

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAXLINEAR

XR31233, XR31234, XR31235

±36V Fault Tolerant, Single 3.3V CAN Bus Transceivers

General Description

The XR31233, XR31234 and XR31235 are controller area network (CAN) transceivers that conform to the ISO 11898 standard. Each provides transmit and receive signaling rates up to 1Mbps between a differential CAN bus and a CAN controller.

These devices are designed with cross-wire protection, overvoltage protection up to ± 36 V, loss of ground protection, thermal shutdown protection and common-mode transient protection of ± 100 V making them ideal for harsh environments used in industrial, automotive, transportation and building automation applications.

The low power consumption of the 3.3V supply makes these CAN transceivers desirable and are fully interoperable with 5V supplied transceivers on the same bus. They also offer high speed, slope control and low-power standby modes of operation.

FEATURES

- Single 3.3V operation
- ±36V fault tolerance on analog bus pins
- Extended -25V to +25V common mode operation
- Robust ESD protection:
 - □ ±16kV HBM (bus pins)
 - □ ±8kV contact discharge (bus pins)
 - □ ±3kV HBM (non-bus pins)
- Up to 1Mbps data rates
- 11898-2 ISO compatible
- GIFT/ICT compliant
- 5V tolerant LVTTL I/O's
- 200µA low current standby mode
- XR31233: Loopback mode
- XR31234: Ultra low current sleep mode50nA typical
- XR31235: Autobaud loopback mode

APPLICATIONS

- Industrial control systems
- Motor and robotic control
- Building and climate control (HVAC)
- Automotive and transportation

Ordering Information - Back Page

Typical Application

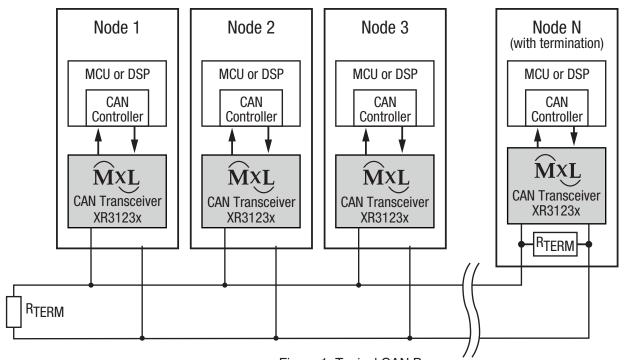


Figure 1: Typical CAN Bus

REV1A 1/16

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition may affect device reliability and lifetime.

meume.
V _{CC} 0.3V to 7V
Voltage at any bus terminal (CANH or CANL)36V to 36V
Voltage input, transient pulse, CANH and CANL, through 100Ω (Figure 9)100V to 100V
Input voltage (D, RS, EN, LBK, AB)0.5V to 7V
Output voltage0.5V to 7V
Receiver output current10mA to 10mA
Continuous total power dissipation540mW
Operating junction temperature 150°C
Storage temperature65°C to 150°C
Lead temperature (soldering 10 seconds) 300°C

Operating Conditions

V _{CC} supply range	3.0V to 3.6V
Operating temperature range	-40°C to 125°C
Package power dissipation, 8-pin NSOIC ⊖	JA128.4°C/W

ESD Ratings

Human Body Model (HBM), bus pins	±16kV
Human Body Model (HBM), non-bus pins	±3kV
IEC61000-4-2 (Contact Discharge), bus pins	±8kV

REV1A 2/16

Electrical Characteristics

Unless otherwise noted: $V_{CC} = 3.0V$ to 3.6V, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$

