

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

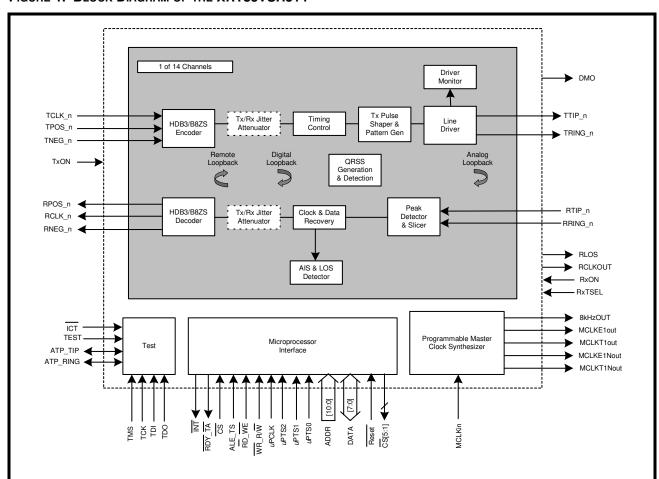
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SEPTEMBER 2006 REV. 1.0.1

GENERAL DESCRIPTION

The XRT83VSH314 is a fully integrated 14-channel short-haul line interface unit (LIU) that operates from a 1.8V Inner Core and 3.3V I/O power supplies. Using internal termination, the LIU provides one bill of materials to operate in T1, E1, or J1 mode independently on a per channel basis with minimum external components. The LIU features are programmed through a standard microprocessor interface. EXAR's LIU has patented high impedance circuits that allow the transmitter outputs and receiver inputs to be high impedance when experiencing a power failure or when the LIU is powered off. Key design features within the LIU optimize 1:1 or 1+1 redundancy and non-intrusive monitoring applications to ensure reliability without using relays.

The on-chip clock synthesizer generates T1/E1/J1 clock rates from a selectable external clock frequency and has five output clock references that can be used


for external timing (8kHz, 1.544Mhz, 2.048Mhz, nxT1/J1, nxE1).

Additional features include RLOS, a 16-bit LCV counter for each channel, AIS, QRSS/PRBS generation/detection, TAOS, DMO, and diagnostic loopback modes.

APPLICATIONS

- T1 Digital Cross Connects (DSX-1)
- ISDN Primary Rate Interface
- CSU/DSU E1/T1/J1 Interface
- T1/E1/J1 LAN/WAN Routers
- Public Switching Systems and PBX Interfaces
- T1/E1/J1 Multiplexer and Channel Banks
- Integrated Multi-Service Access Platforms (IMAPs)
- Integrated Access Devices (IADs)
- Inverse Multiplexing for ATM (IMA)
- Wireless Base Stations

FIGURE 1. BLOCK DIAGRAM OF THE XRT83VSH314

XRT83VSH314

14-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT

FEATURES

- Fully integrated 14-Channel short haul transceivers for T1/J1 (1.544MHz) and E1 (2.048MHz) applications
- T1/E1/J1 short haul and clock rate are per port selectable through software without changing components
- Internal Impedance matching on both receive and transmit for 75Ω (E1), 100Ω (T1), 110Ω (J1), and 120Ω (E1) applications are per port selectable through software without changing components
- Power down on a per channel basis with independent receive and transmit selection
- Five pre-programmed transmit pulse settings for T1 short haul applications per channel
- User programable Arbitrary Pulse mode
- On-Chip transmit short-circuit protection and limiting protects line drivers from damage on a per channel basis
- Selectable Crystal-Less digital jitter attenuators (JA) with 32-Bit or 64-Bit FIFO for the receive or transmit path
- Driver failure monitor output (DMO) alerts of possible system or external component problems
- Transmit outputs and receive inputs may be "High" impedance for protection or redundancy applications on a per channel basis
- Support for automatic protection switching
- 1:1 and 1+1 protection without relays
- Receive monitor mode handles 0 to 6dB resistive attenuation (flat loss) along with 0 to 6dB cable loss for both T1 and E1
- Loss of signal (RLOS) according to ITU-T G.775/ETS300233 (E1) and ANSI T1.403 (T1/J1)
- Programmable data stream muting upon RLOS detection
- On-Chip HDB3/B8ZS encoder/decoder with an internal 16-bit LCV counter for each channel
- On-Chip digital clock recovery circuit for high input jitter tolerance
- QRSS/PRBS pattern generator and detection for testing and monitoring
- Error and bipolar violation insertion and detection
- Transmit all ones (TAOS) Generators and Detectors
- Supports local analog, remote, digital, and dual loopback modes
- 1.8V Digital Core
- 3.3V I/O and Analog Core
- 304-Pin BGA package
- -40°C to +85°C Temperature Range
- Supports gapped clocks for mapper/multiplexer applications

