imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XR81101

Universal Clock - High Frequency LVCMOS Clock Synthesizer

General Description

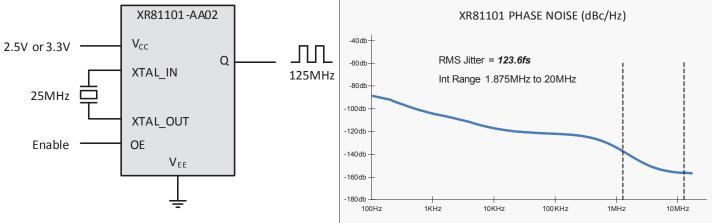
The XR81101-AA02 is a clock synthesizer operating at a 3.3V/2.5V supply with Integer divider, using a 25MHz parallel resonant crystal reference input provides a 125MHz LVCMOS output. The device is optimized for use with a 25MHz crystal (or system clock) and generates a 125MHz output clock for GE applications. The LVCMOS output has very low phase noise jitter of sub 150fs, while consuming extremely low power.

The application diagram below shows a typical synthesizer configuration with any standard crystal oscillating in fundamental mode. Internal load capacitors are optionally available to minimize/eliminate external crystal loads. A system clock can also be used to overdrive the oscillator for a synchronous timing system.

The typical phase noise plot below shows the jitter integrated over the 1.875MHz to 20MHz range that is widely used in WAN systems. These clock devices show a very good high frequency noise floor below -150dB.

The XR81101 is a family of Universal Clock synthesizer devices in TSSOP-8 packages. The devices generate ANY frequency in the range of 10MHz to 200MHz by utilizing a highly flexible delta sigma modulator and a wide ranging VCO. These devices can be used with standard crystals or external system clock to support a wide variety of applications. This family of products has an extremely low power PLL block with core power consumption 40% less than the equivalent devices from competition. By second sourcing several of the existing sockets, these devices provides a very compelling power efficiency value benefit across all market seqments.

Other clock multiplier and/or driver configurations are possible in this clock family and can be requested from the factory


FEATURES

- XR81101-AA02: Factory configured
- One LVCMOS output
- Crystal oscillator interface which can also be overdriven using a single-ended reference clock
- Output frequency: 125MHz
- Crystal/input frequency: 25MHz, parallel resonant crystal
- RMS phase iitter @ 125MHz. 1.875MHz 20MHz: < 150fs
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) package

APPLICATIONS

- · Gigabit Ethernet
- · Low-jitter Clock Generation
- · Synchronized clock systems

Ordering Information – page 8

Typical Application

Absolute Maximum Ratings

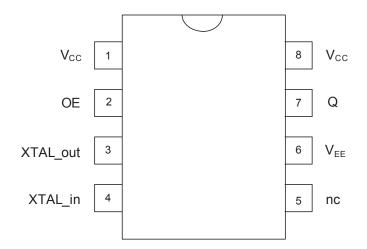
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Maximum Rating condition for extended periods may affect device reliability and lifetime.

Supply Voltage	+4.2V
Input Voltage	0.5V to VCC + 0.5V
Output Voltage	0.5V to VCC + 0.5V
Reference Frequency/Input Crystal	10MHz to 60MHz
Storage Temperature	55°C to +125°C
Lead Temperature (Soldering, 10 sec	c)300°C
ESD Rating (HBM - Human Body Mo	odel)2kV

Operating Conditions

Operating Temperature Range.....-40°C to +85°C

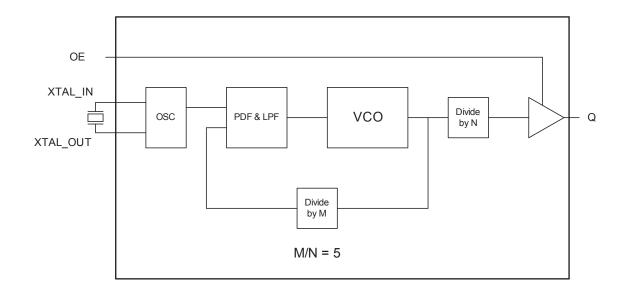
Electrical Characteristics


Unless otherwise noted: T_A = -40°C to +85°C, V_{CC} = 3.3V \pm 5% or 2.5V \pm 5%, V_{EE} = 0V

