imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XRT83SL34

QUAD T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

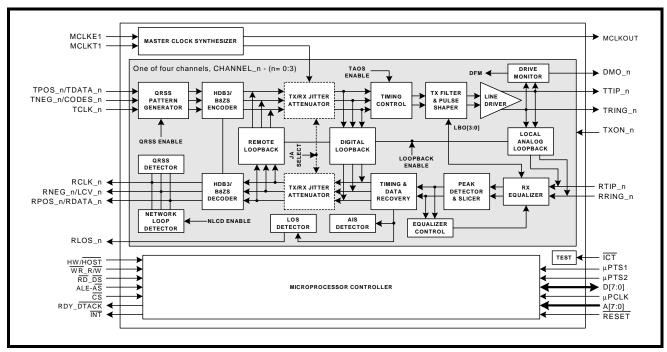
MAY 2004

GENERAL DESCRIPTION

The XRT83SL34 is a fully integrated Quad (four channel) short-haul line interface unit for T1 (1.544Mbps) 100Ω , E1 (2.048Mbps) 75Ω or 120Ω , or J1 110Ω applications.

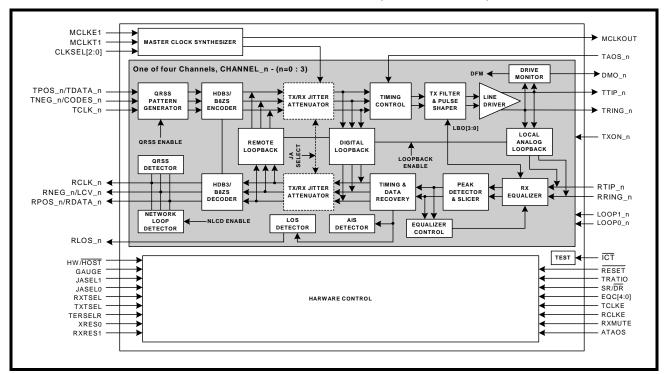
In T1 applications, the XRT83SL34 can generate five transmit pulse shapes to meet the short-haul Digital Cross-Connect (DSX-1) template requirements. It also provides programmable transmit pulse generators for each channel that can be used for output pulse shaping allowing performance improvement over a wide variety of conditions.

The XRT83SL34 provides both a parallel **Host** microprocessor interface as well as a **Hardware** mode for programming and control.


Both the B8ZS and HDB3 encoding and decoding functions are selectable as well as AMI. An on-chip crystal-less jitter attenuator with a 32 or 64 bit FIFO can be placed either in the receive or the transmit path with loop bandwidths of less than 3Hz. The

XRT83SL34 provides a variety of loop-back and diagnostic features as well as transmit driver short circuit detection and receive loss of signal monitoring. It supports internal impedance matching for 75Ω , 100Ω , 110Ω and 120Ω for both transmitter and receiver. In the absence of the power supply, the transmit outputs and receive inputs are tri-stated allowing for redundancy applications The chip includes an integrated programmable clock multiplier that can synthesize T1 or E1 master clocks from a variety of external clock sources.

APPLICATIONS


- T1 Digital Cross-Connects (DSX-1)
- ISDN Primary Rate Interface
- CSU/DSU E1/T1/J1 Interface
- T1/E1/J1 LAN/WAN Routers
- Public switching Systems and PBX Interfaces
- T1/E1/J1 Multiplexer and Channel Banks

Features (See Page 2)

FIGURE 1. BLOCK DIAGRAM OF THE XRT83SL34 T1/E1/J1 LIU (HOST MODE)

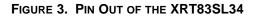
REV. 1.0.0

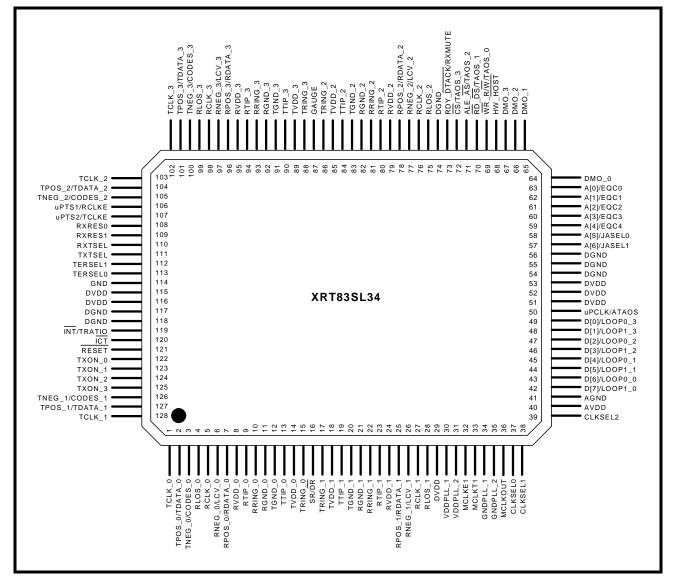
FIGURE 2. BLOCK DIAGRAM OF THE XRT83SL34 T1/E1/J1 LIU (HARDWARE MODE)

FEATURES

- Fully integrated eight channel short-haul transceivers for E1,T1 or J1 applications
- Programable Transmit Pulse Shaper for E1,T1 or J1 short-haul interfaces
- Five fixed transmit pulse settings for T1 short-haul applications plus a fully programmable waveform generator for transmit output pulse shaping for both T1 and E1 modes.
- Selectable receiver sensitivity from 0 to 36dB cable loss
- Receive monitor mode handles 0 to 29dB resistive attenuation along with 0 to 6dB of cable attenuation for E1 and 0 to 3dB of cable attenuation for T1 modes
- Supports 75 Ω and 120 Ω (E1), 100 Ω (T1) and 110 Ω (J1) applications
- Internal and/or external impedance matching for 75 \Omega, 100 \Omega, 110 \Omega and 120 \Omega
- Tri-State transmit output and receive input capability for redundancy applications
- Provides High Impedance for Tx and Rx during power off
- Transmit return loss meets or exceeds ETSI 300-166 standard

- On-chip digital clock recovery circuit for high input jitter tolerance
- Crystal-less digital jitter attenuator with 32-bit or 64bit FIFO selectable either in transmit or receive path
- On-chip frequency multiplier generates T1 or E1 Master clocks from variety of external clock sources
- High receiver interference immunity
- On-chip transmit short-circuit protection and limiting, and driver fail monitor output (DMO)
- Receive loss of signal (RLOS) output
- On-chip HDB3/B8ZS/AMI encoder/decoder functions
- QRSS pattern generator and detection for testing and monitoring
- Error and Bipolar Violation Insertion and Detection
- Receiver Line Attenuation Indication Output in 1dB
 steps
- Network Loop-Code Detection for automatic Loop-Back Activation/Deactivation
- Transmit All Ones (TAOS) and In-Band Network Loop Up and Down code generators
- Supports Local Analog, Remote, Digital and Dual Loop-Back Modes
- Meets or exceeds T1 and E1 short-haul network access specifications in ITU G.703, G.775, G.736


and G.823; TR-TSY-000499; ANSI T1.403 and T1.408; ETSI 300-166 and AT&T Pub 62411


- Supports both Hardware and Host (parallel Microprocessor) interface for programming
- Programmable Interrupt

- Low power dissipation
- Logic inputs accept either 3.3V or 5V levels
- Single 3.3V Supply Operation
- 128 pin TQFP package
- -40°C to +85°C Temperature Range