PRODUCT ORDERING INFORMATION

PRODUCT NUMBER	PACKAGE TYPE	OPERATING TEMPERATURE RANGE
XRT83VSH314IB	304 Lead PBGA	-40°C to +85°C

PIN OUT OF THE XRT83VSH314

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	П
A[10]	CS	CS4	WR_RW	TCLK_8	TPOS_10	TPOS_7	DGND_DRV	RVDD_7	RTIP_7	RRING_7	RGND_7	RGND_6	RRING_6	RTIP_6	RVDD_6	MCLKOUT_T1	MCLKIN	MCLKOUT_E1	MCLKE1xN	TCLK_5	ĪCT	TDI	Α
NC	RESET	CS1	CS5	TPOS_8	TNEG_9	TNEG_10	TCLK_7	VDDPLL_21	RCLK_7	TVDD_7	TRING_7	TRING_6	TVDD_6	RCLK_6	MCLKT1xN	TPOS_6	TCLK_3	TCLK_4	TPOS_4	ĪNT	DGND_DRV	тск	В
RGND_8	A[8]	DVDD_DRV	CS3	ALE_AS	TNEG_8	TCLK_9	TNEG_7	VDDPLL_22	RNEG_7	TTIP_7	DGND_6_7	TTIP_6	RNEG_6	GNDPLL_22	GNDPLL_21	TNEG_6	TNEG_3	TNEG_4	TPOS_5	DVD_PRE	TRING_5	RGND_5	С
RRING_8	TRING_8	ATP_TIP	DVD_PRE	CS2	RD_WE	TPOS_9	TCLK_10	DGND_PRE	RPOS_7	TGND_7	DVDD_6_7	TGND_6	RPOS_6	NC	EIGHT_KHZ	TCLK_6	TPOS_3	TNEG_5	TEST	TDO	TVDD_5	RRING_5	D
RTIP_8	RVDD_8	TVDD_8	A[9]																TMS	TTIP_5	RVDD_5	RTIP_5	E
RVDD_9	RCLK_8	TTIP_8	TGND_8																TGND_5	RNEG_5	RCLK_5	RVDD_4	F
RTIP_9	RCLK_9	RNEG_8	RPOS_8																RPOS_5	RNEG_4	RCLK_4	RTIP_4	G
RRING_9	TVDD_9	RNEG_9	RPOS_9																RPOS_4	TTIP_4	TRING_4	RRING_4	Н
RGND_9	TRING_9	TTIP_9	TGND_9																TGND_4	TVDD_4	DVDD_3_4_5	RGND_4	J
DVDD_8_9_10	NC	ATP_RING	SENSE																AVDD_BIAS	DVDD_DRV	CMPOUT	RCLKOUT	Κ
DGND_8_9_10	NC	NC	DGND_PRE																NC	AGND_BIAS	DGND_3_4_5	PhDIN	L
RGND_10	TRING_10	TTIP_10	TGND_10							В	ottom	View	'						TGND_3	TTIP_3	TRING_3	RGND_3	М
RRING_10	TVDD_10	RNEG_10	RPOS_10																RPOS_3	RNEG_3	TVDD_3	RRING_3	N
RTIP_10	RCLK_10	RNEG_11	RPOS_11																RPOS_2	RNEG_2	RCLK_3	RTIP_3	Р
RVDD_10	RCLK_11	TTIP_11	TGND_11																TGND_2	TTIP_2	RCLK_2	RVDD_3	R
RTIP_11	RVDD_11	TVDD_11	TRING_11																DGND_1_2	TVDD_2	RVDD_2	RTIP_2	Т
RRING_11	DVDD_DRV	DVDD_11_12	DGND_11_12																TVDD_1	DGND_DRV	TRING_2	RRING_2	U
RGND_11	TRING_12	TVDD_12	TGND_12																TGND_1	TRING_1	DVDD_1_2	RGND_2	٧
RRING_12	RGND_12	TTIP_12	RPOS_12		r	r				1	•		,						RPOS_1	TTIP_1	RGND_1	RRING_1	W
RTIP_12	RCLK_12	RNEG_12	DVD_PRE	A[1]	A[7]	TCLK_12	TCLK_13	RXTSEL	RPOS_13	TGND_13	DGND_13_0	TGND_0	RPOS_0	GNDPLL_12	TPOS_0	TNEG_1	D[3]	DVD_PRE	DMO	RNEG_1	RVDD_1	RTIP_1	Υ
RVDD_12	NC	UPTS0	A[2]	A[6]	TPOS_12	TNEG_11	DVDD_DRV	DVDD_UP	RNEG_13	TTIP_13	DVDD_13_0	TTIP_0	RNEG_0	RCLK_0	DGND_DRV	TNEG_2	TPOS_1	D[4]	D[7]	RDY_TA	RCLK_1	NC	AA
DGND_DRV	UPTS1	A[3]	A[5]	RXON	TPOS_11	TPOS_13	VDDPLL_12	DGND_UP	RCLK_13	TVDD_13	TRING_13	TRING_0	TVDD_0	RVDD_0	DGND_PRE	TNEG_0	TPOS_2	D[0]	D[2]	D[6]	UPCLK	RLOS	AB
UPTS2	A[0]	A[4]	TxON	TNEG_12	TCLK_11	TNEG_13	VDDPLL_11	RVDD_13	RTIP_13	RRING_13	RGND_13	RGND_0	RRING_0	RTIP_0	GNDPLL_11	TCLK_0	TCLK_2	TCLK_1	D[1]	D[5]	DVD_DRV	NC	AC