Symbol	Parameter		Conditions	Min	Тур	Max	Units	
Driver D	C Characteristics							
V	Bus output voltage	CANH	D at 0V, RS at 0V,	2.3		V _{CC}	,,	
V _{O(D)} Bus output voltage (Dominant)	CANL	see Figure 3 and Figure 4	0.5		1.25	V		
V	Bus output voltage	CANH	D at 3V, RS at 0V,		2.3		V	
V _O	(Recessive)	CANL	see Figure 3 and Figure 4		2.3		V	
V _{OD(D)}	Differential output voltage ([Dominant)	D at 0V, RS at 0V, see Figure 3 and Figure 4	1.5	2	3	V	
VOD(D)	Differential output voltage (t	John Harty	D at 0V, RS at 0V, see Figure 4 and Figure 5	1.2	2	3	V	
V _{OD} Differential output voltage (Reces		essive)	D at 3V, RS at 0V, see Figure 3 and Figure 4	-120		12	mV	
		D at 3V, RS at 0V, No Load	-0.5		0.05	V		
V _{OC(PP)}	Peak-to-peak common-mode output voltage		See Figure 12		1		V	
I _{IH}	High-level input current	D, EN, LBK, AB	D = 2V or EN = 2V or LBK = 2V or AB = 2V	-30		30	μΑ	
I _{IL}	Low-level input current	D, EN, LBK, AB	D = 0.8V or EN = 0.8V or LBK = 0.8V or AB = 0.8V	-30		30	μА	
			VCANH = -25V, CANL Open, see Figure 17	-250				
L	Short-circuit output current		VCANH = 25V, CANL Open, see Figure 17			3	mA	
I _{OS}	Short-circuit output current		VCANH = -25V, CANH Open, see Figure 17	-3			liiA	
			VCANH = 25V, CANH Open, see Figure 17			250		
C_{O}	Output capacitance		See receiver input capacitance					
I _{IRS(S)}	RS input current for standby	1	RS at 0.75 Vcc	-10			μA	
		Sleep	EN at 0V, D at V _{CC} , RS at 0V or VCC		0.05	2	.,,	
L	Supply ourroat	Standby	RS at V_{CC} , D at V_{CC} , AB at 0V, LBK at 0V, EN at V_{CC}		200	600	- μA	
I _{CC}	Supply current	Dominant	D at 0V, No Load, AB at 0V, LBK at 0V			6	m ^	
		Recessive	D at V _{CC} , No Load, AB at 0V, LBK at 0V, RS at 0V, EN at V _{CC}			6	mA	

REV1A 3/16

Electrical Characteristics, (Continued)

Unless otherwise noted: $V_{CC} = 3.0 V$ to 3.6 V, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $V_{CC} = 3.3 V$, $T_A = 25 ^{\circ} C$.

Symbol	Parameter		Conditions	Min	Тур	Max	Units		
Receiver DC Characteristics									
V _{IT+}	Positive-going input three	shold voltage			750	900			
V _{IT-}	Negative-going input three	eshold voltage	AB at 0V, LBK at 0V, EN at VCC, see Table 1	500	650		mV		
V _{HYS}	Hysteresis voltage (VIT+	to VIT–)			100				
	V _{OH} High-level output voltage		V_{CC} < 3.3V, I_O = -4mA, see Figure 8	2.0					
VOH			$V_{CC} \ge 3.0V$, $I_O = -4mA$, see Figure 8	2.4			V		
V _{OL}	Low-level output voltage		I _O = 4mA, see <u>Figure 8</u>			0.4			
	Due insult account	CANH or CANL at 25V	Other bus pin at 0V, D at 3 V, AB at 0V, LBK at 0V, RS at 0V, EN at V _{CC}	400		1250	4		
l _l	Bus input current	CANH or CANL at -25V		-1400		-500	μΑ		
C _I	Input capacitance (CANH or CANL)		Pin-to-ground, VI = 0.4 sin (4E6πt) + 0.5V, D at 3V, AB at 0V, LBK at 0V, EN at V _{CC}		40		pF		
C _{ID}	Differential input capacitance		Pin-to-pin, VI = 0.4 sin (4E6πt) + 0.5V, D at 3V, AB at 0V, LBK at 0V, EN at V _{CC}		20		pF		
R _{ID}	Differential input resistance		D at 3V, AB at 0V, LBK at 0V,	40		100	kΩ		
R _{IN}	Input resistance (CANH or 0	CANL) to ground	EN at V _{CC}	20		50	kΩ		

REV1A 4/16

Electrical Characteristics (Continued)

Unless otherwise noted: $V_{CC} = 3.0 V$ to 3.6 V, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $V_{CC} = 3.3 V$, $T_A = 25 ^{\circ} C$.

