: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- 10-Bit Resolution
- 8-Channel Mux
- Sampling Rate $-<1 \mathrm{kHz}-2 \mathrm{MHz}$
- Low Power CMOS - 24 mW (typ)
- Power Down; Lower Consumption - 0.1 mW (typ)
- Input Range between GND and V_{DD}
- No S/H Required for Analog Signals less than 100 kHz
- No S/H Required for CCD Signals less than 2 MHz
- Single Power Supply (2.7 to 3.6V)
- Latch-Up Free
- ESD Protection: 2000 Volts Minimum

APPLICATIONS

- μ P/DSP Interface and Control Application
- High Resolution Imaging - Scanners \& Copiers
- Wireless Digital Communications
- Multiplexed Data Acquisition

BENEFITS

- Reduced Board Space (Small Package)
- Reduced External Parts, No Sample/Hold Needed
- Suitable for Battery \& Power Critical Applications
- Designer can Adapt Input Range \& Scaling

GENERAL DESCRIPTION

The XRD87L99 is a flexible, easy to use, precision 10-bit analog-to-digital converter with 8-channel mux that operates over a wide range of input and sampling conditions. The XRD87L99 can operate with pulsed "on demand" conversion operation or continuous "pipeline" operation for sampling rates up to 2 MHz . The elimination of the S / H requirements, very low power, and small package size offer the designer a low cost solution. No sample and hold is required for CCD applications up to 2 MHz , or multiplexed input applications when the signal source bandwidth is limited to 100 kHz . The input architecture of the XRD87L99 allows direct interface to any analog input range between $A G N D$ and $A V_{D D}$. The user simply sets $\mathrm{V}_{\mathrm{REF}(+)}$ and $\mathrm{V}_{\mathrm{REF}(-)}$ to encompass the desired input range.

Scaled reference resistor taps @ 1/4 R, 1/2 R and 3/4 R allow for customizing the transfer curve as well as providing a $1 / 2$ span reference voltage. Digital outputs are CMOS and TTL compatible.
The XRD87L99 uses a two-step flash technique. The first segment converts the 5 MSBs and consists of autobalanced comparators, latches, an encoder, and buffer storage registers. The second segment converts the remaining 5 LSBs.
When the power down input is "high", the data outputs DB9 to DB0 hold the current values and $\mathrm{V}_{\text {REF(-) }}$ is disconnected from $\mathrm{V}_{\text {REF1(-). }}$. The power consumption during the power down mode is 0.1 mW .

ORDERING INFORMATION

Part Number	Package	Operating Temperature Range
XRD87L99AIQ	PQFP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Figure 1. Simplified Block Diagram and Timing

Figure 2. Pin Out of the XRD87L99

44-Pin PQFP ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$)

XRD87L99
LOW POWER, 2 MSPS, 10-BIT, A/D CONVERTER WITH 8-CHANNEL MUX
REV. 1.0.0

PIN DESCRIPTIONS

PIN \#	Name	Description
1	DB6	Data Output Bit 6
2	DB7	Data Output Bit 7
3	DGND	Digital Ground
4	DGND	Digital Ground
5	DV ${ }_{\text {DD }}$	Digital V_{DD}
6	$\overline{C L R}$	Clear (Active Low)
7	$\overline{\mathrm{WR}}$	Write (Active Low)
8	A2	Address 2
9	A1	Address 1
10	A0	Address 0
11	CLK	Clock Input
12	$\overline{\mathrm{OE}}$	Output Enable (Active Low)
13	N/C	No Connect
14	DB8	Data Output Bit 8
15	DB9	Data Output Bit 9 (MSB)
16	OFW	Overflow Output
17	$\mathrm{V}_{\mathrm{REF}(+)}$	Upper Reference Voltage
18	$\mathrm{V}_{\text {REF(-) }}$	Lower Reference Voltage
19	$\mathrm{V}_{\text {REF1 (-) }}$	Lower Reference Voltage
20	R1	Reference Ladder Tap
21	R2	Reference Ladder Tap
22	$\mathrm{A}_{\text {IN8 }}$	Analog Signal Input 8