TABLE OF CONTENTS

GENERAL DESCRIPTION	1
APPLICATIONS	
FIGURE 1. BLOCK DIAGRAM OF THE XRT83VSH314	
FEATURES	
PRODUCT ORDERING INFORMATION	2
PIN OUT OF THE XRT83VSH314	3
TABLE OF CONTENTS	
1.0 PIN DESCRIPTIONS	
MICROPROCESSOR	
RECEIVER SECTION	
TRANSMITTER SECTION	
CONTROL FUNCTION	
CLOCK SECTION	
JTAG Section	
Power and Ground	
No Connects	
2.0 CLOCK SYNTHESIZER	
TABLE 1: INPUT CLOCK SOURCE SELECT	
FIGURE 2. SIMPLIFIED BLOCK DIAGRAM OF THE CLOCK SYNTHESIZER	
3.0 RECEIVE PATH LINE INTERFACE	
FIGURE 3. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH	
3.1 LINE TERMINATION (RTIP/RRING)	
3.1.1 INTERNAL TERMINATION	
FIGURE 4. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION	
TABLE 3: RECEIVE TERMINATIONS	
3.2 CLOCK AND DATA RECOVERY	
FIGURE 5. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK	
FIGURE 6. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK	
TABLE 4: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG	
3.2.1 RECEIVE SENSITIVITY	
FIGURE 7. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY	
FIGURE 8. TEST CONFIGURATION FOR MEASURING INTERFERENCE MARGIN	
3.2.3 GENERAL ALARM DETECTION AND INTERRUPT GENERATION	
FIGURE 9. INTERRUPT GENERATION PROCESS BLOCK	
3.2.4 FLSD (FIFO LIMIT STATUS DETECTION)	22
3.3 JITTER ATTENUATOR	
3.4 HDB3/B8ZS DECODER	
FIGURE 10. SINGLE RAIL MODE WITH A FIXED REPEATING "0011" PATTERN	
FIGURE 11. DUAL RAIL MODE WITH A FIXED REPEATING "0011" PATTERN	
3.5 RXMUTE (RECEIVER LOS WITH DATA MUTING)	
4.0 TRANSMIT PATH LINE INTERFACE	
Figure 13. Simplified Block Diagram of the Transmit Path	_
4.1 TCLK/TPOS/TNEG DIGITAL INPUTS	
FIGURE 14. TRANSMIT DATA SAMPLED ON FALLING EDGE OF TCLK	
FIGURE 15. TRANSMIT DATA SAMPLED ON RISING EDGE OF TCLK	
TABLE 5: TIMING SPECIFICATIONS FOR TCLK/TPOS/TNEG	
4.2 HDB3/B8ZS ENCODER	
TABLE 6: EXAMPLES OF HDB3 ENCODING	
TABLE 7: EXAMPLES OF B8ZS ENCODING	
4.3 JITTER ATTENUATOR Table 8: Maximum Gap Width for Multiplexer/Mapper Applications	
1 ABLE 8: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS	
FIGURE 16. TAOS (TRANSMIT ALL ONES)	
4.5 TRANSMIT DIAGNOSTIC FEATURES	
4.5.1 ATAOS (AUTOMATIC TRANSMIT ALL ONES)	
FIGURE 17. SIMPLIFIED BLOCK DIAGRAM OF THE ATAOS FUNCTION	