ORDERING INFORMATION

Ĩ	PART NUMBER	PACKAGE	OPERATING TEMPERATURE RANGE
	XRT83SL34IV	128 Lead TQFP (14 x 20 x 1.4mm)	-40°C to +85°C

GENERAL DESCRIPTION	1
Applications	
Figure 1. Block Diagram of the XRT83SL34 T1/E1/J1 LIU (Host Mode)	1
Figure 2. Block Diagram of the XRT83SL34 T1/E1/J1 LIU (Hardware Mode)	2
FEATURES	
ORDERING INFORMATION	3
Figure 3. Pin Out of the XRT83SL34	3
TABLE OF CONTENTS	I
PIN DESCRIPTION BY FUNCTION	4
RECEIVE SECTIONS	
TRANSMITTER SECTIONS	
MICROPROCESSOR INTERFACE	
JITTER ATTENUATOR	
CLOCK SYNTHESIZER	
ALARM FUNCTION//REDUNDANCY SUPPORT	
POWER AND GROUND	
FUNCTIONAL DESCRIPTION	
Master Clock Generator	
Figure 4. Two Input Clock Source	
Figure 5. One Input Clock Source	
RECEIVER	
Receiver Input	
TABLE 1: MASTER CLOCK GENERATOR	
Receive Monitor Mode	
RECEIVER LOSS OF SIGNAL (RLOS)	
Figure 6. Simplified Diagram of -15dB T1/E1 Short Haul Mode and RLOS Condition	
Receive HDB3/B8ZS Decoder	
RECOVERED CLOCK (RCLK) SAMPLING EDGE	
Figure 7. Simplified Diagram of -29dB T1/E1 Gain Mode and RLOS Condition	
Figure 8. Receive Clock and Output Data Timing	
JITTER ATTENUATOR	
GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)	22
TABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS	22
ARBITRARY PULSE GENERATORFOR T1 AND E1	23
TRANSMITTER	. 23
DIGITAL DATA FORMAT	23
TRANSMIT CLOCK (TCLK) SAMPLING EDGE	23
Figure 9. Arbitrary Pulse Segment Assignment	
TRANSMIT HDB3/B8ZS ENCODER	
Figure 10. Transmit Clock and Input Data Timing	24
TABLE 3: EXAMPLES OF HDB3 ENCODING	
TABLE 4: EXAMPLES OF B8ZS ENCODING	24
Driver Failure Monitor (DMO)	
TRANSMIT PULSE SHAPER & LINE BUILD OUT (LBO) CIRCUIT	
TABLE 5: RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS	
TRANSMIT AND RECEIVE TERMINATIONS	. 26
RECEIVER (CHANNELS 0 - 3)	
Internal Receive Termination Mode	26
TABLE 6: RECEIVE TERMINATION CONTROL	
Figure 11. Simplified Diagram for the Internal Receive and Transmit Termination Mode	
TABLE 7: RECEIVE TERMINATIONS	28

REV. 1.0.0

Figure 12. Simplified Diagram for T1 in the External Termination Mode (RXTSEL= 0)	
TRANSMITTER (CHANNELS 0 - 3)	
Transmit Termination Mode 2	
External Transmit Termination Mode	
Figure 13. Simplified Diagram for E1 in External Termination Mode (RXTSEL= 0)	
TABLE 8: TRANSMIT TERMINATION CONTROL	
TABLE 9: TERMINATION SELECT CONTROL	
REDUNDANCY APPLICATIONS	
TABLE 10: TRANSMIT TERMINATION CONTROL	
TABLE 11: TRANSMIT TERMINATIONS	
TYPICAL REDUNDANCY SCHEMES	
Figure 14. Simplified Block Diagram of the Transmit Section for 1:1 & 1+1 Redundancy	
Figure 15. Simplified Block Diagram - Receive Section for 1:1 and 1+1 Redundancy	
Figure 16. Simplified Block Diagram - Transmit Section for N+1 Redundancy	
Figure 17. Simplified Block Diagram - Receive Section for N+1 Redundancy	
PATTERN TRANSMIT AND DETECT FUNCTION	
TRANSMIT ALL ONES (TAOS)	
NETWORK LOOP CODE DETECTION AND TRANSMISSION	
TABLE 12: PATTERN TRANSMISSION CONTROL	
TABLE 13: LOOP-CODE DETECTION CONTROL	
TRANSMIT AND DETECT QUASI-RANDOM SIGNAL SOURCE (TDQRSS)	
LOOP-BACK MODES	-
TABLE 14: LOOP-BACK CONTROL IN HARDWARE MODE	
TABLE 15: LOOP-BACK CONTROL IN HOST MODE	
LOCAL ANALOG LOOP-BACK (ALOOP)	
REMOTE LOOP-BACK (RLOOP)	
Figure 18. Local Analog Loop-back signal flow	
Figure 19. Remote Loop-back mode with jitter attenuator selected in receive path	
DIGITAL LOOP-BACK (DLOOP)	
Figure 20. Remote Loop-back mode with jitter attenuator selected in Transmit path	
Figure 21. Digital Loop-back mode with jitter attenuator selected in Transmit path	
DUAL LOOP-BACK	
Figure 22. Signal flow in Dual loop-back mode	40
MICROPROCESSOR PARALLEL INTERFACE	
TABLE 16: MICROPROCESSOR INTERFACE SIGNAL DESCRIPTION	
MICROPROCESSOR REGISTER TABLES	
TABLE 17: MICROPROCESSOR REGISTER ADDRESS	42
TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION	42
MICROPROCESSOR REGISTER DESCRIPTIONS	
TABLE 19: MICROPROCESSOR REGISTER #0, BIT DESCRIPTION	45
TABLE 20: MICROPROCESSOR REGISTER #1, BIT DESCRIPTION	46
TABLE 21: MICROPROCESSOR REGISTER #2, BIT DESCRIPTION	48
TABLE 22: MICROPROCESSOR REGISTER #3, BIT DESCRIPTION	50
TABLE 23: MICROPROCESSOR REGISTER #4, BIT DESCRIPTION	52
TABLE 24: MICROPROCESSOR REGISTER #5, BIT DESCRIPTION	53
TABLE 25: MICROPROCESSOR REGISTER #6, BIT DESCRIPTION	55
TABLE 26: MICROPROCESSOR REGISTER #7, BIT DESCRIPTION	56
TABLE 27: MICROPROCESSOR REGISTER #8, BIT DESCRIPTION	57
TABLE 28: MICROPROCESSOR REGISTER #9, BIT DESCRIPTION	
TABLE 29: MICROPROCESSOR REGISTER #10, BIT DESCRIPTION	
TABLE 30: MICROPROCESSOR REGISTER #11, BIT DESCRIPTION	
TABLE 31: MICROPROCESSOR REGISTER #12, BIT DESCRIPTION	
TABLE 32: MICROPROCESSOR REGISTER #13, BIT DESCRIPTION	
TABLE 33: MICROPROCESSOR REGISTER #14, BIT DESCRIPTION	

