imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

JUNE 2006

GENERAL DESCRIPTION

The XRT83SL30 is a fully integrated single-channel short-haul line interface unit for T1(1.544Mbps) 100 Ω , E1(2.048Mbps) 75 Ω or 120 Ω and J1 110 Ω applications.

In T1 applications, the XRT83SL30 can generate five transmit pulse shapes to meet the short-haul Digital Cross-Connect (DSX-1) template requirements.

The XRT83SL30 provides both Serial Host microprocessor interface and Hardware Mode for programming and control. Both B8ZS and HDB3 encoding and decoding functions are included and can be disabled as required. On-chip crystal-less jitter attenuator with a 32 or 64 bit FIFO can be placed either in the receive or the transmit path with loop bandwidths of less than 3Hz. The XRT83SL30 provides a variety of loop-back and diagnostic features as well as transmit driver short circuit detection and receive loss of signal monitoring. It supports internal impedance matching for 75Ω , 100Ω , 110 Ω and 120 Ω for both transmitter and receiver. For

the receiver this is accomplished with internal resistors or through the combination of one single fixed value external resistor and programmable internal resistors. In the absence of the power supply, the transmit output and receive input are tri-stated allowing for redundancy applications. The chip includes an integrated programmable clock multiplier that can synthesize T1 or E1 master clocks from a variety of external clock sources.

XRT83SL30

REV. 1.0.1

APPLICATIONS

- T1 Digital Cross-Connects (DSX-1)
- ISDN Primary Rate Interface
- CSU/DSU E1/T1/J1 Interface
- T1/E1/J1 LAN/WAN Routers
- Public switching Systems and PBX Interfaces
- T1/E1/J1 Multiplexer and Channel Banks

FEATURES

(See Page 2)

FIGURE 1. BLOCK DIAGRAM OF THE XRT83SL30 T1/E1/J1 LIU (HOST MODE)

Experience Our Connectivity SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.1

FIGURE 2. BLOCK DIAGRAM OF THE XRT83SL30 T1/E1/J1 LIU (HARDWARE MODE)

FEATURES

- Fully integrated single-channel short-haul transceiver for E1,T1 or J1 applications
- Programmable Transmit Pulse Shaper for E1,T1 or J1 short-haul interfaces
- Five fixed transmit pulse settings for T1 short-haul applications plus a fully programmable waveform generator for transmit output pulse shaping
- High receiver interference immunity
- Receive monitor mode handles 0 to 29dB resistive attenuation along with 0 to 6dB of cable attenuation for both T1 and E1 modes
- Supports 75 Ω and 120 Ω (E1), 100 Ω (T1) and 110 Ω (J1) applications.
- Internal and/or external impedance matching for 75Ω , 100Ω , 110Ω and 120Ω .
- Tri-State transmit output and receive input capability for redundancy applications
- Provides High Impedance for Tx and Rx during power off
- Transmit return loss meets or exceeds ETSI 300 166 standard
- On-chip digital clock recovery circuit for high input jitter tolerance
- Crystal-less digital jitter attenuator with 32-bit or 64-bit FIFO Selectable either in transmit or receive path
- On-chip frequency multiplier generates T1 or E1 Master clocks from variety of external clock sources
- On-chip transmit short-circuit protection and limiting, and driver fail monitor output (DMO)
- Receive loss of signal (RLOS) output
- On-chip HDB3/B8ZS/AMI encoder/decoder
- QRSS pattern generation and detection for testing and monitoring
- Error and Bipolar Violation Insertion and Detection

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

- Receiver Line Attenuation Indication Output in 1dB steps
- Network Loop-Code Detection for automatic Loop-Back Activation/Deactivation
- Transmit All Ones (TAOS) and In-Band Network Loop Up and Down code generators
- Supports Local Analog, Remote, Digital and Dual Loop-Back Modes
- Meets or exceeds T1 and E1 short-haul network access specifications in ITU G.703, G.775, G.736 and G.823; TR-TSY-000499; ANSI T1.403 and T1.408; ETSI 300-166 and AT&T Pub 62411
- Supports both Hardware and serial Microprocessor interface for programming
- Programmable Interrupt
- Low power dissipation
- Logic inputs accept either 3.3V or 5V levels
- Single +3.3V Supply Operation
- 64 pin TQFP package
- -40°C to +85°C Temperature Range

ORDERING INFORMATION

PART NUMBER	Package	OPERATING TEMPERATURE RANGE
XRT83SL30IV	64 Lead TQFP (10 x 10 x 1.4mm)	-40°C to +85°C

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

FIGURE 3. PIN OUT OF THE XRT83SL30

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

TABLE OF CONTENTS

GENERAL DESCRIPTION	1
APPLICATIONS	1
FEATURES	1
Figure 1. Block Diagram of the XRT83SL30 T1/E1/J1 LIU (Host Mode)	1
Figure 2. Block Diagram of the XRT83SL30 T1/E1/J1 LIU (Hardware Mode)	2
Features	2
ORDERING INFORMATION	3
Figure 3. Pin Out of the XRT83SL30	4
TABLE OF CONTENTS	1
	5
DEGENTER AGE	
	0
	/
	9
	9
	11
	10
CONTROL FUNCTION	13
ALARM FUNCTION/OTHER	14
	10
	17
MASTER CLOCK GENERATOR	1/
Figure 4. Two Input Clock Source	17
Figure 5. One Input Clock Source	1/
TABLE 1: MASTER CLOCK GENERATOR	18
	18
RECEIVER INPUT	18
RECEIVE MONITOR MODE	19
RECEIVER LOSS OF SIGNAL (RLOS)	19
Figure 6. Simplified Diagram of -15dB T1/E1 Short Haul Mode and RLOS Condition	19
Figure 7. Simplified Diagram of -29dB T1/E1 Gain Mode and RLOS Condition	20
RECEIVE HDB3/B8ZS DECODER	20
RECOVERED CLOCK (RCLK) SAMPLING EDGE	20
Figure 8. Receive Clock and Output Data Timing	20
	21
GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)	21
I ABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS	21
ARBITRARY PULSE GENERATOR	22
Figure 9. Arbitrary Pulse Segment Assignment	22
	22
DIGITAL DATA FORMAT	22
TRANSMIT CLOCK (TCLK) SAMPLING EDGE	22
Figure 10. Transmit Clock and Input Data Timing	23
I RANSMIT HDB3/B8ZS ENCODER	23
IABLE 3: EXAMPLES OF HDB3 ENCODING	23
TABLE 4: EXAMPLES OF B82S ENCODING	23
	23
I RANSMIT PULSE SHAPER & LINE BUILD OUT (LBO) CIRCUIT	24
IABLE 5: KECEIVE EQUALIZER CONTROL AND I RANSMIT LINE BUILD-OUT SETTINGS	24
	25
RECEIVER	25
Internal Receive Termination Mode 2	25