REV. 1.0.1

14-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT

	4.5.2 QRSS/PRBS GENERATION	
	TABLE 9: RANDOM BIT SEQUENCE POLYNOMIALS	
	4.6 TRANSMIT PULSE SHAPER AND FILTER	
	4.6.1 T1 SHORT HAUL LINE BUILD OUT (LBO)	
	TABLE 10: SHORT HAUL LINE BUILD OUT	
	FIGURE 18. ARBITRARY PULSE SEGMENT ASSIGNMENT	
	4.6.3 SETTING REGISTERS TO SELECT AN ARIBTRARY PULSE	
	TABLE 11: TYPICAL ROM VALUES	
	4.7 DMO (DIGITAL MONITOR OUTPUT)	
	4.8 LINE TERMINATION (TTIP/TRING)	
	FIGURE 19. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION	
5.0	T1/E1 APPLICATIONS	
	5.1 LOOPBACK DIAGNOSTICS	
	5.1.1 LOCAL ANALOG LOOPBACK	
	FIGURE 20. SIMPLIFIED BLOCK DIAGRAM OF LOCAL ANALOG LOOPBACK	
	5.1.2 REMOTE LOOPBACK	
	5.1.3 DIGITAL LOOPBACK	
	FIGURE 22. SIMPLIFIED BLOCK DIAGRAM OF DIGITAL LOOPBACK	
	5.1.4 DUAL LOOPBACK	32
	FIGURE 23. SIMPLIFIED BLOCK DIAGRAM OF DUAL LOOPBACK	
	5.2 84-CHANNEL T1/E1 MULTIPLEXER/MAPPER APPLICATIONS	
	FIGURE 24. SIMPLIFIED BLOCK DIAGRAM OF AN 84-CHANNEL APPLICATION	
	TABLE 12: CHIP SELECT ASSIGNMENTS	
	5.3 LINE CARD REDUNDANCY	
	5.3.1 1:1 AND 1+1 REDUNDANCY WITHOUT RELAYS5.3.2 TRANSMIT INTERFACE WITH 1:1 AND 1+1 REDUNDANCY	
	FIGURE 25. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR 1:1 AND 1+1 REDUNDANCY	
	5.3.3 RECEIVE INTERFACE WITH 1:1 AND 1+1 REDUNDANCY	
	FIGURE 26. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE INTERFACE FOR 1:1 AND 1+1 REDUNDANCY	
	5.3.4 N+1 REDUNDANCY USING EXTERNAL RELAYS	
	5.3.5 TRANSMIT INTERFACE WITH N+1 REDUNDANCY	
	FIGURE 27. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT INTERFACE FOR N+1 REDUNDANCY	
	5.3.6 RECEIVE INTERFACE WITH N+1 REDUNDANCY	
	5.4 POWER FAILURE PROTECTION	
	5.5 OVERVOLTAGE AND OVERCURRENT PROTECTION	
	5.6 NON-INTRUSIVE MONITORING	
	FIGURE 29. SIMPLIFIED BLOCK DIAGRAM OF A NON-INTRUSIVE MONITORING APPLICATION	