TABLE 34: MICROPROCESSOR REGISTER #15, BIT DESCRIPTION	60
TABLE 35: MICROPROCESSOR REGISTER #64, BIT DESCRIPTION	61
CLOCK SELECT REGISTER	62
Figure 23. Register 0x81h Sub Registers	62
TABLE 36: MICROPROCESSOR REGISTER #65, BIT DESCRIPTION	
TABLE 37: MICROPROCESSOR REGISTER #66, BIT DESCRIPTION	
ELECTRICAL CHARACTERISTICS	
TABLE 38: ABSOLUTE MAXIMUM RATINGS	66
TABLE 39: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS	66
TABLE 40: XRT83SL34 POWER CONSUMPTION	66
TABLE 41: E1 Receiver Electrical Characteristics	67
TABLE 42: T1 Receiver Electrical Characteristics	68
TABLE 43: E1 TRANSMIT RETURN LOSS REQUIREMENT	
TABLE 44: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS	69
TABLE 45: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS	
Figure 24. ITU G.703 Pulse Template	70
TABLE 46: TRANSMIT PULSE MASK SPECIFICATION	
Figure 25. DSX-1 Pulse Template (normalized amplitude)	
TABLE 47: DSX1 INTERFACE ISOLATED PULSE MASK AND CORNER POINTS	
TABLE 48: AC ELECTRICAL CHARACTERISTICS	
Figure 26. Transmit Clock and Input Data Timing	
MICROPROCESSOR INTERFACE I/O TIMING	
Intel Interface Timing - Asynchronous	
Figure 27. Receive Clock and Output Data Timing	
Figure 28. Intel Asynchronous Programmed I/O Interface Timing	73
TABLE 49: ASYNCHRONOUS MODE 1 - INTEL 8051 AND 80188 INTERFACE TIMING	
Motorola Asychronous Interface Timing	
Figure 29. Motorola 68K Asynchronous Programmed I/O Interface Timing	
TABLE 50: ASYNCHRONOUS - MOTOROLA 68K - INTERFACE TIMING SPECIFICATION	
Figure 30. Microprocessor Interface Timing - Reset Pulse Width	
ORDERING INFORMATION	-
PACKAGE DIMENSIONS - 14x20 MM, 128 PIN PACKAGE	
Revisions	77

PIN DESCRIPTION BY FUNCTION

RECEIVE SECTIONS

SIGNAL NAME	PIN #	Түре	DESCRIPTION
RLOS_0	4	0	Receiver Loss of Signal for Channel _0
			This output signal goes 'High' for at least one RCLK_0 cycle to indicate loss of signal at the receive 0 input. RLOS will remain "High" for the entire duration of the loss of signal detected by the receiver logic.
			See "Receiver Loss of Signal (RLOS)" on page 20.
RLOS_1	28		Receiver Loss of Signal for Channel _1
RLOS_2	75		Receiver Loss of Signal for Channel _2
RLOS_3	99		Receiver Loss of Signal for Channel _3
RCLK_0	5	0	Receiver Clock Output for Channel _0
RCLK_1	27		Receiver Clock Output for Channel _1
RCLK_2	76		Receiver Clock Output for Channel _2
RCLK_3	98		Receiver Clock Output for Channel _3
RNEG_0	6	0	Receiver Negative Data Output for Channel _0 - Dual-Rail mode
			This signal is the receiver negative-rail output data.
LCV_0			Line Code Violation Output for Channel _0 - Single-Rail mode
			This signal goes 'High' for one RCLK_0 cycle to indicate a code violation is
			detected in the received data of Channel _0. If AMI coding is selected, every
			bipolar violation received will cause this pin to go "High".
RNEG_1	26		Receiver Negative Data Output for Channel _1
LCV_1			Line Code Violation Output for Channel _1
RNEG_1	77		Receiver Negative Data Output for Channel _2
LCV_2			Line Code Violation Output for Channel _2
RNEG_1	97		Receiver Negative Data Output for Channel _3
LCV_3			Line Code Violation Output for Channel _3
RPOS_0	7	0	Receiver Positive Data Output for Channel _0 - Dual-Rail mode
			This signal is the receive positive-rail output data sent to the Framer.
			Receiver NRZ Data Output for Channel _0 - Single-Rail mode
RDATA_0			This signal is the receive output data.
			Receiver Positive Data Output for Channel _1
RPOS_1	25		Receiver NRZ Data Output for Channel _1
RDATA_1			Receiver Positive Data Output for Channel _2
RPOS_2	78		Receiver NRZ Data Output for Channel _2
RDATA_2			Receiver Positive Data Output for Channel _3
RPOS_3	96		Receiver NRZ Data Output for Channel _3
RDATA_3			
RTIP_0	9	I	Receiver Differential Tip Positive Input for Channel _0
			Positive differential receive input from the line.
RTIP_1	23		Receiver Differential Tip Positive Input for Channel _1
RTIP_2	80		Receiver Differential Tip Positive Input for Channel _2
RTIP_3	94		Receiver Differential Tip Positive Input for Channel _3

SIGNAL NAME	Pin #	Түре			D	ESCRIPTION	
RRING_0	10	I		Receiver Differential Ring Negative Input for Channel _0			
	00		-	Negative differential receive input from the line.			
RRING_1 RRING_2	22 81		Receiver Differential Ring Negative Input for Channel _1 Receiver Differential Ring Negative Input for Channel _2				
RRING_2 RRING_3	93			Receiver Differential Ring Negative Input for Channel _2 Receiver Differential Ring Negative Input for Channel _3			
RXMUTE	73	I	Connecting RNEG_n w is internally Notes: 1. In 2. In	 Receive Muting - Hardware mode Connecting this pin 'High' will mute (force to ground) the outputs RPOS_n/ RNEG_n when a LOS condition occurs, to prevent data chattering. This pin is internally pulled "low" consequently muting is normally disabled. <i>Notes:</i> Internally pulled "Low" with 50kΩ resistor. In Hardware mode, all receive channels share the same RXMUTE control function. 			
						cknowledge Output) - Host ma	de
RDY_DTACK	73	0	-	Ready Output (Data Transfer Acknowledge Output) - Host mode See "Ready Output (Data Transfer Acknowledge Output) - Host Mode" on page 8.			
RXRES0 RXRES1	108 109	I	Receive External Resistor Control Pins - Hardware mode Receive External Resistor Control Pin 0 Receive External Resistor Control Pin 1 These pins are used to determine the value of the external Receive fixed resistor according to the following table:				
				RXRES1	RXRES0	Required Fixed External RX Resistor	
				0	0	No External Fixed Resistor	
				0	1	240 Ω	
				1	0	210 Ω	
				1	1	150 Ω	
			Note: These pins are internally pulled "Low" with $50k\Omega$ resistor.				
RCLKE	106	I	Receive Clock Edge - Hardware Mode Set this pin "High" to sample RPOS_N/RNEG_n on the falling edge of RCLK_n. With this pin tied "Low", output data are updated on the rising edge of RCLK_n.				
μ PTS1			Microprocessor Type Select Input pin 1 - Host mode This pin along with μPTS2 (pin 107) is used to select the microprocessor type. See "Microprocessor Type Select Input Pins - Host Mode:" on page 9. Note: This pin is internally pulled "Low" with a 50kΩ resistor.				

