imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-Channel Power MOSFET

Description

The XR46000 is a silicon N-channel enhanced power MOSFET. With low conduction loss, good switching performance and high avalanche energy, it is suitable for various power supply system, especially for AC step driving application for LED lighting.

The package type is SOT-223, which comply with the RoHS standard.

Key Parameters

V _{DSS}	600V			
I _D	1.5A			
$P_{D} (T_{C} = 25^{\circ}C)$	20W			
R _{DS,ON,typ}	7.0Ω			

Equivalent Circuit

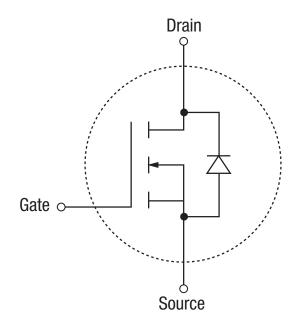
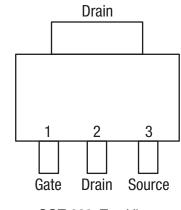


Figure 1. Equivalent Cirucit


FEATURES

- Fast switching
- ESD improved capability
- Low gate charge (Typ. 7.5nC)
- Low reverse transfer capacitance (Typ. 5.0pF)

APPLICATIONS

- LED lighting applications
 - Downlight
- □ High bay
- Specialty
- Architectural

Pin Configuration

SOT-223, Top View

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

$T_C = 25^{\circ}C$ unless otherwise noted.

V _{DSS} drain-to-source voltage600V					
I_D continuous drain current (T_C = 25°C) 1.5A					
I_D continuous drain current (T_C = 100°C)0.85A					
I _{DM} pulsed drain current6A					
V_{GS} gate-to-source voltage\pm 30V					
P_D power dissipation (T_C = 25°C)20W					
P_D derating factor above $25^\circ C$ 0.16W/°C					
T _{STORAGE} storage temperature range65°C to 150°C					
E_{AS} single pulse avalanche energy80mJ					
NOTE: Unless otherwise noted, all tests are pulsed tests at the specified temperature,					

Unless otherwise noted, all tests are pulsed tests at the specified temperature therefore: $T_J = T_C = T_A$.

Operating Conditions

T _J operating junction temperature	150°C
T _A operating ambient temperature40	°C to 85°C

Electrical Characteristics

 $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF Charac	cteristic			<u>.</u>		
BV _{DSS}	Drain to source breakdown voltage	ain to source breakdown voltage $V_{GS} = 0V, I_D = 250\mu A$				V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown voltage temperature coefficient	I _D = 250μA, reference 25°C		0.71		V/°C
		$V_{DS} = 600V, V_{GS} = 0V, T_A = 25^{\circ}C$	25			
I _{DSS}	Drain to source leakage current	$V_{DS} = 600V, V_{GS} = 0V, T_A = 125^{\circ}C$			250	μA
I _{GSS(F)}	Gate to source forward leakage	V _{GS} = 30V			12	
I _{GSS(R)}	Gate to source reverse leakage	V _{GS} = -28V			-12	μA
ON Charact	teristic (pulse width tp \leq 380µs, $\delta \leq$ 2%)			1	<u> </u>	
R _{DS(ON)}	Drain to source on-resistance	$V_{GS} = 10V, I_D = 0.75A$		7.0	8.0	Ω
V _{GS(TH)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0		4.0	V
Dynamic Ch	haracteristic				1	
9fs	Forward transconductance	$V_{DS} = 15V, I_D = 0.75A$		1.0		s
C _{iss}	Input capacitance			170		
C _{oss}	Output capacitance	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz		27		pF
C _{rss}	Reverse transfer capacitance			5		
Resistive Sv	witching Characteristic			,		
t _{d(ON)}	Turn-on delay time			8		
t _r	Rise time	 I _D = 1.5A, V _{DD} = 300V, V _{GS} = 10V,		30		ns
t _{d(OFF)}	Turn-off delay time	$R_{G} = 4.7\Omega$		22		
t _f	Fall time			55		
Qg	Total gate charge			7.5		
Q _{gs}	Gate to source charge	I _D = 1.5A, V _{DD} = 480V, V _{GS} = 10V		1.7		nC
Q _{gd}	Gate to drain "Miller" charge			4.0		
Source-Drai	in Diode Characteristics (pulse width tp \leq	380us, δ ≤ 2%)		1	<u> </u>	
I _S	Continuous source current (body diode)				1.5	A
I _{SM}	Maximun source current (body diode)				6.0	
V _{SD}	Diode forward voltage	I _S = 1.5A, V _{GS} =0V			1.5	V
T _{rr}	Reverse recovery time			530		ns
Q _{rr}	Reverse recovery charge	$I_D = 1.5A, T_J = 25^{\circ}C, dI_F/dt = 100A/\mu s, V_{GS} = 0V$		1100		nC
I _{RRM}	Reverse recovery current			4.4		А