Pin \#	Name	DESCRIPTION
23	R3	Reference Ladder Tap
24	N/C	No Connect
25	$\mathrm{A}_{\text {IN1 }}$	Analog Signal Input 1
26	$\mathrm{A}_{\text {IN2 }}$	Analog Signal Input 2
27	$\mathrm{A}_{\text {IN3 }}$	Analog Signal Input 3
28	$\mathrm{A}_{\text {IN4 }}$	Analog Signal Input 4
29	$\mathrm{A}_{\text {IN5 }}$	Analog Signal Input 5
30	AGND	Analog Ground
31	$\mathrm{AV}_{\mathrm{DD}}$	Analog V_{DD}
32	$\mathrm{AV}_{\mathrm{DD}}$	Analog V_{DD}
33	$\mathrm{A}_{\text {IN6 }}$	Analog Signal Input 6
34	AGND	Analog Ground
35	PD	Power Down
36	$\mathrm{A}_{\text {IN7 }}$	Analog Signal Input 7
37	DB0	Data Output Bit 0 (LSB)
38	DB1	Data Output Bit 1
39	DB2	Data Output Bit 2
40	DB3	Data Output Bit 3
41	DB4	Data Output Bit 4
42	DB5	Data Output Bit 5
43	N/C	No Connect
44	N/C	No Connect

Table 1: Truth Table for Input Channel Selection

$\overline{C L R}$	WR	A2	A1	A0	Selected Analog Input
L	X	X	X	X	$\mathrm{A}_{\text {IN1 }}$
H	L	L	L	L	$\mathrm{A}_{\mathrm{IN} 1}$
H	L	L	L	H	$\mathrm{A}_{\text {IN2 }}$
H	L	L	H	L	$\mathrm{A}_{\text {IN3 }}$
H	L	L	H	H	$\mathrm{A}_{\text {IN4 }}$
H	L	H	L	L	$\mathrm{A}_{\text {IN5 }}$
H	L	H	L	H	$\mathrm{A}_{\text {IN6 }}$
H	L	H	H	L	$\mathrm{A}_{\text {IN7 }}$
H	L	H	H	H	$\mathrm{A}_{\text {IN8 }}$
H	H	X	X	X	Previous Selection

Note: $\overline{C L R}, \overline{W R}, A 2, A 1, A 0$ are internally connected to ground through 500k resistance.

ELECTRICAL CHARACTERISTICS

 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, UNLESS OTHERWISE SPECIFIED