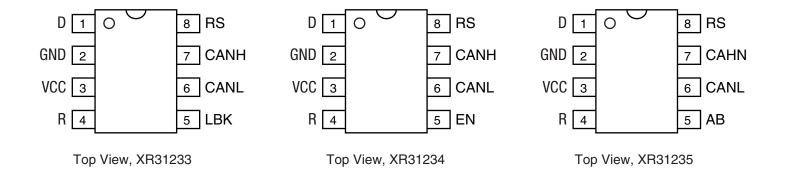
Symbol	Parameter		Conditions	Min	Тур	Max	Units		
Driver AC	Driver AC Characteristics								
			RS at 0V, see Figure 6		35	85			
t _{PLH}	Propagation delay time, low-to-high-l	evel output	RS with $10k\Omega$ to ground, see Figure 6		70	125	ns		
			RS with $100k\Omega$ to ground, see Figure 6		500	870			
			RS at 0V, see Figure 6		70	120			
t _{PHL}	Propagation delay time, high-to-low-l	evel output	RS with $10k\Omega$ to ground, see Figure 6		130	180	ns		
			RS with $100k\Omega$ to ground, see Figure 6		870	1200			
			RS at 0V, see Figure 6		35				
t _{sk(p)}	t _{sk(p)} Pulse skew (lt _{PHL} – t _{PLH} l)		RS with $10k\Omega$ to ground, see Figure 6		60		ns		
			RS with $100k\Omega$ to ground, see Figure 6		370				
t _r	Differential output signal rise time		DC at 0V and Figure 6	5		70	ns		
t _f	Differential output signal fall time		RS at 0V, see Figure 6	5		70	ns		
t _r	Differential output signal rise time		RS with $10k\Omega$ to ground,	30		135	ns		
t _f	Differential output signal fall time		see <u>Figure 6</u>	30		135	ns		
t _r	Differential output signal rise time		RS with 100kΩ to ground,	350		1400	ns		
t _f	Differential output signal fall time		see Figure 6	350		1400	ns		
t _{en(s)}	Enable time from standby to dominar	nt	See Figure 10		0.6	1.5	μs		
t _{en(z)}	Enable time from sleep to dominant	XR31234	See Figure 11		1	5	μs		
Receiver /	AC Characteristics								
t _{PLH}	Propagation delay time, low-to-high-level output				35	60	ns		
t _{PHL}	Propagation delay time, high-to-low-level output				35	60	ns		
t _{sk(p)}	Pulse skew (It _{PHL} – t _{PLH} I)	Pulse skew (t _{PHL} - t _{PLH})			7		ns		
t _r	Output signal rise time(1)					5	ns		
t _f	Output signal fall time(1)					5	ns		

NOTE

1. This spec is guaranteed by design and bench characterization.

REV1A 5/16

Electrical Characteristics, (Continued)


Unless otherwise noted: $V_{CC} = 3.0 V$ to 3.6 V, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $V_{CC} = 3.3 V$, $T_A = 25 ^{\circ} C$.

Symbol	Parameter		Conditions	Min	Тур	Max	Units
Device AC Characteristics							
t _(LBK)	Loopback delay, driver input to receiver output	XR31233	See Figure 14		7.5	12	ns
t _(AB1)	Loopback delay, driver input to receiver output	VD04005	See Figure 15		10	20	ns
t _(AB2)	Loopback delay, bus input to receiver output	- XR31235	See Figure 16		35	60	ns
			RS at 0V, see Figure 13		70	135	
t _(loop1)	Total loop delay, driver input to receiver output, recessive to dominant		RS with $10k\Omega$ to ground, see Figure 13		105	190	ns
			RS with $100k\Omega$ to ground, see Figure 13		535	1000	
			RS at 0V, See Figure 13		70	135	
t _(loop2)	Total loop delay, driver inp	Total loop delay, driver input to receiver output,			105	190	ns
			RS with $100k\Omega$ to ground, see Figure 13		535	1000	