Typical Performance Characteristics

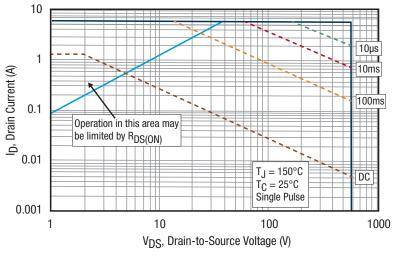


Figure 2. Safe Operating Area

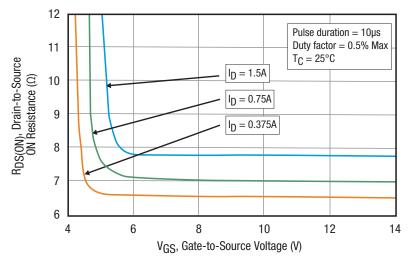
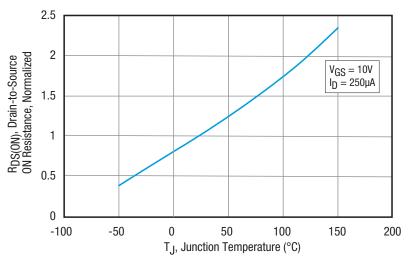
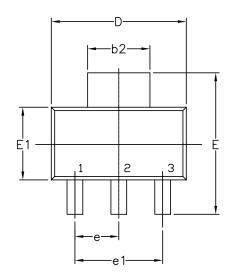
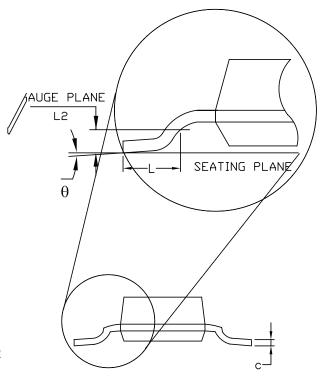



Figure 3. Typical Drain-to-Source ON Resistance vs. Gate Voltage and Drain Current





Package Description

Top View

Front View

Side View

3 Pin SOT-223 JEDEC TO-261 Variation AA							
SYMBOLS	DIMENSIONS IN MM (Control Unit)			DIMENSIONS IN INCH (Reference Unit)			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	—	—	1.80	_	—	0.071	
A1	0.02		0.10	0.001	—	0.004	
A2	1.50	1.60	1.70	0.060	0.063	0.067	
b	0.66	0.76	0.84	0.026	0.030	0.033	
b2	2.90	3.00	3.10	0.114	0.118	0.122	
с	0.23	0.30	0.35	0.010	0.012	0.014	
D	6.30	6.50	6.70	0.248	0.256	0.264	
E	6.70	7.00	7.30	0.264	0.276	0.287	
E1	3.30	3.50	3.70	0.130	0.138	0.146	
е	2.30 BSC 4.60 BSC			0.091 BSC			
e1				0.182 BSC			
L	0.75	_		0.030	—	_	
L2	0.25 BSC			0.010 BSC			
θ	0°	—	10°	0°	—	10°	
N	3				3		

Ordering Information

Part Number	Operating Temperature Range	Environmental Rating	Package	Packaging Method	
XR46000ESE		RoHS compliant and Green ⁽¹⁾	SOT-223	Bulk	
XR46000ESETR	$-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 150^{\circ}\text{C}$		SOT-223	Tape and reel	
XR46000ECF			Dice	Wafer	

NOTE:

1. Visit <u>www.exar.com</u> for more information.

Revision History

Revision	Date	Description
1A	Aug 2016	Initial release

48760 Kato Road Fremont, CA 94538 USA WWW.EXAL.COIII Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7001 Email: LEDtechsupport@exar.com

Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been carefully checked, no responsibility, however, is assumed for inaccuracies.

Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Exar Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation. All other trademarks are the property of their respective owners.

©2016 Exar Corporation