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR	REV. 1.0.1
TABLE 6: RECEIVE TERMINATION CONTROL	25
Figure 11. Simplified Diagram for the Internal Receive and Transmit Termination Mode	
TABLE 7: RECEIVE TERMINATIONS	
Figure 12. Simplified Diagram for T1 in the External Termination Mode (RXTSEL= 0)	
Figure 13. Simplified Diagram for E1 in External Termination Mode (RXTSEL= 0)	27
TRANSMITTER	27
Transmit Termination Mode	27
TABLE 8: TRANSMIT TERMINATION CONTROL	27
TABLE 9: TERMINATION SELECT CONTROL	27
External Transmit Termination Mode	27
TABLE 10: TRANSMIT TERMINATION CONTROL	
TABLE 11: TRANSMIT TERMINATIONS	
REDUNDANCY APPLICATIONS	
TYPICAL REDUNDANCY SCHEMES	
Figure 14. Simplified Block Diagram of the Transmit Section for 1:1 & 1+1 Redundancy .	30
Figure 15. Simplified Block Diagram - Receive Section for 1:1 and 1+1 Redundancy	31
Figure 16. Simplified Block Diagram - Transmit Section for N+1 Redundancy	32
Figure 17. Simplified Block Diagram - Receive Section for N+1 Redundancy	
TABLE 12: PATTERN TRANSMISSION CONTROL	
NETWORK LOOP CODE DEFECTION AND TRANSMISSION	
TABLE 12: LOOP CODE DETECTION AND TRANSMISSION	
TABLE 13: LOOP-CODE DETECTION CONTROL	
LOOP-BACK MODES	
TABLE 14: LOOD-BACK CONTROL IN HARDWARE MODE	
TABLE 14: LOOP-BACK CONTROL IN HARDWARE MODE	
LOCAL ANALOG LOOP-BACK (ALOOP)	37
Figure 18 Local Analog Loop-back signal flow	
REMOTE LOOP-BACK (RLOOP)	38
Figure 19. Remote Loop-back mode with itter attenuator selected in receive path	
Figure 20. Remote Loop-back mode with iitter attenuator selected in Transmit path	
DIGITAL LOOP-BACK (DLOOP)	
Figure 21. Digital Loop-back mode with jitter attenuator selected in Transmit path	39
DUAL LOOP-BACK	
Figure 22. Signal flow in Dual loop-back mode	39
HOST MODE SERIAL INTERFACE OPERATION	40
USING THE MICROPROCESSOR SERIAL INTERFACE	40
Figure 23. Microprocessor Serial Interface Data Structure	41
TABLE 16: MICROPROCESSOR REGISTER ADDRESS	42
TABLE 17: MICROPROCESSOR REGISTER BIT MAP	42
TABLE 18: MICROPROCESSOR REGISTER #0 BIT DESCRIPTION	44
TABLE 19: MICROPROCESSOR REGISTER #1 BIT DESCRIPTION	45
TABLE 20: MICROPROCESSOR REGISTER #2 BIT DESCRIPTION	47
TABLE 21: MICROPROCESSOR REGISTER #3 BIT DESCRIPTION	49
TABLE 22: MICROPROCESSOR REGISTER #4 BIT DESCRIPTION	51
TABLE 23: MICROPROCESSOR REGISTER #5 BIT DESCRIPTION	52
TABLE 24: MICROPROCESSOR REGISTER #6 BIT DESCRIPTION	54
TABLE 25: MICROPROCESSOR REGISTER #7 BIT DESCRIPTION	55
I ABLE 26: MICROPROCESSOR REGISTER #8 BIT DESCRIPTION Table 27: Microprocessor Register #8 Bit Description	55
I ABLE 27: MICROPROCESSOR REGISTER #9 BIT DESCRIPTION Table 20: Microprocessor Register #9 Bit Description	
I ABLE 28: MICROPROCESSOR KEGISTER #10 BIT DESCRIPTION	56
I ABLE 29: MICROPROCESSOR KEGISTER #11 BIT DESCRIPTION	
TABLE 30: WICKOPROCESSOR REGISTER #12 BIT DESCRIPTION	
IADLE JI. WIICKUPKUCESSUK NEGISIEK #IJ BII DESCKIPTIUN	

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUAT	OR
TABLE 32: MICROPROCESSOR REGISTER #14 BIT DESCRIPTION	. 58
TABLE 33: MICROPROCESSOR REGISTER #15 BIT DESCRIPTION	. 59
TABLE 34: MICROPROCESSOR REGISTER #16 BIT DESCRIPTION	. 60
TABLE 35: MICROPROCESSOR REGISTER #17 BIT DESCRIPTION	. 61
TABLE 36: MICROPROCESSOR REGISTER #18 BIT DESCRIPTION	. 62
ELECTRICAL CHARACTERISTICS	. 64
TABLE 37: ABSOLUTE MAXIMUM RATINGS	. 64
TABLE 38: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS	. 64
TABLE 39: XRT83SL30 POWER CONSUMPTION	. 64
TABLE 40: E1 Receiver Electrical Characteristics	. 65
TABLE 41: T1 RECEIVER ELECTRICAL CHARACTERISTICS	. 65
TABLE 42: E1 TRANSMIT RETURN LOSS REQUIREMENT	. 66
TABLE 43: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS	. 66
TABLE 44: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS	. 67
Figure 24. ITU G.703 Pulse Template	. 67
TABLE 45: TRANSMIT PULSE MASK SPECIFICATION	. 68
Figure 25. DSX-1 Pulse Template (normalized amplitude)	. 68
TABLE 46: DSX1 INTERFACE ISOLATED PULSE MASK AND CORNER POINTS	. 68
TABLE 47: AC ELECTRICAL CHARACTERISTICS	. 69
Figure 26. Transmit Clock and Input Data Timing	. 70
Figure 27. Receive Clock and Output Data Timing	. 70
PACKAGE DIMENSIONS	71
64 LEAD THIN QUAD FLAT PACK	. 71
(10 x 10 x 1.4 мм TQFP)	. 71
REV. 3.00	. 71
ORDERING INFORMATION	72
TABLE 48	. 72
REVISION HISTORY	. 72