TRANSMITTER SECTIONS

SIGNAL NAME	Pin #	Түре	DESCRIPTION
TCLKE μPTS2	107	I	Transmit Clock Edge - Hardware ModeWith this pin set to a "High", transmit input data of all channels are sampled at the rising edge of TCLK_n. With this pin tied "Low", input data are sampled at the falling edge of TCLK_n.Microprocessor Type Select Input pin 2 - Host ModeThis pin along with μPTS1 (pin 106) selects the microprocessor type. See "Microprocessor Type Select Input Pins - Host Mode:" on page 9.
			NOTE: This pin is internally pulled "Low" with a 50k Ω resistor.
TTIP_0	13	0	Transmitter Tip Output for Channel _0 Positive differential transmit output to the line.
TTIP_1	19		Transmitter Tip Output for Channel _1
TTIP_2	84		Transmitter Tip Output for Channel _2
TTIP_3	90		Transmitter Tip Output for Channel _3
TRING_0	15	0	Transmitter Ring Output for Channel _0
			Negative differential transmit output to the line.
TRING_1	17		Transmitter Ring Output for Channel _1
TRING_2	86		Transmitter Ring Output for Channel _2
TRING_3	88		Transmitter Ring Output for Channel _3
TPOS_0	2	I	Transmitter Positive Data Input for Channel _0 - Dual-rail mode
			This signal is the positive-rail input data for transmitter 0.
TDATA_0			Transmitter 0 Data Input - Single-Rail mode
			This pin is used as the NRZ input data for transmitter 0.
TPOS_1	127		Transmitter Positive Data Input for Channel _1
TDATA_1	404		Transmitter 1 Data Input
TPOS_2	104		Transmitter Positive Data Input for Channel _2
TDATA_2	404		Transmitter 2 Data Input
TPOS_3	101		Transmitter Positive Data Input for Channel _3
TDATA_3			Transmitter 3 Data Input
			NOTE: Internally pulled "Low" with a 50k Ω resistor for each channels.
TNEG_0	3	I	Transmitter Negative NRZ Data Input for Channel _0 Dual-Rail mode
			This signal is the negative-rail input data for transmitter 0. Single-Rail mode
			This pin can be left unconnected.
CODES_0			Coding Select for Channel _0 - Hardware mode and Single-Rail mode
••••_•			Connecting this pin "Low" enables HDB3 in E1 or B8ZS in T1 encoding and
			decoding for Channel _0. Connecting this pin "High" selects AMI data format.
			Transmitter Negative NRZ Data Input for Channel _1
TNEG_1	126		Coding Select for Channel _1
CODES_1			Transmitter Negative NRZ Data Input for Channel _2
TNEG_2	105		Coding Select for Channel _2
CODES_2			Transmitter Negative NRZ Data Input for Channel _3
TNEG_3	100		Coding Select for Channel _3
CODES_3			NOTE: Internally pulled "Low" with a 50k Ω resistor for channel _n

SIGNAL NAME	Pin #	Түре	DESCRIPTION
TCLK_0	1	I	Transmitter Clock Input for Channel _0 - Host mode and Hardware mode E1 rate at 2.048MHz ± 50ppm. T1 rate at 1.544MHz ± 32ppm. During normal operation TCLK_0 is used for sampling input data at TPOS_0/ TDATA_0 and TNEG_0/CODES_0 while MCLK is used as the timing refer- ence for the transmit pulse shaping circuit. Transmitter Clock Input for Channel _1 Transmitter Clock Input for Channel _2
TCLK_1 TCLK_2	128 103		Transmitter Clock Input for Channel _3
TCLK_3	102		Note: Internally pulled "Low" with a 50k Ω resistor for all channels.
TAOS_0	69	I	Transmit All Ones for Channel _0 - Hardware mode Setting this pin "High" enables the transmission of an "All Ones" Pattern from Channel _0. A "Low" level stops the transmission of the "All Ones" Pattern.
TAOS_1	70		Transmit All Ones for Channel _1
TAOS_2	71		Transmit All Ones for Channel _2
TAOS_3	72		Transmit All Ones for Channel _3
WR_R/W RD_DS	69 70		Host mode: these pins act as various microprocessor functions. See "Micro- processor Interface" on page 8.
	70		Note: These pins are internally pulled "Low" with a 50k Ω resistor.
CS	72		
TXON_0	122	I	Transmitter Turn On for Channel _0 Hardware mode Setting this pin "High" turns on the Transmit Section of Channel _0 and has no control of the Channel_0 receiver. When TXON_0 = "0" then TTIP_0 and TRING_0 driver outputs will be tri-stated.
			NOTE: In Hardware mode only, all receiver channels will be turned on upon power-up and there is no provision to power them off. The receive channels can only be independently powered on or off in Host mode.
			In Host mode The TXON_n bits in the channel control registers turn each channel Transmit section ON or OFF. However, control of the transmit on/off function can be transferred to the Hardware pins by setting the TXONCTL bit (bit 6) to "1" in the register at address hex 0x42.
TXON_1	123		Transmitter Turn On for Channel _1
TXON_2	124		Transmitter Turn On for Channel _2
TXON_3	125		Transmitter Turn On for Channel _3
			Note: Internally pulled "Low" with a 50k Ω resistor for all channels.

MICROPROCESSOR INTERFACE

SIGNAL NAME	PIN #	Түре	DESCRIPTION
HW_HOST	68	I	Mode Control Input This pin selects Hardware or Host mode. Leave this pin unconnected or tie "High" to select Hardware mode. For Host mode, this pin must be tied "Low". Note: Internally pulled "High" with a $50k\Omega$ resistor.
WR_R/W	69	I	Write Input (Read/Write) - Host modeIntel bus timing: A "Low" pulse on \overline{WR} selects a write operation when \overline{CS} pin is "Low".Motorola bus timing: A "High" pulse on $\overline{R/W}$ selects a read operation and a"Low" pulse on $\overline{R/W}$ selects a write operation when \overline{CS} is "Low".
TAOS_0	69		Transmit All "Ones" Channel_0 - Hardware Mode See "Transmit All Ones for Channel _0 - Hardware mode" on page 7. <i>Note:</i> Internally pulled "Low" with a 50kΩ resistor.
RD_DS	70	I	Read Input (Data Strobe) - Host ModeIntel bus timing: A "Low" pulse on \overline{RD} selects a read operation when the \overline{CS} pin is "Low".Motorola bus timing: A "Low" pulse on \overline{DS} indicates a read or write operation when the \overline{CS} pin is "Low".
TAOS_1	70		Transmit All "Ones" Channel_1 - Hardware Mode See "Transmit All Ones for Channel _0 - Hardware mode" on page 7. <i>Note: Internally pulled "Low" with a 50k</i> Ω <i>resistor.</i>
ALE_AS	71	I	Address Latch Input (Address Strobe) - Host ModeIntel bus timing: The address inputs are latched into the internal register onthe falling edge of ALE.Motorola bus timing: The address inputs are latched into the internal register onter on the falling edge of AS.
TAOS_2	71		Transmit All "Ones" Channel_2 - Hardware Mode See "Transmit All Ones for Channel _0 - Hardware mode" on page 7. <i>Note:</i> Internally pulled "Low" with a 50kΩ resistor.
CS	72	I	Chip Select Input - Host Mode
TAOS_3	72		This signal must be "Low" in order to access the parallel port. Transmit All "Ones" Channel_3 - Hardware Mode See "Transmit All Ones for Channel _0 - Hardware mode" on page 7. Note: Internally pulled "Low" with a 50kΩ resistor.
RDY_DTACK	73	0	Ready Output (Data Transfer Acknowledge Output) - Host Mode Intel bus timing: RDY is asserted "High" to indicate the device has com- pleted a read or write operation. Motorola bus timing: DTACK is asserted "Low" to indicate the device has completed a read or write cycle.
RXMUTE	73	I	Receive Muting - Hardware mode See "Receive Muting - Hardware mode" on page 5. Note: Internally pulled "Low" with a 50kΩ resistor.