REV1A 6/16

Pin Configuration

Pin Functions

Pin Number	Pin Name	Туре	Description	Description						
1	D	Input	CAN transm	CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input.						
2	GND	Power	Ground.							
3	VCC	Power	3.3V power	supply input, bypass to	ground with	0.1μF capacitor.				
4	R	Output	CAN receive output.	e data output (LOW for	dominant an	d HIGH for recessive bus states), also called RXD, receiver				
	LBK Input XR3	K Input XR31.		Loopback mode input.	LBK = 1	Loopback mode. D input loops back to R output. D input does not drive or affect the activity of the CAN bus. Useful for checking connectivity and running diagnostics without disturbing the CAN bus.				
				LBK = 0	Normal mode. D input drives CAN bus. If D = 0, the CAN bus is dominant. If D = 1 the CAN bus is recessive. See Figure 4					
			Autohaud loophack	Enable input.	EN = 1	Normal mode. D input drives CAN bus. If D = 0, the CAN bus is dominant. If D = 1 the CAN bus is recessive. See Figure 4.				
5	EN	EN Input			EN = 0	Sleep mode, low power.				
	AB Input	Input XR31235		AB = 1	Autobaud loopback mode. Similar to loopback mode as the D input loops back to R output, except that the R output is a NOR function of the D input and the CAN bus activity. Useful for checking connectivity, running diagnostics and monitoring CAN bus activity, which allows local mode to detect and sync the baud rate up on the CAN bus.					
					AB = 0	Normal mode. D input drives CAN bus. If D = 0, the CAN bus is dominant. If D = 1 the CAN bus is recessive. See Figure 4				
6	CANL	I/O	Low level C	AN bus line.						
7	CANH	I/O	High level C	SAN bus line.						
8	RS	Input		Mode select pin: strong pulldown to GND = high speed mode, strong pullup to V_{CC} = low power mode, $10k\Omega$ to $100k\Omega$ pulldown to GND = slope control mode.						

Device Functional Modes

Driver (XR31233 or XR31235)

	Inputs		Outputs			
D	LBK/AB	RS	CANH	CANL	Bus State	
Х	X	> 0.75 V _{CC}	Z	Z	Recessive	
L	L or open	40.00 V	Н	L	Dominant	
H or open	X	≤ 0.33 V _{CC}	Z	Z	Recessive	
Х	Н	≤ 0.33 V _{CC}	Z	Z	Recessive	

Receiver (XR31233)

	Output			
Bus State	V _{ID} = V _{CANH} -V _{CANL}	LBK	D	R
Dominant	V _{ID} ≥ 0.9V	L or open	X	L
Recessive	V _{ID} ≤ 0.5V or open	L or open	H or open	Н
?	$0.5V < V_{ID} < 0.9V$	L or open	H or open	?
X	X	11	L	L
X	X	H	Н	Н

Receiver (XR31235)

	Output			
Bus State	V _{ID} = V _{CANH} -V _{CANL}	AB	D	R
Dominant	V _{ID} ≥ 0.9V	L or open	X	L
Recessive	V _{ID} ≤ 0.5V or open	L or open	H or open	Н
?	0.5V < V _{ID} < 0.9V	L or open	H or open	?
Dominant	V _{ID} ≥ 0.9V	Н	X	L
Recessive	V _{ID} ≤ 0.5V or open	Н	Н	Н
Recessive	V _{ID} ≤ 0.5V or open	Н	L	L
?	$0.5V < V_{ID} < 0.9V$	Н	L	L

Driver (XR31234)

	Inputs		Outputs			
D	EN	RS	CANH	CANL	Bus State	
L	Н	≤ 0.33 V _{CC}	Н	L	Dominant	
Н	X	≤ 0.33 V _{CC}	Z	Z	Recessive	
Open	X	X	Z	Z	Recessive	
Х	X	> 0.75 V _{CC}	Z	Z	Recessive	
Х	L or open	X	Z	Z	Recessive	

Device Functional Modes (Continued)

Receiver (XR31234)

Inputs			Output	
Bus State	V _{ID} = V _{CANH} -V _{CANL}	EN	R	
Dominant	Dominant $V_{ID} \ge 0.9V$ H		L	
Recessive	V _{ID} ≤ 0.5V or open	Н	Н	
?	0.5V < V _{ID} <0.9V	Н	?	
X	X	L or open	Н	