EXAR Experience Our Connectivity. R REV. 1.0.1

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

PIN DESCRIPTIONS BY FUNCTION

SERIAL INTERFACE

SIGNAL NAME	PIN #	Түре	DESCRIPTION
HW/HOST	20	I	Mode Control Input This pin is used for selecting Hardware or Host Mode to control the device. Leave this pin unconnected or tie "High" to select Hardware Mode . For Host Mode , this pin must be tied "Low". Note: Internally pulled "High" with a 50k Ω resistor.
SDI	21	I	Serial Data Input In Host Mode, this pin is the data input for the Serial Interface.
EQC4			Equalizer Control Input 4 Hardware Mode, SEE"CONTROL FUNCTION" ON PAGE 13.
SDO	22	0	Serial Data Output In Host Mode, this pin is the output "Read" data for the serial interface.
EQC3		I	Equalizer Control Input 3 Hardware Mode, SEE"CONTROL FUNCTION" ON PAGE 13.
SCLK	23	I	Serial Interface Clock Input In Host Mode, this clock signal is used to control data "Read" or "Write" oper- ation for the Serial Interface. Maximum clock frequency is 20MHz.
EQC2			Equalizer Control Input 2 Hardware Mode, SEE"CONTROL FUNCTION" ON PAGE 13.
CS	24	I	Chip Select Input In Host Mode, tie this pin "Low" to enable communication with the device via the Serial Interface.
EQC1			Equalizer Control Input 1 Hardware Mode, SEE"CONTROL FUNCTION" ON PAGE 13.
INT	25	0	Interrupt Output (active "Low") In Host Mode, this pin goes "Low" to indicate an alarm condition has occurred within the device. Interrupt generation can be globally disabled by setting the GIE bit to "0" in the command control register.
EQC0		1	 Equalizer Control Input 0 Hardware Mode, SEE"CONTROL FUNCTION" ON PAGE 13. Note: This pin is an open drain output and requires an external 10kΩ pull- up resistor.

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

RECEIVER

SIGNAL NAME	PIN #	Түре	DESCRIPTION
RLOS	63	0	Receiver Loss of Signal This signal is asserted 'High' for at least one RCLK cycle to indicate loss of signal at the receive input. RLOS will remain "High" for the entire duration of the loss of signal detected by the receiver logic.
RCLK	64	0	Receiver Clock Output
RNEG	1	0	Receiver Negative Data Output In dual-rail mode, this signal is the receiver negative-rail output data.
LCV			Line Code Violation Output In single-rail mode, this signal goes 'High' for one RCLK cycle to indicate a code violation is detected in the received data. If AMI coding is selected, every bipolar violation received will cause this pin to go "High".
RPOS	2	0	Receiver Positive Data Output In dual-rail mode, this signal is the receive positive-rail output data sent to the Framer.
RDATA			Receiver NRZ Data Output In single-rail mode, this signal is the receive NRZ format output data sent to the Framer.
RTIP	4	I	Receiver Differential Tip Positive Input Positive differential receive input from the line.
RRING	5	I	Receiver Differential Ring Negative Input Negative differential receive input from the line.
RXMUTE	50	I	Receive MutingIn Hardware Mode, connect this pin 'High' to mute RPOS and RNEG outputs to a "Low" state upon receipt of LOS condition to prevent data chattering. Connect this pin to 'Low' to disable muting function.Note: Internally pulled "Low" with 50kΩ resistor.
RCLKE	53	I	Receive Clock Edge In Hardware Mode , with this pin set to 'High' the output receive data is updated on the falling edge of RCLK. With this pin tied 'Low', output data is updated on the rising edge of RCLK. Note: Internally pulled "Low" with a 50k Ω resistor.

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

TRANSMITTER

SIGNAL NAME	Pin #	Түре	DESCRIPTION
TTIP	8	0	Transmitter Tip Output Positive differential transmit output to the line.
TRING	10	0	Transmitter Ring Output Negative differential transmit output to the line.
TPOS	61	I	Transmitter Positive Data Input In dual-rail mode, this signal is the positive-rail input data for the transmitter.
TDATA			Transmitter Data Input In single-rail mode, this pin is used as the NRZ input data for the transmitter. Note: Internally pulled "Low" with a 50k Ω resistor.
TNEG	62	I	Transmitter Negative NRZ Data Input In dual-rail mode, this signal is the negative-rail input data for the transmitter. In single-rail mode, this pin can be left unconnected.
CODES			Coding Select In Hardware Mode and with single-rail mode selected, connecting this pin "Low" enables HDB3 in E1 or B8ZS in T1 encoding and decoding. Connect- ing this pin "High" selects AMI data format. Note: Internally pulled "Low" with a 50kΩ resistor.
TCLK	60	I	Transmitter Clock InputE1 rate at 2.048MHz ± 50ppmT1 rate at 1.544MHz ± 32ppmDuring normal operation, both in Host Mode and Hardware Mode, TCLK isused for sampling input data at TPOS/TDATA and TNEG/CODES whileMCLK is used as the timing reference for the transmit pulse shaping circuit.
TCLKE	57	I	Transmit Clock Edge In Hardware Mode , with this pin set to a "High", transmit input data is sam- pled at the rising edge of TCLK. With this pin tied "Low", input data are sam- pled at the falling edge of TCLK. Note: Internally pulled "Low" with a 50k Ω resistor.
TXON	58	I	Transmitter Turn On In Hardware Mode , setting this pin "High" turns on the Transmit Section. In this mode, when TXON = "0", TTIP and TRING driver outputs will be tri- stated. In Host Mode , setting bit 5 (TXONCTL) to "1", in Register 18 (12h), control of the transmitter output is transferred to the hardware pin TXON. Note: Internally pulled "Low" with a 50k Ω resistor.