SIGNAL NAME	Pin #	Түре			I	DESCRIPTION		
μ PTS1	106	I	Microprocessor Type Select Input Pins - Host Mode: Microprocessor Type Select Input Bit 1					
μ ΡΤS2	107		Microprocessor Type Select Input Bit 2					
				μ PTS2	μPTS1	μР Туре		
				0	0	68HC11, 8051, 80C188 (async.)		
				0	1	Motorola 68K (async.)		
				1	0	Intel x86 (sync.)		
				1	1	Motorola 860 (sync.)		
RCLKE	106		Recei	ve Clock Edg	le select - Ha	ardware mode		
				-		lware Mode" on page 5.		
TCLKE	107		Trans	mit Clock Ed	ge select - H	lardware mode		
			See "T	Transmit Clock	c Edge - Hard	dware Mode" on page 6.		
			NOTE:	These pins a	are internally	pulled "Low" with a 50k Ω resistor.		
			Micro	processor Re	ead/Write Da	ata Bus Pins - Host Mode		
D[7]	42	I/O						
D[6]	43		Data Bus[6] Data Bus[5]					
D[5]	44							
D[4]	45		Data E	Bus[4]				
D[3]	46		Data E	Bus[3]				
D[2]/	47			Bus[2]				
D[1]/	48		Data E	Bus[1]				
D[0]/	49			Bus[0]				
LOOP1_0	42		-			:0]_Channel_n - Hardware Mode		
LOOP0_0	43					Back mode is selected per channel. See		
LOOP1_1	44		-			vare Mode:" on page 14.		
LOOP0_1	45		NOTE:	internally pu	ilea 'LOW'' WI	ith a 50kΩ resistor.		
LOOP1_2	46							
LOOP0_2	47							
LOOP1_3	48							
LOOP0_3	49							
μΡϹLΚ	50	I		processor Cl				
			Input of is 54 M		nronous micr	oprocessor operation. Maximum clock rate		
			Note:		ternally pulle nen no clock	ed "Low" for asynchronous microprocessor is present.		
ATAOS			Auton	natic Transm	it "All Ones'	" - Hardware mode		
						tic Transmit "All Ones". See "Automatic rdware Mode" on page 13.		

SIGNAL NAME

PIN #

J	REV. 1.0.0							
	Түре	DESCRIPTION						
		Microprocessor Address Pins - Host mode:						

		Microprocessor Address Pins - Host mode:
57	I	Microprocessor Interface Address Bus[6]
58		Microprocessor Interface Address Bus[5]
59		Microprocessor Interface Address Bus[4]
60		Microprocessor Interface Address Bus[3]
61		Microprocessor Interface Address Bus[2]
62		Microprocessor Interface Address Bus[1]
63		Microprocessor Interface Address Bus[0]
		Jitter Attenuator Select Pins - Hardware Mode
57		Jitter Attenuator select pin 1
58		Jitter Attenuatore select pin 0
		See "Jitter Attenuator" on page 11.
		Equalizer Control Pins - Hardware Mode
59		Equalizer Control Input pin 4
60		Equalizer Control Input pin 3
61		Equalizer Control Input pin 2
62		Equalizer Control Input pin 1
63		Equalizer Control Input pin 0
		Pins EQC[4:0] select the Receive Equalizer and Transmitter Line Build Out. See "Alarm Function//Redundancy Support" on page 13.
		Note: Internally pulled "Low" with a 50k Ω resistor.
119	I	Interrupt Output - Host Mode
		This pin goes "Low" to indicate an alarm condition has occurred within the device. Interrupt generation can be globally disabled by setting the GIE bit to "0" in the command control register.
119		Transmitter Transformer Ratio Select - Hardware mode
115		The function of this pin is to select the transmitter transformer ratio. See "Alarm Function//Redundancy Support" on page 13.
		Note: This pin is an open drain output and requires an external $10k\Omega$ pull- up resistor.
	58 59 60 61 62 63 57 58 59 60 61 62 63	58 59 60 61 62 63 59 60 61 62 63 119

JITTER ATTENUATOR

SIGNAL NAME	PIN #	Түре	DESCRIPTION					
JASEL0 JASEL1	58 57	I	Jitter Attenuator Select Pins - Hardware Mode Jitter Attenuator select pin 0 Jitter Attenuator select pin 1 JASEL[1:0] pins are used to place the jitter attenuator in the transmit path, the receive path or to disable it.					
			JASEL1	JASEL0	JA Path	JA E	SW Hz	FIFO Size
			JAGELT	JASELU	JA Fatti	T1	E1	111 0 3120
			0	0	Disabled			
			0	1	Transmit	3	10	32/32
			1	0	Receive	3	10	32/32
			1	1	Receive	3	1.5	64/64
A[6] A[5]	57 58		Microprocesse See "Microproc Note: Internal	essor Addre	ess Pins - Hos	t mode:"	on page	10.

CLOCK SYNTHESIZER

SIGNAL NAME	Pin #	Түре	DESCRIPTION						
MCLKE1	32	I	 E1 Master Clock Input A 2.048MHz clock for with an accuracy of better than ±50ppm and a duty cycle of 40% to 60% can be provided at this pin. In systems that have only one master clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. Notes: All channels of the XRT83SL34 must be operated at the same clock rate, either T1, E1 or J1. Internally pulled "Low" with a 50kΩ resistor. 						
CLKSEL0 CLKSEL1 CLKSEL2	37 38 39	I	CLKSEL[2 can be use source acc The MCLk inputs. See Host Mod	2:0] are inp ed to gene cording to (RATE cor e Table 4 f e: The sta trolled by	ut signals t rate a mas the followin ntrol signal or descript te of these	to a progra ster clock f ng table. is generat tion of Trai pins are i	immable fr rom an ac red from th nsmit Equa gnored an	er - Hardwar equency syn curate extern e state of E0 alizer Contro d the master s. See Table	nthesizer that nal clock QC[4:0] I bits.
			MCLKE1 (kHz)	MCLKT1 (kHz)	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	CLKOUT (KHz)
			2048	2048	0	0	0	0	2048
			2048	2048	0	0	0	1	1544
			2048	1544	0	0	0	0	2048
			1544	1544	0	0	1	1	1544
			1544	1544	0	0	1	0	2048
			2048	1544	0	0	1	1	1544
			8	х	0	1	0	0	2048
			8	х	0	1	0	1	1544
			16	Х	0	1	1	0	2048
			16	х	0	1	1	1	1544
			56	Х	1	0	0	0	2048
			56	Х	1	0	0	1	1544
			64	Х	1	0	1	0	2048
			64	Х	1	0	1	1	1544
			128	Х	1	1	0	0	2048
			128	Х	1	1	0	1	1544
			256	Х	1	1	1	0	2048
			256	х	1	1	1	1	1544
								1 a 50k Ω resist	

SIGNAL NAME	PIN #	Түре	DESCRIPTION	
MCLKT1	33	I	 T1 Master Clock Input This signal is an independent 1.544MHz clock for T1 systems with required accuracy of better than ±50ppm and duty cycle of 40% to 60%. MCLKT1 input is used in the T1 mode. Notes: All channels of the XRT83SL34 must be operated at the same clock rate, either T1, E1 or J1. See pin 32 description for further explanation for the usage of this pin. Internally pulled "Low" with a 50kΩ resistor. 	
MCLKOUT	36	ο	Synthesized Master Clock Output This signal is the output of the Master Clock Synthesizer PLL which is at T1 or E1 rate based upon the mode of operation.	