Parameter	Symbol	Min	TYp	Max	Units	Test Conditions/Comments
Key Features						
Resolution				10	Bits	
Sampling Rate	FS	. 001		2.0	MHz	For Rated Performance
Accuracy (A Grade) ${ }^{2}$						
Differential Non-Linearity	DNL	-1	± 0.3	1	LSB	
Integral Non-Linearity	INL		1	2	LSB	Best Fit Line (Max INL - Min INL)/2
Zero Scale Error	EZS	0	50	100	mV	
Full Scale Error	EFS	0	30	60	mV	
Reference Voltages						
Positive Ref. Voltage ${ }^{5}$	$\mathrm{V}_{\mathrm{REF}(+)}$	1.0	3.0	$\mathrm{AV}_{\mathrm{DD}}$	V	
Negative Ref. Voltage ${ }^{5}$	$\mathrm{V}_{\text {REF(-) }}$	AGND	1.0	$\mathrm{AV}_{\mathrm{DD}}{ }^{-1}$	V	
Differential Ref. Voltage ${ }^{5}$	$\mathrm{V}_{\text {REF }}$	1.0	2.0	$\mathrm{AV}_{\mathrm{DD}}$	V	
Ladder Resistance	RL	500	1200	2000	W	
Analog Input ${ }^{1}$						
Input Bandwidth (-1dB)		1.0		4.0	MHz	1-Channel
Input Bandwidth (-1dB)		0.125		0.5	MHz	8-Channel
Input Voltage Range ${ }^{7}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {REF(-) }}$		$\mathrm{V}_{\text {REF(+) }}$	V	
Input Capacitance ${ }^{3}$	C_{IN}		20		pF	
Aperture Delay ${ }^{1}$	$\mathrm{t}_{\text {AP }}$		8		ns	
Digital Inputs						
Logical "1" Voltage	V_{IH}	2.0			V	
Logical "0" Voltage	$\mathrm{V}_{\text {IL }}$			0.8	V	
Leakage Currents	I_{IN}					$\mathrm{V}_{\mathrm{IN}}=\mathrm{DGND}$ to DV DD
CLK		-1		1	$\mu \mathrm{A}$	
CLR, $\overline{W R}, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A}, ~ \mathrm{PD}, \overline{\mathrm{OE}}$		-5		30	$\mu \mathrm{A}$	These input pins have $500 \mathrm{k} \Omega$ internal resistors to GND
Input Capacitance			5		pF	

 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, UNLESS OTHERWISE SPECIFIED

Parameter	Symbol	Min	TYP	Max	UnITS	Test Conditions/Comments
Clock Timing						
Clock Period	T_{S}	500		1,000,000	ns	
Rise \& Fall Time ${ }^{4}$	t_{R}, t_{F}			10	ns	
"High" Time	t_{B}	125	250	500,000	ns	
"Low" Time	t_{s}	125	250	500,000	ns	
Digital Outputs						$\mathrm{C}_{\text {OUT }}=15 \mathrm{PF}$
Logical "1" Voltage	V_{OH}	DV $\mathrm{DD}^{-0.5}$			V	$\mathrm{I}_{\text {LOAD }}=2 \mathrm{~mA}$
Logical "0" Voltage	V_{OL}			0.5	V	$\mathrm{I}_{\text {LOAD }}=2 \mathrm{~mA}$
Tristate Leakage	l OZ	-1		1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0$ to $\mathrm{DV}_{\text {DD }}$
Data Hold Time ${ }^{1}$	$\mathrm{t}_{\mathrm{HLD}}$		12		ns	
Data Valid Delay ${ }^{1}$	${ }^{\text {D }}$ L		30	35	ns	
Write Pulse Width ${ }^{1}$	$t_{\text {WR }}$	40			ns	
Multiplexer Address Setup Time ${ }^{1}$	$\mathrm{t}_{\text {AS }}$	80			ns	
Multiplexer Address Hold Time ${ }^{1}$	$\mathrm{t}_{\text {AH }}$	0			ns	
Delay from $\overline{\mathrm{WR}}$ to Multiplexer ${ }^{1}$						
Enable	$\mathrm{t}_{\text {MUXEN } 1}$			80	ns	
Clock to PD Setup Time	${ }^{\text {t CLKS } 1}$			400	ns	
Clock to UR Setup Time	$\mathrm{t}_{\text {CLKS2 }}$	0			ns	
Clock to PD Hold Time	$\mathrm{t}_{\text {CLKH1 }}$			600	ns	

 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, UNLESS OTHERWISE SPECIFIED