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

TRANSMITTER

SIGNAL NAME	Pin #	Түре	DESCRIPTION					
TXTEST2 TXTEST1 TXTEST0	54 55 56	I	Transmit Test Transmit Test Transmit Test In Hardware M test patterns ac	Pattern pin 2 Pattern pin 1 Pattern pin 0 ode, TXTEST cording to the	[[2:0] pins are following tal	e used to generate and transmit ble:		
			TXTEST2	TXTEST1	TXTEST0	Test Pattern		
			0	0	0	Transmit Data		
			0	0	1	TAOS		
			0	1	0	TLUC		
			0	1	1	TLDC		
			1	0	0	TDQRSS		
			1	0	1	TDQRSS & INVQRSS		
			1	1	0	TDQRSS & INSBER		
			1	1	1	TDQRSS & INVQRSS & INS		
			TAOS (Transm sion of an All O TLUC (Transm enables the Net When Network ignore the Autor (NLCDE1="1", I Digital Loop-back requ TLDC (Transm enables the net TDQRSS (Tran regardless of th Signal Source of 2 ²⁰ -1 pseudo-ra tive zeros. In a When TXTEST the polarity of tr pattern with no When TXTEST "0" to "1" results The state of this insertion of a bi When TXTEST bit pattern indep	it All Ones): nes Pattern.T it Network Loop-U Loop-Up code matic Loop-Ce NLCDE0="1", ck automatica est. it Network Loop-De smit/Detect O e state of TX peneration and andom bit see E1 system, Q 2 is "1" and TI ansmitted QF inversion. 2 is "1" and T is in a bit error s pin is sampl t error, this pin 2 is "1", TXTE pendently.	Activating thi CLK must no oop-Up Cod p Code of "Ou e is being tra ode detectior if activated) ally when the oop-Down C own Code of Quasi-Rando TEST1 and T d detection. I guence (PRB: PRSS is a 2 ¹⁵ DQRSS is act RSS pattern. DQRSS is act to be inserte ed on the risi n should be r ST1 and TXT	is condition enables the transmis- ot be tied "Low". e): Activating this condition 0001" to be transmitted to the line. Insmitted, the XRT83SL30 will and Remote Loop-back activation in order to avoid activating Remote remote terminal responds to the code): Activating this condition "001" to be transmitted to the line. Code): Activating this condition "001" to be transmitted to the line. Code): Activating this condition "001" to be transmitted to the line. Code): Activating this condition "01" to be transmitted to the line. Code): Activating this condition "01" to be transmitted to the line. Code): Activating this condition "01" to be transmitted to the line. Code): Activating this condition "01" to be transmitted to the line. Code): Activating this condition "01" to be transmitted to the line. Code): Activating this condition "01" to be transmitted QRSS attive, transitions of TXTEST1 from d in the transmitted QRSS pattern. ng edge of TCLK. To ensure the esset to a "0" before setting to a "1". "EST0 affect the transmitted QRSS		

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

JITTER ATTENUATOR

SIGNAL NAME	Pin #	Түре			[DESCRIPTION			
JABW	46	I	Jitter Attenuator Bandwidth In Hardware and E1 mode, when JABW="0" the jitter attenuator bandwidth is 10Hz (normal mode). Setting JABW to "1" selects a 1.5Hz Bandwidth for the Jitter Attenuator and the FIFO length will be automatically set to 64 bits. In T1 mode the Jitter Attenuator Bandwidth is always set to 3Hz, and the state of this pin has no effect on the Bandwidth. See table under JASEL[1:0] pin, below. Note: Internally pulled "Low" with a 50k Ω resistor.						
JASEL1 JASEL0	47 48	I	Jitter Attenuator select pin 1 Jitter Attenuator select pin 0 In Hardware Mode, JASEL0, JASEL1 and JABW pins are used to place the jitter attenuator in the transmit path, the receive path or to disable it and set the jitter attenuator bandwidth and FIFO size per the following table.					ed to place the able it and set table.	
			JABW JASEL1 JASEL0 JA Path JA BW (Hz) FIFO Size						
			0	0	0	Disabled			
			0	0	1	Transmit	3	10	32/32
			0	1	0	Receive	3	10	32/32
			0	1	1	Receive	3	10	64/64
			1	0	0	Disabled			
			1	0	1	Transmit	3	1.5	32/64
			1	1	0	Receive	3	1.5	32/64
			1	1	1	Receive	3	1.5	64/64
			Noтe: The	ese pins ar	e internally	pulled "Low	" with 50	lkΩ resis	tors.

CLOCK SYNTHESIZER

SIGNAL NAME	Pin #	Түре	DESCRIPTION
SIGNAL NAME MCLKE1	Рім # 13	I	DESCRIPTION E1 Master Clock Input This input signal is an independent 2.048MHz clock for E1 system with required accuracy of better than ±50ppm and a duty cycle of 40% to 60%. MCLKE1 is used in the E1 mode. Its function is to provide internal timing for the PLL clock recovery circuit, transmit pulse shaping, jitter attenuator block, reference clock during transmit all ones data and timing reference for the microprocessor in Host Mode operation. MCLKE1 is also input to a programmable frequency synthesizer that under the control of the CLKSEL[2:0] inputs can be used to generate a master clock from an accurate external source. In systems that have only one mas- ter clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. <i>Notes:</i>
			 See pin descriptions for pins CLKSEL[2:0]. Internally pulled "Low" with a 50kΩ resistor.