H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

REV1A 9/16

Applications Information

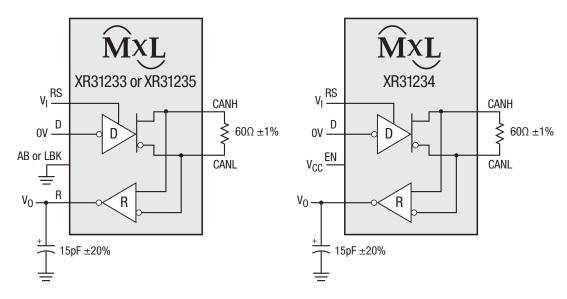


Figure 2: Functional Diagram

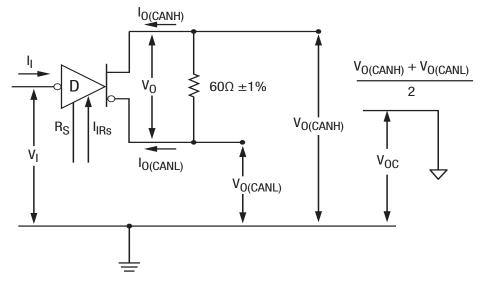


Figure 3: Driver Voltage, Current and Test Definition

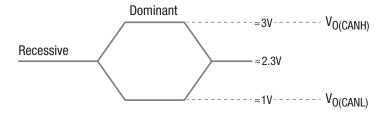


Figure 4: Bus Logic State Voltage Definitions

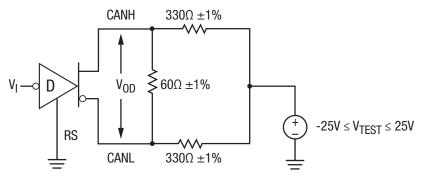
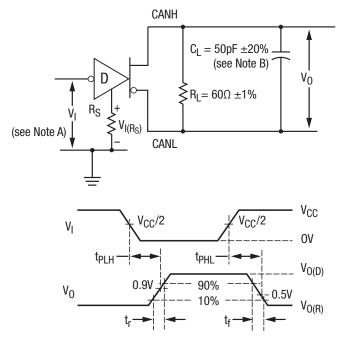



Figure 5: Driver V_{OD}

NOTES:

A. Pulse input: \leq 125kHz, 50% duty cycle, $t_r \leq$ 6ns, $t_f \leq$ 6ns, $Z_O = 50\Omega$

B. C_L includes fixture and instrumentation capacitance

Figure 6: Driver Test Circuit and Voltage Waveforms

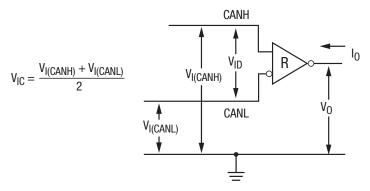
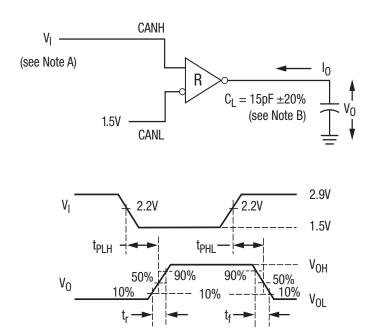
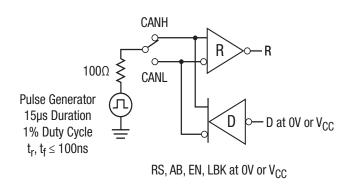



Figure 7: Receiver Voltage and Current Definitions



NOTES:

A. Pulse input: \leq 125kHz, 50% duty cycle, $t_r \leq$ 6ns, $t_f \leq$ 6ns, $Z_O = 50\Omega$

B. C_L includes fixture and instrumentation capacitance

Figure 8: Receiver Test Circuit and Voltage Waveforms

NOTE:

This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 9: Test Circuit, Transient Overvoltage Test