ALARM FUNCTION//REDUNDANCY SUPPORT

SIGNAL NAME	Pin #	Түре	DESCRIPTION
GAUGE	87	I	Twisted Pair Cable Wire Gauge Select - Hardware mode Connect this pin "High" to select 26 Gauge wire. Connect this pin "Low" to select 22 and 24 gauge wire for all channels. Note: Internally pulled "Low" with a $50k\Omega$ resistor.
DMO_0	64	0	Driver Failure Monitor Channel _0 This pin transitions "High" if a short circuit condition is detected in the trans- mit driver of Channel _0, or no transmit output pulse is detected for more than 128 TCLK_0 cycles.
DMO_1	65		Driver Failure Monitor Channel _1
DMO_2	66		Driver Failure Monitor Channel _2
DMO_3	67		Driver Failure Monitor Channel _3
ATAOS	50	I	Automatic Transmit "All Ones" Pattern - Hardware Mode
			A "High" level on this pin enables the automatic transmission of an "All Ones" AMI pattern from the transmitter of any channel that the receiver of that channel has detected an LOS condition. A "Low" level on this pin disables this function.
			NOTE: All channels share the same ATAOS input control function.
μΡϹͰΚ			Microprocessor Clock Input - Host Mode
μι σεις			See "Microprocessor Clock Input - Host Mode" on page 9.
			Note: This pin is internally pulled "Low" for asynchronous microprocessor interface when no clock is present.

REV. 1.0.0

SIGNAL NAME	Pin #	Түре			DESCRIPTION			
TRATIO INT	119	0	Transmitter Transformer Ratio Select - Hardware ModeIn external termination mode (TXSEL = 0), setting this pin "High" selects atransformer ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter transformer ratio to 1:2.45. In the internal termination mode thetransmitter transformer ratio is permanently set to 1:2 and the state of this pinis ignored.Interrupt Output - Host ModeThis pin is asserted "Low" to indicate an alarm condition. See "Microprocessor Interface" on page 8.Note: This pin is an open drain output and requires an external 10kΩ pull- up resistor.					
RESET	121	I	When this pin is state. Pulling RESET test mode. This	Hardware Reset (Active "Low") When this pin is tied "Low" for more than 10 μ s, the device is put in the reset state. Pulling RESET and ICT pins "Low" simultaneously will put the chip in factory test mode. This condition should not be permitted during normal operation. <i>Note:</i> Internally pulled "High" with a 50k Ω resistor.				
SR/DR	16	I	Single-Rail/Dual-Rail Data FormatConnect this pin "Low" to select transmit and receive data format in Dual-railmode. In this mode, HDB3 or B8ZS encoder and decoder are not available.Connect this pin "High" to select single-rail data format.Note: Internally pulled "Low" with a 50kΩ resistor.					
LOOP1_0 LOOP0_0 LOOP1_1 LOOP0_1 LOOP1_2 LOOP0_2 LOOP1_3 LOOP0_3	42 43 44 45 46 47 48 49	I/O	Loop-Back Control Pins - Hardware Mode: Loop-back control pin 1 - Channel _0 Loop-back control pin 0 - Channel _0 Loop-back control pin 1 - Channel _1 Loop-back control pin 0 - Channel _1 Loop-back control pin 1 - Channel _2 Loop-back control pin 0 - Channel _2 Loop-back control pin 1 - Channel _3 Loop-back control pin 0 - Channel _3					
			LOOP1_n	LOOP0_n	MODE			
			0	0	Normal Mode No Loop-back Channel_n			
			0	1	Local Loop-Back Channel_n			
			1	0	Remote Loop-Back Channel_n			
			1	1	Digital Loop-Back Channel_n			
D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]	42 43 44 45 46 47 48 49		These pins are Write Data Bus	microprocess Pins - Host M	bits [7:0] - Host Mode or data bus pins. See "Microprocessor Read/ lode" on page 9. ally pulled "Low" with a 50kΩ resistor.			

15

SIGNAL NAME	Pin #	Түре	DESCRIPTION			
EQC4	59	I	Equalizer Control Input 4 - Hardware Mode			
			This pin together with EQC[3:0] are used for controlling the transmit pulse shaping, transmit line build-out (LBO), receive monitoring and also to select T1, E1 or J1 Modes of operation. See Table 4 for description of Transmit Equalizer Control bits.			
EQC3	60		Equalizer Control Input 3			
EQC2	61		Equalizer Control Input 2			
EQC1	62		Equalizer Control Input 1			
EQC0	63		Equalizer Control Input 0			
			Notes:			
			 In Hardware mode all transmit channels share the same pulse setting controls function. 			
A[4]	59 60		 All channels of an XRT83SL34 must operate at the same clock rate, either the T1, E1 or J1 modes. 			
A[3] A[2]	61		Microprocessor Address bits [4:0] - Host Mode			
A[2] A[1]	62		See "Microprocessor Address Pins - Host mode:" on page 10.			
A[0]	63		NOTE: Internally pulled "Low" with a 50k Ω resistor for all channels.			
RXTSEL	110	I	Receiver Termination Select			
			In Hardware mode, when this pin is "Low" the receive line termination is determined only by the external resistor. When "High", the receive termination is realized by internal resistors or the combination of internal and external resistors. These conditions are described in the table below.			
			NOTE: In Hardware mode all channels share the same RXTSEL control function.			
			RXTSEL RX Termination			
			0 External			
			1 Internal			
			In Host mode , the RXTSEL_n bits in the channel control registers determines if the receiver termination is external or internal. However the function of RXTSEL can be transferred to the Hardware pin by setting the TERCNTL bit (bit 4) to "1" in the register 66 address hex 0x42. Note: Internally pulled "Low" with a 50k Ω resistor.			
TXTSEL	111	I	Transmit Termination Select - Hardware Mode			
			When this pin is "Low" the transmit line termination is determined only by an external resistor. When "High", the transmit termination is realized only by the internal resistor.			
			TXTSEL TX Termination			
			0 External			
			1 Internal			
			Notes:			
			1. This pin is internally pulled "Low" with a 50k Ω resistor.			
			 In Hardware Mode all channels share the same TXTSEL control 			
			function.			

SIGNAL NAME	PIN #	Түре	DESCRIPTION			
TERSEL0 TERSEL1	113 112	I	Termination Impedance Select pin 0 Termination Impedance Select pin 1 In the Hardware mode and in the internal termination mode (TXTSEL="1" and RXTSEL="1"), TERSEL[1:0] control the transmit and receive termination impedance according to the following table.			
			TERSEL1 TERSEL0 Termination			
			0 0 100Ω			
			0 1 110Ω			
			1 0 75Ω			
			1 1 120Ω			
			 In the internal termination mode, the receiver termination of each receiver is realized completely by internal resistors or by the combination of internal and one fixed external resistor (see description of RXRES[1:0] pins). In the internal termination mode the transformer ratio of 1:2 and 1:1 is required for transmitter and receiver respectively with the transmitter output AC coupled to the transformer. <i>Notes:</i> This pin is internally pulled "Low" with a 50kΩ resistor. In Hardware Mode all channels share the same TERSEL control function. 			
	120	1	In-Circuit Testing (active "Low"): When this pin is tied "Low", all output pins are forced to a "High" impedance state for in-circuit testing. Pulling RESET and ICT pins "Low" simultaneously will put the chip in factory test mode. This condition should not be permitted during normal operation. <i>Note:</i> Internally pulled "High" with a 50k Ω resistor.			