	5.7 ANALOG BOARD CONTINUITY CHECK	. 39
	FIGURE 30. ATP TESTING BLOCK DIAGRAM	
	FIGURE 31. TIMING DIAGRAM FOR ATP TESTING	
	5.7.1 TRANSMITTER TTIP AND TRING TESTING	
6.0	5.7.2 RECEIVER RTIP AND RRING MICROPROCESSOR INTERFACE BLOCK	
J.U	TABLE 13: SELECTING THE MICROPROCESSOR INTERFACE MODE	
	FIGURE 32. SIMPLIFIED BLOCK DIAGRAM OF THE MICROPROCESSOR INTERFACE BLOCK	
	6.1 THE MICROPROCESSOR INTERFACE BLOCK SIGNALS	
	TABLE 14: XRT84SH314S MICROPROCESSOR INTERFACE SIGNALS COMMON TO BOTH INTEL AND MOTOROLA MODES	
	TABLE 15: INTEL MODE: MICROPROCESSOR INTERFACE SIGNALS	
	TABLE 16: MOTOROLA MODE: MICROPROCESSOR INTERFACE SIGNALS	
	6.2 INTEL MODE PROGRAMMED I/O ACCESS (ASYNCHRONOUS)	
	FIGURE 33. INTEL μP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS	
	TABLE 17: INTEL MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS	
	6.3 MPC86X MODE PROGRAMMED I/O ACCESS (SYNCHRONOUS)	
	TABLE 18: MOTOROLA MPC86X MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS	
	FIGURE 35. MOTOROLA 68K μP INTERFACE SIGNALS DURING PROGRAMMED I/O READ AND WRITE OPERATIONS	
	TABLE 19: MOTOROLA 68K MICROPROCESSOR INTERFACE TIMING SPECIFICATIONS	
7.0	REGISTER DESCRIPTIONS	49
	Table 20: Microprocessor Register Address (ADDR[7:0])	49
	TABLE 21: MICROPROCESSOR REGISTER CHANNEL DESCRIPTION	
	TABLE 22: MICROPROCESSOR REGISTER GLOBAL DESCRIPTION	50

XRT83VSH314

14-C

HANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT	Experience Our Connectivity REV. 1.0.1
TABLE 23: MICROPROCESSOR REGISTER 0x00h BIT DESCRIPTION	51
TABLE 24: CABLE LENGTH SETTINGS	52
TABLE 25: MICROPROCESSOR REGISTER 0x01H BIT DESCRIPTION	53
TABLE 26: MICROPROCESSOR REGISTER 0x02H BIT DESCRIPTION	54
TABLE 27: MICROPROCESSOR REGISTER 0x03H BIT DESCRIPTION	55
TABLE 28: MICROPROCESSOR REGISTER 0x04H BIT DESCRIPTION	56
T 00 M B 0.05: B B	