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

CLOCK SYNTHESIZER

SIGNAL NAME	Pin #	Түре				DESCRIPT	ΓΙΟΝ		
MCLKT1	14	I	T1 Master	[·] Clock In	out				
			This signa accuracy o input is us Notes:	l is an inde of better th ed in the T	ependent 1 an ±50ppn 1 mode.	.544MHz n and duty	clock for T cycle of 4	1 systems w 0% to 60%.	/ith required MCLKT1
			1. S	See MCLK his pin.	E1 descrip	otion for fu	urther expl	lanation for	the usage of
			2. lı	nternally p	ulled "Low	" with a 50	kΩ resisto	r.	
MCLKOUT	16	0	Synthesiz	ed Maste	r Clock Ou	utput			
			This signa or E1 rate	l is the out based on	put of the the the mode	Master Clo of operation	ock Synthe on.	esizer PLL w	hich is at T1
CLKSEL2	17	I	Clock Sel	ect input	for Master	Clock Sy	nthesizer	pin 2	
CLKSEL1	18		Clock Sel	ect input	for Master	Clock Sy	nthesizer	pin 1	
CLKSEL0	19		Clock Sel	ect input	for Master	Clock Sy	nthesizer	pin 0	
			In Hardwa	are Mode, athonizor t	CLKSEL[2	2:0] are inp	out signals	to a program	nmable fre-
			external ad	ccurate clo	inal can be	according	to the follo	owing table.	The
			MCLKRAT	E control	signal is ge	enerated fr	rom the sta	ate of EQC[4	:0] inputs.
			See Table	5 for des	cription of	Transmit I	Equalizer (Control bits.	
			In Host M e PLL is con	ode, the s trolled by	tate of thes the corres	se pins are conding in	e ignored a terface bits	nd the mast 3.	er frequency
			MCLKE1 (kHz)	MCLKT1 (kHz)	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	CLKOUT (KHz)
			2048	2048	0	0	0	0	2048
			2048	2048	0	0	0	1	1544
			2048	1544	0	0	0	0	2048
			1544	1544	0	0	1	1	1544
			1544	1544	0	0	1	0	2048
			2048	1544	0	0	1	1	1544
			8	X	0	1	0	0	2048
			8	X	0	1	0	1	1544
			16	×	0	1	1	1	1544
			56	x	1	0	0	0	2048
			56	x	1	0	0	1	1544
			64	x	1	0	1	0	2048
			64	x	1	0	1	1	1544
			128	x	1	1	0	0	2048
			128	х	1	1	0	1	1544
			256	х	1	1	1	0	2048
			256	х	1	1	1	1	1544
			Note: Inte	ernally pul	led "Low" ı	with a 50kg	Ω resistor.		

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

REDUNDANCY SUPPORT

SIGNAL NAME	PIN #	Түре	DESCRIPTION
DMO	11	0	Driver Failure Monitor This pin transitions "High" if a short circuit condition is detected in the trans- mit driver, or no transmit output pulse is detected for more than 128 TCLK cycles.

TERMINATIONS

SIGNAL NAME	Pin #	Түре		Di	ESCRIPTION		
GAUGE	49	I	Twisted Pair Cable Wire Gauge Select In Hardware Mode , connect this pin "High" to select 26 Gauge wire. Connect this pin "Low" to select 22 and 24 gauge wire. Note: Internally pulled "Low" with a $50k\Omega$ resistor.				
TRATIO	26	Ι	Transmitter Transformer Ratio Select In Hardware Mode , in external termination mode (TXTSEL = "0"), setting this pin "High" selects a transformer ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter transformer ratio to 1:2.45. In the internal termination mode the transmitter transformer ratio is permanently set to 1:2 and the state of this pin is ignored. <i>Note:</i> Internally pulled "Low" with a 50k Ω resistor.				
RXTSEL	44	I	Receiver Termination Se In Hardware Mode when the by the external resistor. W resistors or the combination These conditions are desc	elect this pin is "Lov /hen "High", th on of internal a cribed in the fo	v" the receive line term le receive termination i and external resistors a ollowing table:	ination is determined only s realized by internal according to RXRES[1:0].	
				RXTSEL	RX Termination		
				0	External		
				1	Internal		
			In Host Mode bit 7 in Cont tion is external or internal. by setting TERCNTL bit (b Note: This pin is internal.	trol Register 1 The function o bit 4) <i>ly pulled "Low</i>	(01h) determines if the of RXTSEL can be tran " with a 50k Ω resistor.	e if the receiver termina- sferred to the harware pin	
TXTSEL	45	I	Transmit Termination Se In Hardware Mode when only by external resistor. V internal resistor. These co	e lect this pin is "Lo Vhen "High", t nditions are s	w" the transmit line ten he transmit terminatior ummarized in the follow	mination is determined n is realized only by an wing table:	
				TXTSEL	TX Termination		
				0	External		
				1	Internal		
			Note: This pin is internal	ly pulled "Low	" with a 50k Ω resistor.		

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

TERMINATIONS

SIGNAL NAME	PIN #	Түре	DESCRIPTION						
TERSEL1 TERSEL0	43 42	I	Termination Impedance Select pin 1 Termination Impedance Select pin 0 In the Hardware Mode and in the Internal Termination mode (TXTSEL="1" and/or RXT- SEL="1") TERSEL[1:0] control the transmit and receive termination impedance accord- ing to the following table:						
				TERSE	L1 TEI	RSEL0	Termination		
				0	\neg	0	100Ω		
				0		1	110Ω		
				1		0	75 Ω		
				1		1	120Ω		
DVDEQ1	51		In the Internal Termination mode, the receive termination is realized completely by inter- nal resistors or the combination of internal and one fixed external resistor (see descrip- tion for RXRES[1:0] pins). In the internal termination mode the transformer ratio of 1:2 and 1:1 is required for the transmitter and receiver respectively with the transmitter out- put AC coupled to the transformer. Note: This pin is internally pulled "Low" with a 50k Ω resistor.						
RXRES0	52		Receive External Re Receive External Re In Hardware Mode, resistor for the receiv the internal impedant	esistor Co esistor Co RXRES[1:(/er accordin .ce mode by	ntrol pin ntrol pin 0] pins s ng to the y pulling	n 0 elects th followin RXTSE	e required value of ng table. This mod L "High".	f the e le is o	external fixed nly available in
					0		ernal Fived Besis	tor	
				0	1		240.0		
				1	0		210Ω		
				1	1		150Ω		
			Note: Internally pull	led "Low" и	vith 50ks	2 resisto	r.		