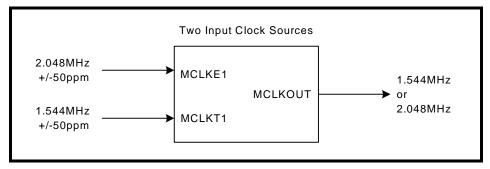
POWER AND GROUND

SIGNAL NAME	Pin #	Түре	DESCRIPTION
TGND_0	12	****	Transmitter Analog Ground for Channel _0
TGND_1	20		Transmitter Analog Ground for Channel _1
TGND_2	83		Transmitter Analog Ground for Channel _2
TGND_3	91		Transmitter Analog Ground for Channel _3
TVDD_0	14	****	Transmitter Analog Positive Supply (3.3V \pm 5%) for Channel _0
TVDD_1	18		Transmitter Analog Positive Supply (3.3V \pm 5%) for Channel _1
TVDD_2	85		Transmitter Analog Positive Supply (3.3V \pm 5%) for Channel _2
TVDD_3	89		Transmitter Analog Positive Supply (3.3V \pm 5%) for Channel _3
RVDD_0	8	****	Receiver Analog Positive Supply (3.3V± 5%) for Channel _0
RVDD_1	24		Receiver Analog Positive Supply (3.3V± 5%) for Channel _1
RVDD_2	79		Receiver Analog Positive Supply (3.3V± 5%) for Channel _2
RVDD_3	95		Receiver Analog Positive Supply (3.3V± 5%) for Channel _3
RGND_0	11	****	Receiver Analog Ground for Channel _0
RGND_1	21		Receiver Analog Ground for Channel _1
RGND_2	82		Receiver Analog Ground for Channel _2
RGND_3	92		Receiver Analog Ground for Channel _3
VDDPLL_1	30	****	Analog Positive Supply for Master Clock Synthesizer PLL (3.3V± 5%)
VDDPLL_2	31		Analog Positive Supply for Master Clock Synthesizer PLL (3.3V± 5%)
AVDD	40		Analog Positive Supply (3.3V± 5%)
GNDPLL_1	34	****	Analog Ground for Master Clock Synthesizer PLL
GNDPLL_2	35		Analog Ground for Master Clock Synthesizer PLL
AGND	41		Analog Ground
DVDD	29	****	Digital Positive Supply (3.3V± 5%)
DVDD	51		Digital Positive Supply (3.3V± 5%)
DVDD	52		Digital Positive Supply (3.3V± 5%)
DVDD	53		Digital Positive Supply (3.3V± 5%)
DVDD	115		Digital Positive Supply (3.3V± 5%)
DVDD	116		Digital Positive Supply (3.3V± 5%)
DGND	54	****	Digital Ground
DGND	55		Digital Ground
DGND	56		Digital Ground
DGND	74		Digital Ground
GND	114		Ground
DGND	117		Digital Ground
DGND	118		Digital Ground

FUNCTIONAL DESCRIPTION

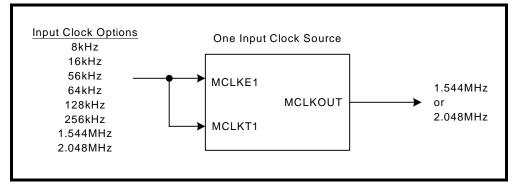
The XRT83SL34 is a fully integrated four chnnel short-haul transceiver intended for T1, J1 or E1 systems. Simplified block diagrams of the device are shown in Figure 1, **Host** mode and Figure 2, **Hardware** mode.

In T1 applications, the XRT83SL34 can generate five transmit pulse shapes to meet the short-haul Digital Cross-connect (DSX-1) template requirement. The operation and configuration of the XRT83SL34 can be controlled through a parallel microprocessor **Host** interface or **Hardware** control.


MASTER CLOCK GENERATOR

Using a variety of external clock sources, the on-chip frequency synthesizer generates the T1 (1.544MHz) or E1 (2.048MHz) master clocks necessary for the transmit pulse shaping and receive clock recovery circuit.

There are two master clock inputs MCLKE1 and MCLKT1. In systems where both T1 and E1 master clocks are available these clocks can be connected to the respective pins. All channels of a given XRT83SL34 must be operated at the same clock rate, either T1, E1 or J1 modes.


In systems that have only one master clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. T1 or E1 master clocks can be generated from 8kHz, 16kHz, 56kHz, 64kHz, 128kHz and 256kHz external clocks under the control of CLKSEL[2:0] inputs according to Table 1.

NOTE: EQC[4:0] determine the T1/E1 operating mode. See **Table 5** for details.

FIGURE 4. TWO INPUT CLOCK SOURCE

MCLKE1 ĸHz	MCLKT1 ĸHz	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	MASTER CLOCK KHZ
2048	2048	0	0	0	0	2048
2048	2048	0	0	0	1	1544
2048	1544	0	0	0	0	2048
1544	1544	0	0	1	1	1544
1544	1544	0	0	1	0	2048
2048	1544	0	0	1	1	1544
8	x	0	1	0	0	2048
8	x	0	1	0	1	1544
16	x	0	1	1	0	2048
16	x	0	1	1	1	1544
56	x	1	0	0	0	2048
56	x	1	0	0	1	1544
64	x	1	0	1	0	2048
64	x	1	0	1	1	1544
128	x	1	1	0	0	2048
128	x	1	1	0	1	1544
256	x	1	1	1	0	2048
256	x	1	1	1	1	1544

TABLE 1: MASTER CLOCK GENERATOR

In **Host** mode the programming is achieved through the corresponding interface control bits, the state of the CLKSEL[2:0] control bits and the state of the MCLKRATE interface control bit.

RECEIVER

In **Hardware** mode all receive channels are turned on upon power-up and there is no provision supplied to power them off. In **Host** mode, each receiver channel can be individually powered on or off with its respective channel RXON_n bit. See "Microprocessor Register #0, Bit Description" on page 45.

RECEIVER INPUT

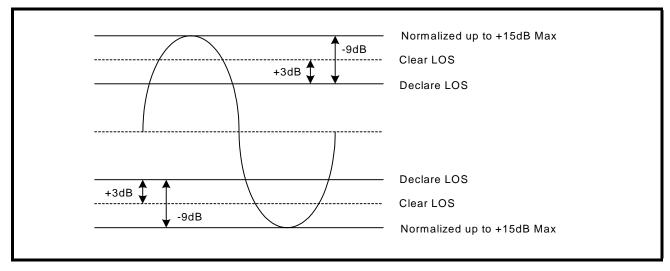
At the receiver input, a cable attenuated AMI signal can be coupled to the receiver through a capacitor or a 1:1 transformer. The input signal is first applied to a selective equalizer for signal conditioning. The maximum equalizer gain is up to 36 dB for both T1 and E1 modes. The equalized signal is subsequently applied to a peak detector which in turn controls the equalizer settings and the data slicer. The slicer threshold for both E1 and T1 is typically set at 50% of the peak amplitude at the equalizer output. After the slicers, the digital representation of the AMI signals are applied to the clock and data recovery circuit. The recovered data subsequently goes through the jitter attenuator and decoder (if selected) for HDB3 or B8ZS decoding before being applied to the RPOS_n/RDATA_n and RNEG_n/LCV_n pins. Clock recovery is accomplished by a digital phase-locked loop (DPLL) which does not require any external components and can tolerate high levels of input jitter that meets or exceeds the ITU-G.823 and TR-TSY000499 standards.