1.0 PIN DESCRIPTIONS

MICROPROCESSOR

NAME	Pin	Түре	DESCRIPTION
ĊS	A22	I	Chip Select Input Active low signal. This signal enables the microprocessor interface by pulling chip select "Low". The microprocessor interface is disabled when the chip select signal returns "High". Note: Internally pulled "High" with a 50k Ω resistor.
ALE_TS	C19	I	Address Latch Enable Input (Transfer Start) See the Microprocessor section of this datasheet for a description. Note: Internally pulled "Low" with a 50k Ω resistor.
WR_R/W	A20	I	Write Strobe Input (Read/Write) See the Microprocessor section of this datasheet for a description. Note: Internally pulled "Low" with a 50k Ω resistor.
RD_WE	D18	I	Read Strobe Input (Write Enable) See the Microprocessor section of this datasheet for a description. Note: Internally pulled "Low" with a 50k Ω resistor.
RDY_TA	AA3	0	Ready Output (Transfer Acknowledge) See the Microprocessor section of this datasheet for a description.
ĪNT	В3	0	Interrupt Output Active low signal. This signal is asserted "Low" when a change in alarm status occurs. Once the status registers have been read, the interrupt pin will return "High". GIE (Global Interrupt Enable) must be set "High" in the appropriate global register to enable interrupt generation. Note: This pin is an open-drain output that requires an external 10KΩ pull-up resistor.
μPCLK	AB2	I	Micro Processor Clock Input In a synchronous microprocessor interface, μPCLK is used as the internal timing reference for programming the LIU. Note: Internally pulled "Low" with a 50k Ω resistor.

MICROPROCESSOR

NAME	Pin	Түре	DESCRIPTION
ADDR10 ADDR9 ADDR8 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0	A23 E20 C22 Y18 AA19 AB20 AC21 AB21 AA20 Y19 AC22		Address Bus Input ADDR[10:8] is used as a chip select decoder. The LIU has 5 chip select output pins for enabling up to 5 additional devices for accessing internal registers. The LIU has the option to select itself (master device), up to 5 additional devices, or all 6 devices simultaneously by setting the ADDR[10:8] pins specified below. ADDR[7:0] is a direct address bus for permitting access to the internal registers. ADDR[10:8] 000 = Master Device 001 = Chip Select Output 1 (Pin B21) 010 = Chip Select Output 2 (Pin D19) 011 = Chip Select Output 3 (Pin C20) 100 = Chip Select Output 4 (Pin A21) 101 = Chip Select Output 5 (Pin B20) 110 = Reserved 111 = All Chip Selects Active Including the Master Device Note: Internally pulled "Low" with a 50k Ω resistor.
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0	AA4 AB3 AC3 AA5 Y6 AB4 AC4 AB5	I/O	Bi-directional Data Bus DATA[7:0] is a bi-directional data bus used for read and write operations. Note: Internally pulled "Low" with a 50k Ω resistor.
μPTS2 μPTS1 μPTS0	AC23 AB22 AA21	I	Microprocessor Type Select Input μ PTS[2:0] are used to select the microprocessor type interface. 000 = Intel 68HC11, 8051, 80C188 (Asynchronous) 001 = Motorola 68K (Asynchronous) 111 = Motorola MPC8260, MPC860 Power PC (Synchronous) Note: Internally pulled "Low" with a 50k Ω resistor.
Reset	B22	I	Hardware Reset Input Active low signal. When this pin is pulled "Low" for more than $10\mu S$, the internal registers are set to their default state. See the register description for the default values. Note: Internally pulled "High" with a $50K\Omega$ resistor.
CS5 CS4 CS3 CS2 CS1	B20 A21 C20 D19 B21	0	Chip Select Output The XRT83VSH314 can be used to provide the necessary chip selects for up to 5 additional devices by using the 3 MSBs ADDR[10:8] from the 11-Bit address bus. The LIU allows up to 84-channel applications with only using one chip select. See the ADDR[10:0] definition in the pin description.