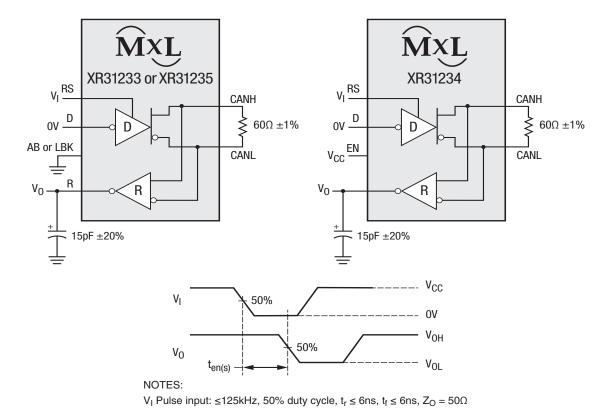
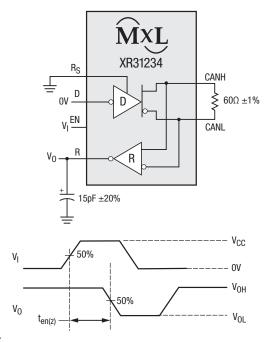
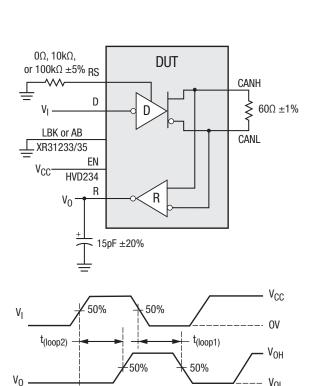
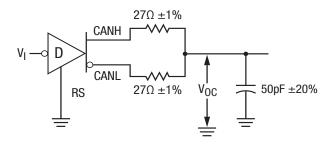



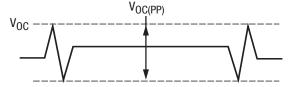
Figure 10: Ten(s) Test Circuit and Voltage Waveforms



NOTES:

 V_{l} Pulse input: \leq 125kHz, 50% duty cycle, t_{r} \leq 6ns, t_{f} \leq 6ns, Z_{O} = 50 Ω

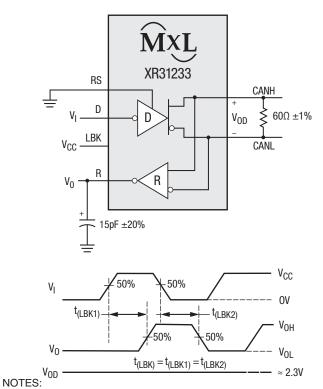

Figure 11: T_{en(z)} Test Circuit and Voltage Waveforms



NOTES:

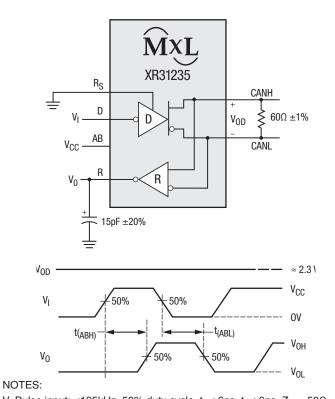
 V_{I} Pulse input: \leq 125kHz, 50% duty cycle, t_{r} \leq 6ns, t_{f} \leq 6ns, Z_{O} = 50 Ω

Figure 13: T_(loop) Test Circuit and Voltage Waveforms



NOTES:

 V_I Pulse input: \leq 125kHz, 50% duty cycle, $t_r \leq$ 6ns, $t_f \leq$ 6ns, $Z_O = 50\Omega$


Figure 12: V_{OC(pp)} Test Circuit and Voltage Waveforms

 $V_{\rm I}$ Pulse input: \leq 125kHz, 50% duty cycle, $t_{\rm f} \leq$ 6ns, $t_{\rm f} \leq$ 6ns, $Z_{\rm O} = 50\Omega$

Figure 14: T_(LBK) Test Circuit and Voltage Waveforms

V_I Pulse input: \leq 125kHz, 50% duty cycle, $t_r \leq$ 6ns, $t_f \leq$ 6ns, $Z_O = 50\Omega$