Parameter	Symbol	Min	TYp	Max	Units	Test Conditions/Comments
Clock to $\overline{\mathrm{WR}}$ Hold Time	$\mathrm{t}_{\mathrm{CLKH} 2}$	0			ns	
Power Down Time ${ }^{1}$	$t_{\text {PD }}$			300	ns	
Power Up Time ${ }^{1}$	t_{PU}			200	ns	
Data Enable Delay	$\mathrm{t}_{\text {DEN }}$		14	16	ns	
Data High Z Delay	$\mathrm{t}_{\mathrm{DHZ}}$		4	6	ns	
Pipeline Delay (Latency)			1.5		cycles	
POWER SUPPLIES ${ }^{8}$						
Power Down ($\mathrm{IDD}^{\text {) }}$	$\mathrm{I}_{\text {PD-DD }}$		0.01	0.10	mA	PD=High, CLK High or Low
Operating Voltage ($\mathrm{AV}_{\mathrm{DD}}$, $\mathrm{DV}_{\mathrm{DD}}$)	V_{DD}	2.7	3.0	3.6	V	
Current ($\mathrm{AV}_{\mathrm{DD}}+\mathrm{DV}_{\mathrm{DD}}$)	I_{DD}		7	10	mA	$\begin{aligned} & \text { PD=Low (Normal Mode) } \\ & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \end{aligned}$

Notes:

1 Guaranteed. Not tested.
2 Tester measures code transition voltages by dithering the voltage of the analog input ($V_{I N}$). The difference between the measured code width and the ideal value ($V_{R E F} / 1024$) is the DNL error. The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage.
3 See $V_{I N}$ input equivalent circuit.
4 Clock specification to meet aperture specification ($t_{\text {AP }}$). Actual rise/fall time can be less stringent with no loss of accuracy.
5 Specified values guarantee functional device. Refer to other parameters for accuracy.
6 System can clock the XRD87L99 with any duty cycle as long as all timing conditions are met.
7 Input range where input is converted correctly into binary code. Input voltage outside specified range converts to zero or full scale output.
$8 D V_{D D}$ and $A V_{D D}$ are connected through the silicon substrate. Connect together at the package.

Absolute Maximum Ratings: $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted) ${ }^{1,2,3}$

V_{DD} (to GND)	+7 V
$\mathrm{~V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}, \mathrm{V}_{\mathrm{REF}(-)}$	GND -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
All $\mathrm{A}_{\mathrm{INs}}$	GND -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
All Inputs	GND -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
All Outputs	GND -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 seconds)	$+300^{\circ} \mathrm{C}$
Package Power Dissipation Rating to $75^{\circ} \mathrm{C}$	
PQFP	450 mW
Derates above $75^{\circ} \mathrm{C}$	$14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Note:
1 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps(HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100 mA for less than 100 us .
$3 V_{D D}$ refers to $A V_{D D}$ and $D V_{D D}$. GND refers to $A G N D$ and $D G N D$.

Figure 3. XRD87L99 Timing Diagram

THEORY OF OPERATION

1.0 ANALOG-TO-DIGITAL CONVERSION

The XRD87L99 converts analog voltages into 1024 digital codes by encoding the outputs of coarse and fine comparators. Digital logic is used to generate the overflow bit. The conversion is synchronous with the clock and it is accomplished in 2 clock periods.
The reference resistance ladder is a series of resistors. The fine comparators use a patented interpolation circuit to generate the equivalent of 1024 evenly spaced reference voltages between $\mathrm{V}_{\text {REF(-) }}$ and $\mathrm{V}_{\mathrm{REF}(+)}$.
The clock signal generates the two internal phases, $\phi \mathrm{B}$ (CLK high) and ϕ S (CLK low = sample) (See Figure 1). The rising edge of the CLK input marks the end of the sampling phase (ϕS). Internal delay of the clock circuitry will delay the actual instant when ϕS
disconnects the latches from the comparators. This delay is called aperture delay (t_{AP}).
The coarse comparators make the first pass conversion and selects a ladder range for the fine comparators. The fine comparators are connected to the selected range during the next ϕB phase.