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

CONTROL FUNCTION

RESET	41	I	Hardware Reset (Active "Low") When this pin is tied "Low" for more than 10μ s, the device is put in the reset state. Pulling RESET "Low" while the ICT pin is also "Low" will put the chip in factory test mode. This condition should never happen during normal operation. Note: Internally pulled "High" with a 50k Ω resistor.				
SR/DR	28	Ι	Single-Rail/ In Hardware data format i decoder are Connect this Note: Inter	Single-Rail/Dual-Rail Data Format In Hardware Mode, connect this pin "Low" to select transmit and receive data format in dual-rail mode. In this mode, HDB3 or B8ZS encoder and decoder are not available. Connect this pin "High" to select single-rail data format. Note: Internally pulled "Low" with a 50kΩ resistor.			
LOOP1 LOOP0	29 30	I	Loop-back Control pin 1 Loop-back Control pin 0 In Hardware Mode, LOOP[1:0] pins are used to control the Loop-back func- tions according to the following table:				
				LOOP1	LOOP0	MODE	
				0	0	Normal Mode	
				0	1	Local Loop-Back	
				1	0	Remote Loop-Bac	}
				1	1	Digital Loop-Back	
			Note: Inter	nally pulled "Lo	w" with a 50k Ω	resistor.	
EQC4	21	I	Equalizer Control Input pin 4 In Hardware Mode, this pin together with EQC[3:0] are used for controlling the transmit pulse shaping, receive monitoring and also to select T1, E1 or J1 modes of operation. See Table 5 for description of Transmit Equalizer Control bits.				
SDI			Host Mode,	SEE"SERIAL	INTERFACE"	ON PAGE 5.	
EQC3 SDO	22	і 0	Equalizer Control Input pin 3 See EQC4/SDI description for further explanation for the usage of this pin. Serial Data Output Host Mode, SEE"SERIAL INTERFACE" ON PAGE 5.				
EQC2 SCLK	23	I	Equalizer Control Input pin 2 See EQC4/SDI description for further explanation for the usage of this pin. Serial Interface Clock Input Host Mode, SEE"SERIAL INTERFACE" ON PAGE 5.				iis pin.

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

CONTROL FUNCTION

24	I	Equalizer Control Input pin 1
		See EQC4/SDI description for further explanation for the usage of this pin. Chip Select Input Host Mode, SEE"SERIAL INTERFACE" ON PAGE 5.
25	I	Equalizer Control Input pin 0
	0	See EQC4/SDI description for further explanation for the usage of this pin.
	0	Host Mode, SEE"SERIAL INTERFACE" ON PAGE 5.
	24	24 I 25 I 0

ALARM FUNCTION/OTHER

SIGNAL NAME	PIN #	Түре	DESCRIPTION	
ATAOS	27	I	Automatic Transmit "All Ones" Pattern In Hardware Mode, a "High" level on this pin enables the automatic trans- mission of an "All Ones" AMI pattern from the transmitter when the receiver has detected an LOS condition. A "Low" level on this pin disables this func- tion. Note: This pin is internally pulled "Low" with a 50kΩ resistor.	
ICT	59	I	In-Circuit Testing (active "Low") When this pin is tied "Low", all output pins are forced to a "High" impedance state for in-circuit testing. Pulling $\overrightarrow{\text{RESET}}$ "Low" while $\overrightarrow{\text{ICT}}$ pin is also "Low" will put the chip in factory test mode. This condition should never happen during normal operation. Note: Internally pulled "High" with a 50k Ω resistor.	

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

ALARM FUNCTION/OTHER

SIGNAL NAME	Pin #	Түре	DESCRIPTION				
NLCDE1 NLCDE0	33 34	I	Network Loop Code Detection Enable pin 1 Network Loop Code Detection Enable pin 0 In Hardware Mode, NLCDE[1:0] pins are used to control the Loop-Code detection according to the following table:				
			NLCDE1	NLCDE0	Function]	
			0	0	Disable Loop-Code Detection		
			0	1	Detect Loop-Up Code in Receive Data]	
			1	0	Detect Loop-Down Code in Receive Data		
			1	1	Automatic Loop-Code Detection		
			Setting the NLCDE1=' 0 and chip is manually progr Loop-Down code resp pattern is detected for the Host has the option Setting the NLCDE1=' Code detection and Re tiated, the state of the monitor the receive dat detected for longer that Back is activated and receive data for the Lo the chip stops receiving is removed when the co onds or if the Automat	amed to mon ectively. Whe more than 5 n to activate f "1" and NLCE emote-Loop-I NLCD pin is r ta for the Loo in 5 seconds, the chip is au op-Down coo g the Loop-U ship receives ic Loop-Code	DEO="1" enables the Automatic Back activation mode. As this m reset to "0" and the chip is progra op-Up Code. If the "00001" patter the NLCD pin is set to "1", Ren tomatically programed to monit de. The NLCD pin stays "High" of p code. The remote Loop-Back the Loop-Down code for more the detection mode is terminated.	0= 0, the p-Up or or "001" or "1" and '. Loop- node is ini- ammed to or is note Loop- or the oven after condition han 5 sec-	
INSBPV	35	I	Insert Bipolar Violati In Hardware Mode, we tion is inserted in the t inserted either in the C rail mode. The state of Note: To ensure the to a "0" prior to	on hen this pin t ransmitted da QRSS pattern f this pin is sa <i>insertion of a</i> o setting to a	ransitions from "0" to "1", a bipo ata stream. Bipolar violation can , or input data when operating i ampled on the rising edge of TC a bipolar violation, this pin shoul "1".	olar viola- i be n single- LK. Id be reset	

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

ALARM FUNCTION/OTHER

SIGNAL NAME	Pin #	Түре	DESCRIPTION
NLCD	38	0	 Network Loop-Code Detection Output pin This pin operates differently in the Manual or the Automatic Network Loop-Code detection modes. In the Manual Loop-Code detection mode (NLCDE1 ="0" and NLCDE0 ="1", or NLCDE1 ="1" and NLCDE0 ="0") this pin gets set to "1" as soon as the Loop-Up ("00001") or Loop-Down ("001") code is detected in the receive data for longer than 5 seconds. The NLCD pin stays in the "1" state for as long as the chip detects the presence of the Loop-Code in the receive data and it is reset to "0" as soon as it stops receiving it. When the Automatic Loop-Code detection mode (NLCDE1 ="1" and NLCDE0 ="1") is initiated, the NLCD output pin is reset to "0" and the chip is programmed to monitor the receive input data for the Loop-Up Code. The NLCD pin is set to a "1" to indicate that the Network Loop-Back condition is automatically activated and the chip is programmed to monitor the receive data for the Network Loop-Down Code. The NLCD pin stays in the "1" state for as long as the chip is programmed to monitor the receive data for the Network Loop-Down Code. The NLCD pin stays in the "1" state for as long as the Remote Loop-Back condition is automatically activated and the chip is programmed to monitor the receive data for the Network Loop-Down Code. The NLCD pin stays in the "1" state for as long as the Remote Loop-Back condition is in effect even if the chip stops receiving the Loop-Up Code. Remote Loop-Back is removed if the chip detects the "001" pattern for longer than 5 seconds in the receive data. Detecting the "001" pattern also results in resetting the NLCD output pin.
AISD	39	0	Alarm Indication Signal Detect Output pin This pin is set to "1" to indicate that an All Ones Signal is detected by the receiver. The value of this pin is based on the current status of Alarm Indica- tion Signal detector.
QRPD	40	0	Quasi-random Pattern Detection Output pin This pin is set to "1" to indicate that the receiver is currently in synchroniza- tion with the QRSS pattern. The value of this pin is based on the current sta- tus of Quasi-random pattern detector.