Symbol	Parameter	Conditions	*	Min	Тур	Max	Units
3.3V Powe	r Supply DC Characteristics						
V _{CC}	Power Supply Voltage		•	3.135	3.3	3.465	V
I _{EE}	Power Supply Current	125MHz with output unloaded.			24		mA
2.5V Power Supply DC Characteristics							
V _{CC}	Power Supply Voltage		•	2.375	2.5	2.625	V
I _{EE}	Power Supply Current	125MHz with the output unloaded.			21		mA
LVCMOS/L	LVCMOS/LVTTL DC Characteristics						

Symbol	Parameter	Conditions	*	Min	Тур	Мах	Units
V _{IH}	Input High Voltage	V _{CC} = 3.465V	•	2.42		V _{CC} + 0.3	V
		V _{CC} = 2.625V	•	1.83		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage V _{CC} = 3.465V •		-0.3		1.03	V	
		V _{CC} = 2.625V	•	-0.3		0.785	V
I _{IH}	Input High Current (OE, FSEL[1:0])	$V_{IN} = V_{CC} = 3.465 V \text{ or } 2.625 V$	•			15	μA
IIL	Input Low Current (OE, FSEL[1:0])	$V_{IN} = 0V, V_{CC} = 3.465V \text{ or } 2.625V$	•	-10			μA
LVCMOS I	DC Characteristics			•	ı		1
V _{OH}	Output High Voltage	Output unloaded	•	0.8 x V _{CC}			V
V _{OL}	Output Low Voltage	Output unloaded	•	0.1 x \			V
Crystal Ch	aracteristics						
X _{Mode}	Mode of Oscillations			F	undament	al	
X _f	Frequency				25		MHz
ESR	Equivalent Series Resistance					50	Ω
C _S	Shunt Capacitance					7	pF
AC Charac	cteristics						
f _{OUT}	Output Frequency				125		MHz
t _{jit} (\$)	RMS Phase Jitter	125MHz (Int. Range 1.875MHz-20MHz)			0.15		pS
t _{jit} (cc)	Cycle-to-Cycle Jitter	Using 25MHz, 18pF resonant crystal	•			10	pS
t _R /t _F	Output Rise/Fall Time	20% to 80%	•	100		550	pS
Odc	Output Duty Cycle		• 48 52			52	%

* Limits applying over the full operating temperature range are denoted by a "•".


Pin Configuration

Pin Assignments

Pin No.	Pin Name	Туре	Description	
1	V _{CC}	Supply	Power supply pin.	
2	OE	Input (900KΩ pull-up)	Output enable pin - LVCMOS/LVTTL active high input. Outputs are enabled when OE = high. Outputs are disabled when OE = low.	
3	XTAL_OUT	Output	Crystal oscillator output.	
4	XTAL_IN	Input	Crystal oscillator input.	
5	nc	No Connect	Unused, do not connect.	
6	V _{EE}	Supply	Negative supply pin.	
7	Q	Output	LVCMOS output.	
8	V _{CC}	Supply	Power supply pin.	

Functional Block Diagram

Typical Performance Characteristics

Figure 1 shows a typical phase noise performance plots for a 125MHz clock output. The data was taken using the industry standard Agilent E5052B phase noise instrument. The integration range is 1.875MHz to 20MHz.

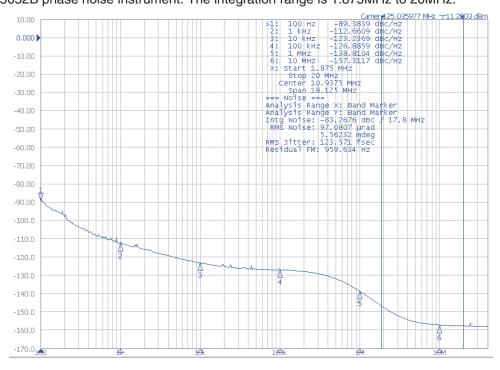
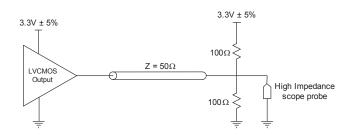



Figure 1: 125MHz Operation, Typical Phase Noise at 3.3V

Application Information

Termination for LVCMOS Outputs

The termination schemes shown in Figure 2 and Figure 3 are typical for LVCMOS outputs. A split supply approach can be used utilizing the scope's internal 50Ω impedance, as shown in Figure 4.