RECEIVER SECTION

NAME	PIN	Түре		Des	CRIPTION	
RxON	AB19	I	can be select appropriate ch ware pin is pu	p, the receivers are powered through the microphannel register if the ha	wered off. Turning the rece processor interface by proardware pin is pulled "High are automatically turned of 50KΩ resistor.	gramming the ". If the hard-
RxTSEL	Y15	I	Upon power utermination caming the appropriate pin, Rx register. Once "High" to switch	n be selected through opriate channel registe FCNTL must be progr		te by program- rol to the hard- ropriate global
				RxTSEL (pin)	Rx Termination	
				0	External	
				1	Internal	
				Note: RxTCNTL (bit)	must be set to "1"	
RLOS	AB1	0	When a receive to ITU-T G.775 RLOS will rer Receive Loss Note: This pi	5, the RLOS pin will go main "High" until the lof of Signal section of this in is for redundancy app	for All 14-Channels) for any one of the 14-chan "High" for a minimum of on oss of signal condition cle s datasheet for more details colications to initiate an auto ual channel RLOS, see the	e RCLK cycle. ears. See the s. matic switch to
RCLK13 RCLK12 RCLK11 RCLK10 RCLK9 RCLK8 RCLK7 RCLK6 RCLK5 RCLK4 RCLK3 RCLK2 RCLK1 RCLK1	AB14 Y22 R22 P22 G22 F22 B14 B9 F2 G2 P2 R2 AA2 AA9	0	signal is abse an internal ma RPOS/RNEG	ecovered clock from the nt or RxON is pulled "I aster clock as its refer data to be updated on	ne incoming data stream. I Low", RCLK maintains its ti rence. Software control (F either edge of RCLK. It applies to all 14 channels.	iming by using RCLKE) allows

RECEIVER SECTION

NAME	Pin	Түре		Descr	RIPTION	
RCLKOUT	K1	0	Recovered Clo One of the 14 F 0xEEh) bits and See table below	ect [3:0] (register		
				Recovered Clock Select[3:0]	Selected RCLK[13:0]	
				0000, 1111	No RCLK Selected	
				0001	RCLK 0	
				0010	RCLK 1	
				0011	RCLK 2	
				0100	RCLK 3	
				0101	RCLK 4	
				0110	RCLK 5	
				0111	RCLK 6	
				1000	RCLK 7	
				1001	RCLK 8	
				1010	RCLK 9	
				1011	RCLK 10	
				1100	RCLK 11	
				1101	RCLK 12	
				1110	RCLK 13	
RPOS13 RPOS12 RPOS11 RPOS10 RPOS9 RPOS8 RPOS7 RPOS6 RPOS5 RPOS4 RPOS3 RPOS2 RPOS1 RPOS0	Y14 W20 P20 N20 H20 G20 D14 D10 G4 H4 N4 P4 W4	0		Output output pin. In dual rai single rail mode, this pir		

RECEIVER SECTION

NAME	Pin	Түре	DESCRIPTION
RNEG13	AA14	0	RNEG/LCV_OF Output
RNEG12	Y21		In dual rail mode, this pin is the receive negative data output. In single rail
RNEG11	P21		mode, this pin can either be a Line Code Violation or Overflow indicator. If LCV
RNEG10	N21		is selected by software and if a line code violation, a bi-polar violation, or
RNEG9	H21		excessive zeros occur, the LCV pin will pull "High" for a minimum of one RCLK cycle. LCV will remain "High" until there are no more violations. However, if
RNEG8	G21		OF is selected the LCV pin will pull "High" if the internal LCV counter is satu-
RNEG7	C14		rated. The LCV pin will remain "High" until the LCV counter is reset.
RNEG6	C10		,
RNEG5	F3		
RNEG4	G3		
RNEG3	N3		
RNEG2	P3		
RNEG1	Y3		
RNEG0	AA10		
RTIP13	AC14	1	Receive Differential Tip Input
RTIP12	Y23		RTIP is the positive differential input from the line interface. Along with the
RTIP11	T23		RRING signal, these pins should be coupled to a 1:1 transformer for proper
RTIP10	P23		operation.
RTIP9	G23		
RTIP8	E23		
RTIP7	A14		
RTIP6	A9		
RTIP5	E1		
RTIP4	G1		
RTIP3	P1		
RTIP2	T1		
RTIP1	Y1		
RTIP0	AC9		
RRING13	AC13	1	Receive Differential Ring Input
RRING12	W23		RRING is the negative differential input from the line interface. Along with the
RRING11	U23		RTIP signal, these pins should be coupled to a 1:1 transformer for proper operation
RRING10	N23		ation.
RRING9	H23		
RRING8	D23		
RRING7	A13		
RRING6	A10		
RRING5	D1		
RRING4	H1		
RRING3	N1		
RRING2	U1		
RRING1	W1		
RRING0	AC10		