POWER AND GROUND

SIGNAL NAME	PIN #	Түре	DESCRIPTION
TAGND	7	****	Transmitter Analog Ground
TAVDD	9	****	Transmitter Analog Positive Supply (3.3V \pm 5%)
RAGND	6	****	Receiver Analog Ground
RAVDD	3	****	Receiver Analog Positive Supply (3.3V± 5%)
VDDPLL	12	****	Analog Positive Supply for Master Clock Synthesizer PLL (3.3V± 5%)
GNDPLL	15	****	Analog Ground for Master Clock Synthesizer PLL
DVDD	36	****	Digital Positive Supply (3.3V± 5%)
AVDD	31	****	Analog Positive Supply (3.3V± 5%)
DGND	37	****	Digital Ground
AGND	32	****	Analog Ground

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

FUNCTIONAL DESCRIPTION

The XRT83SL30 is a fully integrated single channel short-haul transceiver intended for T1, J1 or E1 systems. Simplified block diagrams of the device are shown in Figure 1, Host mode and Figure 2, Hardware mode.

In T1 applications, the XRT83SL30 can generate five transmit pulse shapes to meet the short-haul Digital Cross-connect (DSX-1) template requirement. It also provides programmable transmit output pulse generator that can be used for output pulse shaping allowing performance improvement over a wide variety of conditions. The operation and configuration of the XRT83SL30 can be controlled through a serial microprocessor **Host** interface or, by **Hardware** control.

MASTER CLOCK GENERATOR

Using a variety of external clock sources, the on-chip frequency synthesizer generates the T1 (1.544MHz) or E1 (2.048MHz) master clocks necessary for the transmit pulse shaping and receive clock recovery circuit.

There are two master clock inputs MCLKE1 and MCLKT1. In systems where both T1 and E1 master clocks are available these clocks can be connected to the respective pins.

In systems that have only one master clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. T1 or E1 master clocks can be generated from 8kHz, 16kHz, 56kHz, 64kHz, 128kHz and 256kHz external clocks under the control of CLKSEL[2:0] inputs according to Table 1.

NOTE: EQC[4:0] determine the T1/E1 operating mode. See Table 5 for details.

FIGURE 4. TWO INPUT CLOCK SOURCE

REV. 1.0.1

XRT83SL30

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

MCLKE1 ĸHz	MCLKT1 ĸHz	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	MASTER CLOCK KHZ
2048	2048	0	0	0	0	2048
2048	2048	0	0	0	1	1544
2048	1544	0	0	0	0	2048
1544	1544	0	0	1	1	1544
1544	1544	0	0	1	0	2048
2048	1544	0	0	1	1	1544
8	х	0	1	0	0	2048
8	х	0	1	0	1	1544
16	х	0	1	1	0	2048
16	х	0	1	1	1	1544
56	х	1	0	0	0	2048
56	х	1	0	0	1	1544
64	х	1	0	1	0	2048
64	х	1	0	1	1	1544
128	х	1	1	0	0	2048
128	х	1	1	0	1	1544
256	х	1	1	1	0	2048
256	х	1	1	1	1	1544

TABLE 1: MASTER CLOCK GENERATOR

In **Host** mode the programming is achieved through the corresponding interface control bits, the state of the CLKSEL[2:0] control bits and the state of the MCLKRATE interface control bit.

RECEIVER

RECEIVER INPUT

At the receiver input, a cable attenuated AMI signal can be coupled to the receiver through a capacitor or a 1:1 transformer. The input signal is first applied to a selective equalizer for signal conditioning. The maximum equalizer gain is up to 15dB for T1 and E1 modes. The equalized signal is subsequently applied to a peak detector which in turn controls the equalizer settings and the data slicer. The slicer threshold for both E1 and T1 is typically set at 50% of the peak amplitude at the equalizer output. After the slicers, the digital representation of the AMI signals are applied to the clock and data recovery circuit. The recovered data subsequently goes through the jitter attenuator and decoder (if selected) for HDB3 or B8ZS decoding before being applied to the RPOS/RDATA and RNEG/LCV pins. Clock recovery is accomplished by a digital phase-locked loop (DPLL) which does not require any external components and can tolerate high levels of input jitter that meets or exceeds the ITU-G.823 and TR-TSY000499 standards.

In **Hardware** mode only, this receive channel is turned on upon power-up and is always on. In **Host** mode, the receiver can be turned on or off with the RXON bit. **SEE**"**MICROPROCESSOR REGISTER #2 BIT DESCRIPTION**" **ON PAGE 47**.

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

RECEIVE MONITOR MODE

In applications where Monitor mode is desired, the equalizer can be configured in a gain mode which handles input signals attenuated resistively up to 29dB, along with 0 to 6dB cable attenuation for both T1 and E1 applications, refer to Table 5 for details. This feature is available in both Hardware and Host modes.

RECEIVER LOSS OF SIGNAL (RLOS)

For compatibility with ITU G.775 requirements, the RLOS monitoring function is implemented using both analog and digital detection schemes. If the analog RLOS condition occurs, a digital detector is activated to count for 32 consecutive zeros in E1 (4096 bits in Extended Los mode, EXLOS = "1") or 175 consecutive zeros in T1 before RLOS is asserted. RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and meets 12.5% ones density of 4 ones in a 32 bit window, with no more than 16 consecutive zeros for E1. In T1 mode, RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and contains 16 ones in a 128 bit window with no more than 100 consecutive zeros in the data stream. When loss of signal occurs, RLOS register indication and register status will change. If the RLOS register enable is set high (enabled), the alarm will trigger an interrupt causing the interrupt pin (INT) to go low. Once the alarm status register has been read, it will automatically reset upon read (RUR), and the INT pin will return high.