Figure 2: XR81101 3.3V LVCMOS Output Termination

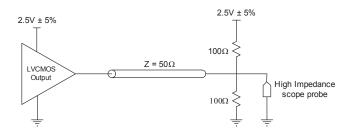
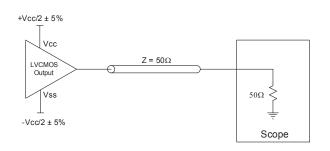
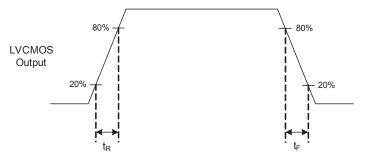
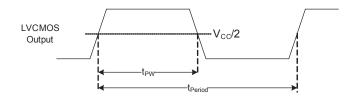
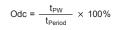


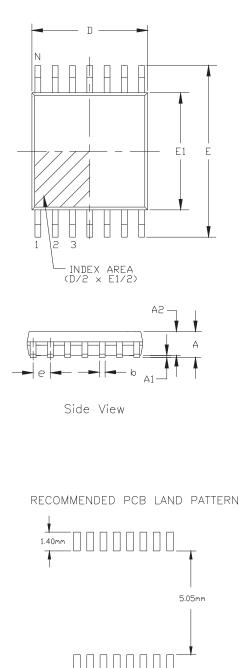
Figure 3: XR81101 2.5V LVCMOS Output Termination

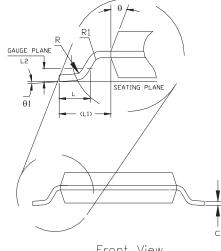




Figure 4: XR81101 Split Supply LVCMOS Output Termination


Output Signal Timing Definitions

The following diagrams clarify the common definitions of the AC timing measurements.




Figure 6: Output Rise/Fall Time

Mechanical Dimensions

8-Pin TSSOP

Top View

F	r	0	n	t	V	ıе	W

8-Pin TSSOP JEDEC MO-153 Variation AA							
SYMBOLS	DIMENSIONS IN MM (Control Unit)			DIMENSIONS IN INCH (Reference Unit)			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	—	—	1.10	—	—	0.043	
A1	0.05	—	0.15	0.002	—	0.006	
A2	0.85	0.90	0.95	0.033	0.035	0.037	
b	0.19	_	0.30	0.007		0.012	
с	0.09	_	0.20	0.004	_	0.008	
E	6	6.40 BSC			0.252 BSC		
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е	C).65 BS	SC	0.026 BSC			
L	0.50	0.60	0.75	0.020	0.024	0.030	
L1		1.00 RE	ĒF	0.039 REF			
L2	0).25 BS	SC	0	.010 B	SC	
R	0.09	—		0.035	—		
R1	0.09	_	_	0.035			
θ	12° REF			12° RE	F		
θ1	0°		8°	0°		8°	
D	2.90	3.00	3.10	0.114	0.118	0.122	
N		8			8		

Note: The side, top and landing pattern drawings are general to TSSOP packaging but the table is specific to the 8pin TSSOP.

- 0.35mm

0.65mm —

Ordering Information

Part Number	Package	Green	Operating Temperature Range	Shipping Packaging	Marking
XR81101-AA02-F	8-pin TSSOP	Yes	-40°C to +85°C	Tube	T01
XR81101-AA02TR-F	8-pin TSSOP	Yes	-40°C to +85°C	Tape & Reel	T01
XR81101EVB	Eval Board	N/A	N/A	N/A	N/A

Revision History

Revision	Date	Description
1A	April 2014	Initial release. [ECN1416-07 04/18/2014]

For Further Assistance:

Email: commtechsupport@exar.com

Exar Technical Documentation: http://www.exar.com/techdoc/

Exar Corporation Headquarters and Sales Offices

 48720 Kato Road
 Tel: +1 (510) 668-7000

 Fremont, CA 95438 - USA
 Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