Figure 4. XRD87L99 Comparators

$A_{\text {IN }}$ Sampling, Ladder Sampling, and Conversion Timing
Figure 3 shows this relationship as a timing chart. $\mathrm{A}_{\text {IN }}$ sampling, ladder sampling and output data relationships are shown for the general case where the levels which drive the ladder need to change for each sampled A_{IN} time point. The ladder is referenced for both last $A_{I N}$ sample and next $A_{I N}$ sample at the same time. If the ladder's levels change by more than 1 LSB, one of the samples must be discarded. Also note that the clock low period for the discarded A_{IN} can be reduced to the minimum t_{s} time.

Figure 5. XRD87L99 Comparators with Changing Reference Voltage

1.1 Accuracy of Conversion: DNL and INL

 The transfer function for an ideal A / D converter is shown in Figure 6.Figure 6. Ideal A/D Transfer Function

The overflow transition (VOFW) takes place at:

$$
V_{\mathrm{IN}}=\operatorname{VOFW}=V_{\operatorname{REF}(+)}
$$

The first and the last transitions for the data bits take place at:

$$
\begin{aligned}
& V_{\text {IN }}=V 001=V_{\text {REF }(-)}+1.0 * L S B \\
& V_{\text {IN }}=V 3 F F=V_{\text {REF }(-)}-1.0 * L S B \\
& V_{\text {REF }}=V_{\text {REF }(+)}-V_{\text {REF }(-)} \\
& L S B=V_{\text {REF }} / 1024=\left(V_{\text {3FF }}-V 001\right) / 1022
\end{aligned}
$$

Note: The overflow transition is a flag and has no impact on the data bits.
In a "real" converter the code-to-code transitions don't fall exactly every $\mathrm{V}_{\text {REF }} / 1024$ volts.

A positive DNL (Differential Non-Linearity) error means that the real width of a particular code is larger than 1 LSB. This error is measured in fractions of LSBs.

A Max DNL specification guarantees that ALL code widths (DNL errors) are within the stated value. A specification of Max DNL $= \pm 0.5$ LSB means that all code widths are within 0.5 and 1.5 LSB . If $\mathrm{V}_{\text {REF }}=2.56$ V then $1 \mathrm{LSB}=2.5 \mathrm{mV}$ and every code width is within 1.25 and 3.75 mV .

Figure 7. DNL Measurement On Production Tester

The formulas for Differential Non-Linearity (DNL), Integral Non-Linearity (${ }_{1 N} \mathrm{~L}$) and zero and full scale errors (EZS, EFS) are:

DNL (001) = V002 - V001 - LSB
: : :
DNL (3FE) $=$ V3FF $-V 3 F E-L S B$
EFS (full scale error) $=$ V3FF $-\left[V_{\mathrm{REF}(+)}-1.5 *\right.$ LSB]
EZS (zero scale error) $=$ V001 $-\left[V_{\text {REF(-) }}+0.5 *\right.$ LSB $]$

Figure 8. Real A/D Transfer Curve

Figure 8 shows the zero scale and full scale error terms.
Figure 9 gives a visual definition of the INL error. The chart shows a 3-bit converter transfer curve with greatly exaggerated DNL errors to show the deviation of the real transfer curve from the ideal one.
After a tester has measured all the transition voltages, the computer draws a line parallel to the ideal transfer line. By definition the best fit line makes equal the positive and the negative INL errors. For example, an INL error of -1 to +2 LSB's relative to the Ideal Line would be ± 1.5 LSB's relative to the best fit line.

Figure 9. inl Error Calculation

1.2 Clock and Conversion Timing

A system will clock the XRD87L99 continuously or it will give clock pulses intermittently when a conversion is desired. The timing of Figure 10a shows normal operation, while the timing of Figure 10b keeps the XRD87L99 in balance and ready to sample the analog input.