Figure 15: T_(AB1) Test Circuit and Voltage Waveforms

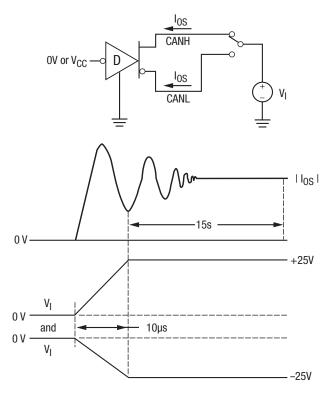
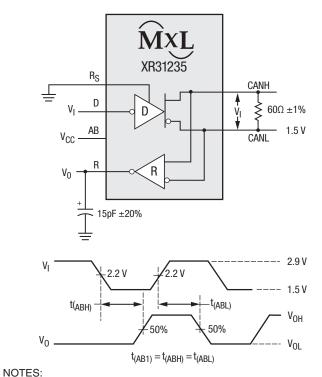
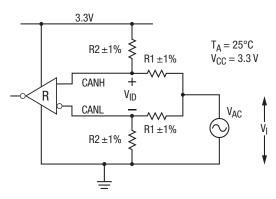




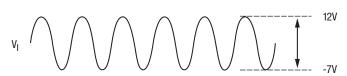
Figure 17: IOS Test Circuit and Waveforms

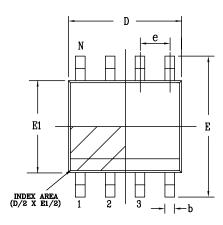
 V_I Pulse input: ≤125kHz, 50% duty cycle, t_r ≤ 6ns, t_f ≤ 6ns, Z_O = 50Ω

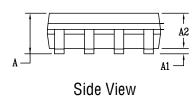
Figure 16: T_(AB2) Test Circuit and Voltage Waveforms

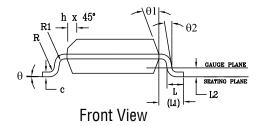
The R output state does not change during application of the input waveform

V _{ID}	R1	R2
500mV	50Ω	280Ω
900mV	50Ω	130Ω




Figure 18: Common-Mode Voltage Rejection




Mechanical Dimensions

NSOIC-8

Top View

PACKAGE OUTLINE NSOIC .150" BODY JEDEC MS-012 VARIATION AA							
SYMBOLS	COMMON DIMENSIONS IN MM (Control Unit)			COMMON DIMENSIONS IN INCH (Reference Unit)			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.35	_	1.75	0.053	_	0.069	
A1	0.10	_	0.25	0.004	_	0.010	
A2	1.25	_	1.65	0.049	_	0.065	
b	0.31	_	0.51	0.012	_	0.020	
С	0.17	_	0.25	0.007	_	0.010	
E	6.00 BSC			0.236 BSC			
E1	3.90 BSC			0.154 BSC			
е	1.27 BSC			0.050 BSC			
h	0.25	_	0.50	0.010	_	0.020	
L	0.40	_	1.27	0.016	_	0.050	
L1	1.04 REF			0.041 REF			
L2		0.25 BSC			0.010 BSC		
R	0.07	_	_	0.003	_	_	
R1	0.07	_	_	0.003	_	_	
q	0,	_	8°	0,	_	8°	
q1	5*	_	15°	5*	_	15°	
q2	0,	_	_	0,	_	_	
D	4.90 BSC			0.193 BSC			
N		8					

Drawing No: POD-00000108

Revision: A

Ordering Information(1)

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method	Feature ⁽³⁾	
XR31233ED		Yes ⁽²⁾	NSOIC-8	Tube	Loophaak mada	
XR31233EDTR	-40°C to +125°C			Tape and Reel	Loopback mode	
XR31234ED				Tube	Sleep mode	
XR31234EDTR				Tape and Reel		
XR31235ED				Tube	Autobaud loopback mode	
XR31235EDTR				Tape and Reel		
XR31233EDEVB	XR31233 Evaluation Board					
XR31234EDEVB	XR31234 Evaluation Board					
XR31235EDEVB	XR31235 Evaluation Board					

NOTE:

- 1. Refer to www.exar.com/XR31233, www.exar.com/XR31235, <a href="www.exar.com/www.exa
- 2. Visit www.exar.com for additional information on Environmental Rating.
- 3. See pin 5 function for selection between XR31233, XR31234 and XR31235.

Revision History

Revision	Date	Description
1A	August 2017	Initial Release

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598

www.maxlinear.com

High Performance Analog: 48760 Kato Road

Fremont, CA 94538 Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7001

Email: Serialtechsupport@exar.com

www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated

© 2017 MaxLinear, Inc. All rights reserved