTE WAKE-UP SUPPORT	Power Mode	Сомментя
1	1	No	Self-Powered	Default, if no EEPROM is present
1	0	No	Bus-Powered	
0	1	Yes	Self-Powered	
0	0	Yes	Bus-Powered	

TABLE 3: REMOTE WAKEUP AND POWER MODES

The following Table 4 shows jumpers related to remote wakeup.

TABLE 4: REMOTE WAKEUP JUMPERS SETTINGS

JUMPERS	LOCATION	FUNCTIONS	Comments
JP8	Тор	Select remote control wakeup signal	Jumper in 1&2 selects RS-232 (RI#) signal Jumper in 2&3 selects push-button
SW1	Тор	Generate remote wakeup signal	Push once to generate one remote wakeup signal

2.2.3 RS-232 mode jumpers (Default setting is RS-232)

The XR21V1410 evaluation board is set as RS-232 mode <u>by default</u>. The following Table 5 shows the jumper settings apply to the RS-232 mode:

TABLE 5: JUMPER SETTINGS FOR RS-232 MODE

JUMPERS	LOCATION	FUNCTIONS	Comments
JP9	Тор	Selects power	Not installed. Trace between pin 1&2

2.2.4 RS-485 mode jumpers

The following Table 6 jumper setting applies to the RS-485 mode:

JUMPERS	LOCATION	Functions	Comments
JP10	Тор	Select RTS or DTR direction control for TX	Jumper in 1&2 selects RTS based direction control for TX Jumper in 2&3 selects DTR based direction control for TX
JP11	Тор	Select direction control for RX and TX or always for RX	Jumper in 1&2 selects common direction control for RX and TX Jumper in 2&3 enables RX always
JP12	Тор	Selects power for RS-485 transceiver	Not installed. Trace between pin 1 & 2.
JP13 JP14	Тор	Selects half duplex or full duplex mode.	Jumper in 1&2 selects half duplex mode Jumper in 2&3 selects full duplex mode

TABLE 6: JUMPER SETTINGS FOR RS-485 MODE

3.0 DRIVERS AND SUPPORT

For any questions about this evaluation board, software drivers or technical support, send an e-mail to uarttechsupport@exar.com.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2009 EXAR Corporation

Datasheet July 2009.

Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.