Figure 10. Relationship of Data to Clock

1.3 ANALOG InPUT

The XRD87L99 has very flexible input range characteristics. The user may set $\mathrm{V}_{\mathrm{REF}(+)}$ and $\mathrm{V}_{\mathrm{REF}(-)}$ to two fixed voltages and then vary the input DC and AC levels to match the VREF range. Another method is to first design the analog input circuitry and then adjust the reference voltages for the analog input range.
One advantage is that this approach may eliminate the need for external gain and offset adjust circuitry which may be required by fixed input range $A / D s$.
The XRD87L99's performance is optimized by using analog input circuitry that is capable of driving the $\mathrm{A}_{\text {IN }}$ input. Figure 11 shows the equivalent circuit for $\mathrm{A}_{\text {IN }}$.

Figure 11. Analog Input Equivalent Circuit

1.4 ANALOG INPUT MULTIPLEXER

The XRD87L99 includes a 8-Channel analog input multiplexer. The relationship between the clock, the multiplexer address, the $\overline{\mathrm{WR}}$ and the output data is shown in Figure 12.

Figure 12. MUX Address Timing

Figure 13. Analog MUX Timing

1.5 Reference Voltages

The input/output relationship is a function of $\mathrm{V}_{\text {REF }}$:

$$
\begin{aligned}
& A_{\text {IN }}=V_{\text {IN }}-V_{\text {REF }(-)} \\
& V_{\text {REF }}=V_{\text {REF }(+)}-V_{\text {REF }(-)} \\
& \text { DATA }=1024^{*}\left(A_{I N} V_{\text {REF }}\right)
\end{aligned}
$$

A system can increase total gain by reducing $\mathrm{V}_{\text {REF }}$

1.6 Digital Interfaces

The logic encodes the outputs of the comparators into a binary code and latches the data in a D-type flipflop for output.
The functional equivalent of the XRD87L99 (Figure 14) is composed of:

1. Delay stage (t_{AP}) from the clock to the sampling phase (f_{S}).
2. An ideal analog switch which samples V_{IN}.
3. An ideal A / D which tracks and converts $V_{\text {IN }}$ with no delay.
4. A series of two DFF's with specified hold ($\mathrm{t}_{\mathrm{HLD}}$) and delay ($t_{D L}$) times.
$t_{A B} t_{H L} D$ and $t_{D L}$ are specified in the Electrical Characteristics table.

1.7 Power Down

Figure 15 shows the relationship between the clock,

Figure 14. XRD87L99 Functional Equivalent Circuit and Interface Timing
 sampled $\mathrm{V}_{\text {IN }}$ to output data relationship and the effect of power down.

Figure 15. Power Down Timing Diagram

2.0 APPLICATION NOTES

Figure 16. Typical Circuit Connections

The following information will be useful in maximizing the performance of the XRD87L99.

1. All signals should not exceed $A V_{D D}+0.5 \mathrm{~V}$ or AGND -0.5 V or $\mathrm{DV}_{\mathrm{DD}}+0.5 \mathrm{~V}$ or DGND -0.5 V .
2. Any input pin which can see a value outside the absolute maximum ratings ($\mathrm{AV} \mathrm{V}_{\mathrm{DD}}$ or $\mathrm{DV}_{\mathrm{DD}}+0.5 \mathrm{~V}$ or AGND -0.5 V) should be protected by diode clamps (HP5082-2835) from input pin to the supplies. All XRD87L99 inputs have input protection diodes which will protect the device from short transients outside the supply ranges.
3. The design of a PC board will affect the accuracy of XRD87L99. Use of wire wrap is not recommended.
4. The analog input signal $\left(\mathrm{V}_{\text {IN }}\right)$ is quite sensitive and should be properly routed and terminated. It should be shielded from the clock and digital outputs so as to minimize cross coupling and noise pickup.
5. The analog input should be driven by a low impedance (less than 50Ω).
6. Analog and digital ground planes should be substantial and common at one point only. The
ground plane should act as a shield for parasitics and not a return path for signals. To reduce noise levels, use separate low impedance ground paths. DGND should not be shared with other digital circuitry. If separate low impedance paths cannot be provided, DGND should be connected to AGND next to the XRD87L99.
7. $D V_{D D}$ should not be shared with other digital circuitry to avoid conversion errors caused by digital supply transients. DV $V_{D D}$ for the XRD87L99 should be connected to $A V_{D D}$ next to the XRD87L99.
8. $D V_{D D}$ and $A V_{D D}$ are connected inside the XRD87L99. DGND and AGND are connected internally.
9. Each power supply and reference voltage pin should be decoupled with a ceramic ($0.1 \mu \mathrm{~F}$) and a tantalum $(10 \mu \mathrm{~F})$ capacitor as close to the device as possible.
10. The digital output should not drive long wires. The capacitive coupling and reflection will contribute noise to the conversion. When driving distant loads, buffers should be used. 100Ω resistors in series with the digital outputs in some applications reduces the digital output disruption of $A_{I N}$.