Analog RLOS

Setting the Receiver Input to -15dB T1/E1 Short Haul Mode

By setting the receiver input to -15dB T1/E1 short haul mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +15dB normalizing the T1/E1 input signal.

Note: This setting refers to cable loss (frequency), not flat loss (resistive).

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+15dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is typically -24dB (-15dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total cable attenuation of -21dB. See Figure 6 for a simplified diagram.

FIGURE 6. SIMPLIFIED DIAGRAM OF -15dB T1/E1 SHORT HAUL MODE AND RLOS CONDITION

Setting the Receiver Input to -29dB T1/E1 Gain Mode

By setting the receiver input to -29dB T1/E1 gain mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +29dB normalizing the T1/E1 input signal.

NOTE: This is the only setting that refers to flat loss (resistive). All other modes refer to cable loss (frequency).

REV. 1.0.1 SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+29dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is typically -38dB (-29dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total flat loss of -35dB. See Figure 7 for a simplified diagram.

RECEIVE HDB3/B8ZS DECODER

The Decoder function is available in both **Hardware** and **Host** modes by controlling the TNEG/CODE pin or the CODE interface bit. The decoder function is only active in single-rail Mode. When selected, receive data in this mode will be decoded according to HDB3 rules for E1 and B8ZS for T1 systems. Bipolar violations that do not conform to the coding scheme will be reported as Line Code Violation at the RNEG/LCV pin. The length of the LCV pulse is one RCLK cycle for each code violation. Excessive number of zeros in the receive data stream is also reported as an error at the same output pin. If AMI decoding is selected in single rail mode, every bipolar violation in the receive data stream will be reported as an error at the RNEG/LCV pin.

RECOVERED CLOCK (RCLK) SAMPLING EDGE

This feature is available in both **Hardware** and **Host** modes. In **Host** mode, the sampling edge of RCLK output can be changed through the interface control bit RCLKE. If a "1" is written in the RCLKE interface bit, receive data output at RPOS/RDATA and RNEG/LCV are updated on the falling edge of RCLK. Writing a "0" to the RCLKE register, updates the receive data on the rising edge of RCLK. In **Hardware** mode the same feature is available under the control of the RCLKE pin.

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

JITTER ATTENUATOR

To reduce phase and frequency jitter in the recovered clock, the jitter attenuator can be placed in the receive signal path. The jitter attenuator uses a data FIFO (First In First Out) with a programmable depth that can vary between 2x32 and 2x64. The jitter attenuator can also be placed in the transmit signal path or disabled altogether depending upon system requirements. The jitter attenuator, other than using the master clock as reference, requires no external components. With the jitter attenuator selected, the typical throughput delay from input to output is 16 bits for 32 bit FIFO size or 32 bits for 64 bit FIFO size. When the read and write pointers of the FIFO in the jitter attenuator are within two bits of over-flowing or under-flowing, the bandwidth of the jitter attenuator is widened to track the short term input jitter, thereby avoiding data corruption. When this situation occurs, the jitter attenuator will not attenuate input jitter until the read/write pointer's position is outside the two bits window. Under normal condition, the jitter transfer characteristic meets the narrow bandwidth requirement as specified in ITU- G.736, ITU- I.431 and AT&T Pub 62411 standards.

In T1 mode the Jitter Attenuator Bandwidth is always set to 3Hz. In E1 mode, the bandwidth can be reduced through the JABW control signal. When JABW is set "High" the bandwidth of the jitter attenuator is reduced from 10Hz to 1.5Hz. Under this condition the FIFO length is automatically set to 64 bits and the 32 bits FIFO length will not be available in this mode.

GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)

The XRT83SL30 LIU is ideal for multiplexer or mapper applications where the network data crosses multiple timing domains. As the higher data rates are de-multiplexed down to T1 or E1 data, stuffing bits are removed which can leave gaps in the incoming data stream. If the jitter attenuator is enabled in the transmit path, the 32-Bit or 64-Bit FIFO is used to smooth the gapped clock into a steady T1 or E1 output. The maximum gap width is shown in Table 2.

FIFO DEPTH	MAXIMUM GAP WIDTH
32-Bit	20 UI
64-Bit	50 UI

TABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS

NOTE: If the LIU is used in a loop timing system, the jitter attenuator should be enabled in the receive path.

REV. 1.0.1

SINGLE-CHANNEL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

ARBITRARY PULSE GENERATOR

In T1 mode only, the arbitrary pulse generator divides the pulse into eight individual segments. Each segment is set by a 7-Bit binary word by programming the appropriate register. This allows the system designer to set the overshoot, amplitude, and undershoot for a unique line build out. The MSB (bit 7) is a sign-bit. If the sign-bit is set to "1", the segment will move in a positive direction relative to a flat line (zero) condition. If this sign-bit is set to "0", the segment will move in a negative direction relative to a flat line condition. A pulse with numbered segments is shown in Figure 9.

Note: By default, the arbitrary segments are programmed to 0x00h. The transmitter output will result in an all zero pattern to the line.

TRANSMITTER

DIGITAL DATA FORMAT

Both the transmitter and receiver can be configured to operate in dual or single-rail data formats. This feature is available under both **Hardware** and **Host** control modes. The dual or single-rail data format is determined by the state of the SR/DR pin in **Hardware** mode or SR/DR interface bit in the **Host** mode. In single-rail mode, transmit clock and NRZ data are applied to TCLK and TPOS/TDATA pins respectively. In single-rail and **Hardware** mode the TNEG/CODE input can be used as the CODES function. With TNEG/CODE tied "Low", HDB3 or B8ZS encoding and decoding are enabled for E1 and T1 modes respectively. With TNEG/CODE tied "High", the AMI coding scheme is selected. In both dual or single-rail modes of operations, the transmitter converts digital input data to a bipolar format before being transmitted to the line.

TRANSMIT CLOCK (TCLK) SAMPLING EDGE

Serial transmit data at TPOS/TDATA and TNEG/CODE are clocked into the XRT83SL30 under the synchronization of TCLK. With a "0" written to the TCLKE interface bit, or by pulling the TCLKE pin "Low", input data is sampled on the falling edge of TCLK. The sampling edge is inverted with a "1" written to TCLKE interface bit, or by connecting the TCLKE pin "High".