RECEIVE MONITOR MODE

In applications where Monitor mode is desired, the equalizer can be configured in a gain mode which handles input signals attenuated resistively up to 29dB, along with 0 to 6dB cable attenuation for both T1 and E1 applications, refer to Table 5 for details. This feature is available in both **Hardware** and **Host** modes.

RECEIVER LOSS OF SIGNAL (RLOS)

For compatibility with ITU G.775 requirements, the RLOS monitoring function is implemented using both analog and digital detection schemes. If the analog RLOS condition occurs, a digital detector is activated to count for 32 consecutive zeros in E1 (4096 bits in Extended Los mode, EXLOS = "1") or 175 consecutive zeros in T1 before RLOS is asserted. RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and meets 12.5% ones density of 4 ones in a 32 bit window, with no more than 16 consecutive zeros for E1. In T1 mode, RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and contains 16 ones in a 128 bit window with no more than 100 consecutive zeros in the data stream. When loss of signal occurs, RLOS register indication and register status will change. If the RLOS register enable is set high (enabled), the alarm will trigger an interrupt causing the interrupt pin (INT) to go low. Once the alarm status register has been read, it will automatically reset upon read (RUR), and the INT pin will return high.


Analog RLOS

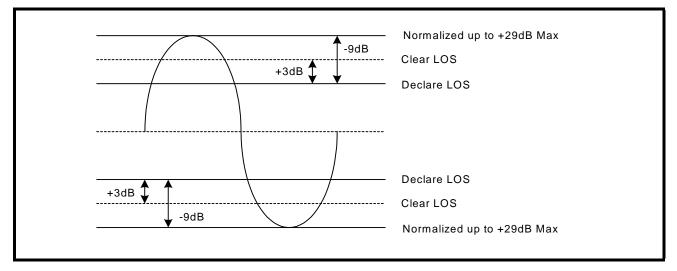
Setting the Receiver Inputs to -15dB T1/E1 Short Haul Mode

By setting the receiver inputs to -15dB T1/E1 short haul mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +15dB normalizing the T1/E1 input signal.

NOTE: This is the only setting that refers to cable loss (frequency), not flat loss (resistive).

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+15dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is typically -24dB (-15dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total cable attenuation of -21dB. See Figure 6 for a simplified diagram.

FIGURE 6. SIMPLIFIED DIAGRAM OF -15dB T1/E1 SHORT HAUL MODE AND RLOS CONDITION


Setting the Receiver Inputs to -29dB T1/E1 Gain Mode

By setting the receiver inputs to -29dB T1/E1 gain mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +29dB normalizing the T1/E1 input signal.

NOTE: This is the only setting that refers to flat loss (resistive). All other modes refer to cable loss (frequency).

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+29dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is

typically -38dB (-29dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total flat loss of -35dB. See Figure 7 for a simplified diagram.

FIGURE 7. SIMPLIFIED DIAGRAM OF -29dB T1/E1 GAIN MODE AND RLOS CONDITION

RECEIVE HDB3/B8ZS DECODER

The Decoder function is available in both **Hardware** and **Host** modes on a per channel basis by controlling the TNEG_n/CODES_n pin or the CODES_n interface bit. The decoder function is only active in single-rail Mode. When selected, receive data in this mode will be decoded according to HDB3 rules for E1 and B8ZS for T1 systems. Bipolar violations that do not conform to the coding scheme will be reported as Line Code Violation at the RNEG_n/LCV_n pin of each channel. The length of the LCV pulse is one RCLK cycle for each code violation. In E1mode only, an excessive number of zeros in the receive data stream is also reported as an error at the same output pin. If AMI decoding is selected in single rail mode, every bipolar violation in the receive data stream will be reported as an error at the RNEG_n/LCV_n pin.

RECOVERED CLOCK (RCLK) SAMPLING EDGE

This feature is available in both **Hardware** and **Host** modes on a global basis. In **Host** mode, the sampling edge of RCLK output can be changed through the interface control bit RCLKE. If a "1" is written in the RCLKE interface bit, receive data output at RPOS_n/RDATA_n and RNEG_n/LCV_n are updated on the falling edge of RCLK for all eight channels. Writing a "0" to the RCLKE register, updates the receive data on the rising edge of RCLK. In **Hardware** mode the same feature is available under the control of the RCLKE pin.

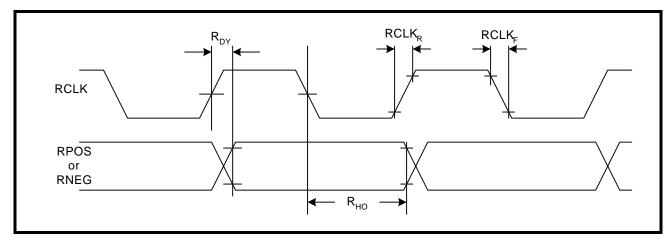


FIGURE 8. RECEIVE CLOCK AND OUTPUT DATA TIMING

JITTER ATTENUATOR

To reduce phase and frequency jitter in the recovered clock, the jitter attenuator can be placed in the receive signal path. The jitter attenuator uses a data FIFO (First In First Out) with a programmable depth that can vary between 2x32 and 2x64. The jitter attenuator can also be placed in the transmit signal path or disabled altogether depending upon system requirements. The jitter attenuator, other than using the master clock as reference, requires no external components. With the jitter attenuator selected, the typical throughput delay from input to output is 16 bits for 32 bit FIFO size or 32 bits for 64 bit FIFO size. When the read and write pointers of the FIFO in the jitter attenuator are within two bits of over-flowing or under-flowing, the bandwidth of the jitter attenuator is widened to track the short term input jitter, thereby avoiding data corruption. When this situation occurs, the jitter attenuator will not attenuate input jitter until the read/write pointer's position is outside the two bits window. Under normal condition, the jitter transfer characteristic meets the narrow bandwidth requirement as specified in ITU- G.736, ITU- I.431 and AT&T Pub 62411 standards.

In T1 mode the Jitter Attenuator Bandwidth is always set to 3Hz. In E1 mode, the bandwidth can be reduced through the JABW control signal. When JABW is set "High" the bandwidth of the jitter attenuator is reduced from 10Hz to 1.5Hz. Under this condition the FIFO length is automatically set to 64 bits and the 32 bits FIFO length will not be available in this mode. Jitter attenuator controls are available on a per channel basis in the **Host** mode and on a global basis in the **Hardware** mode.

GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)

The XRT83SL34 LIU is ideal for multiplexer or mapper applications where the network data crosses multiple timing domains. As the higher data rates are de-multiplexed down to T1 or E1 data, stuffing bits are removed which can leave gaps in the incoming data stream. If the jitter attenuator is enabled in the transmit path, the 32-Bit or 64-Bit FIFO is used to smooth the gapped clock into a steady T1 or E1 output. The maximum gap width of the 8-Channel LIU is shown in Table 2.

FIFO DEPTH	Maximum Gap Width
32-Bit	20 UI
64-Bit	50 UI

TABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS

Note: If the LIU is used in a loop timing system, the jitter attenuator should be enabled in the receive path.