Figure 17. Example of a Reference Voltage Source

Figure 18. $\pm 3 \mathrm{~V}$ Analog Input

For $R=5 k$ use Beckman Instruments \#694-3-R10k resistor array or equivalent.
Note: High R values affect the input $B W$ of $A D C$ due to the ($R^{*} C_{I N}$ of $A D C$) time constant. Therefore, for different applications the R value needs to be selected as a trade-off between $A_{\text {IN }}$ settling time and power dissipation.

Figure 19. $\pm 6 \mathrm{~V}$ Analog Input

For $R=5 k$ use Beckman Instruments \#694-3-R10k resistor array or equivalent.
NOTE: High R values affect the input BW of ADC due to the ($R^{*} C_{I N}$ of ADC) time constant. Therefore, for different applications the R value needs to be selected as a trade-off between $A_{I N}$ settling time and power dissipation.

Figure 20. A/D Ladder and $A_{\text {In }}$ with Programmed Control (of $\mathrm{V}_{\text {REF }(+)}, \mathrm{V}_{\text {REF(-) }}, \mathbf{1 / 4}$ and $3 / 4$ TAP.)

@ Power Down write values to DAC 3, 2, 1 = DAC 4 to minimize power consumption.
Only $A_{I N}$ and Ladder detail shown.

LOW POWER, 2 MSPS, 10-BIT, A/D CONVERTER WITH 8-CHANNEL MUX
REV. 1.0.0
Figure 21. DNL vs. Sampling Frequency

Figure 22. INL vs. Sampling Frequency

Figure 23. Supply Current vs. Sampling Frequency

Figure 24. Best Fit inL vs. Reference Voltage

LOW POWER, 2 MSPS, 10-BIT, A/D CONVERTER WITH 8-CHANNEL MUX
REV. 1.0.0
Figure 25. DNL vs. Reference Voltage

Figure 26. Supply Current vs. Temperature

Figure 27. DNL vs. Temperature

Figure 28. Reference Resistance Vs.Temperature

LOW POWER, 2 MSPS, 10-BIT, A/D CONVERTER WITH 8-CHANNEL MUX
REV. 1.0.0
Figure 29. I_{DD} vs. V_{DD}

Figure 30. INL @ 2MSPS

44 LEAD PLASTIC QUAD FLAT PACK
($10 \mathrm{~mm} \times 10 \mathrm{~mm}$ QFP, 1.60 mm Form)
REV. 2.00

Note: The control dimension is the millimeter column

SYMBOL	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.072	0.093	1.82	2.45
$\mathrm{~A}_{1}$	0.001	0.010	0.02	0.25
$\mathrm{~A}_{2}$	0.071	0.087	1.80	2.20
B	0.011	0.018	0.29	0.45
C	0.004	0.009	0.11	0.23
D	0.510	0.530	12.95	13.45
D_{1}	0.390	0.398	9.90	10.10
e	0.0315 BSC			0.80
L	0.029	0.040	0.73	1.03
α	0°	7°	0°	7°

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for in accuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2001 EXAR Corporation
Datasheet February 2001
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