TRANSMITTER SECTION

NAME	Pin	Түре	DESCRIPTION
TxON	AC20	I	Transmit On/Off Input Upon power up, the transmitters are powered off. Turning the transmitters On or Off is selected through the microprocessor interface by programming the appropriate channel register if this pin is pulled "High". If the TxON pin is pulled "Low", all 14 transmitters are powered off. Notes: 1. TxON is ideal for redundancy applications. See the Redundancy Applications Section of this datasheet for more details. 2. Internally pulled "Low" with a 50KΩ resistor.
DMO	Y4	0	Digital Monitor Output (Global Pin for All 14-Channels) When no transmit output pulse is detected for more than 128 TCLK cycles on one of the 14-channels, the DMO pin will go "High" for a minimum of one TCLK cycle. DMO will remain "High" until the transmitter sends a valid pulse. Note: This pin is for redundancy applications to initiate an automatic switch to the backup card. For individual channel DMO, see the register map.
TCLK13 TCLK12 TCLK11 TCLK10 TCLK9 TCLK8 TCLK7 TCLK6 TCLK5 TCLK4 TCLK4 TCLK3 TCLK2 TCLK1	Y16 Y17 AC18 D16 C17 A19 B16 D7 A3 B5 B6 AC6 AC5		Transmit Clock Input TCLK is the input facility clock used to sample the incoming TPOS/TNEG data. If TCLK is absent, pulled "Low", or pulled "High", the transmitter outputs at TTIP/TRING can be selected to send an all ones or an all zero signal by programming TCLKCNL. In addition, software control (TCLKE) allows TPOS/TNEG data to be sampled on either edge of TCLK. Notes: 1. TCLKE is a global setting that applies to all 14 channels. 2. Internally pulled "Low" with a 50k Ω resistor.
TPOS13 TPOS12 TPOS11 TPOS10 TPOS9 TPOS8 TPOS7 TPOS6 TPOS5 TPOS4 TPOS3 TPOS2 TPOS1 TPOS1	AB17 AA18 AB18 A18 D17 B19 A17 B7 C4 B4 D6 AB6 AA6 Y8	l	TPOS/TDATA Input Transmit digital input pin. In dual rail mode, this pin is the transmit positive data input. In single rail mode, this pin is the transmit non-return to zero (NRZ) data input. Note: Internally pulled "Low" with a 50ΚΩ resistor.

REV. 1.0.1

TRANSMITTER SECTION

NAME	Pin	Түре	DESCRIPTION
TNEG13	AC17		Transmit Negative Data Input
TNEG12	AC19		In dual rail mode, this pin is the transmit negative data input. In single rail
TNEG11	AA17		mode, this pin can be left unconnected.
TNEG10	B17		Note: Internally pulled "Low" with a $50K\Omega$ resistor.
TNEG9	B18		
TNEG8	C18		
TNEG7	C16		
TNEG6	C7		
TNEG5	D5		
TNEG4	C5		
TNEG3	C6		
TNEG2	AA7		
TNEG1	Y7		
TNEG0	AB7		
TTIP13	AA13	0	Transmit Differential Tip Output
TTIP12	W21		TTIP is the positive differential output to the line interface. Along with the
TTIP11	R21		TRING signal, these pins should be coupled to a 1:2 step up transformer for
TTIP10	M21		proper operation.
TTIP9	J21		
TTIP8	F21		
TTIP7	C13		
TTIP6	C11		
TTIP5	E3		
TTIP4	H3		
TTIP3	M3		
TTIP2	R3		
TTIP1	W3		
TTIP0	AA11		
TRING13	AB12	0	Transmit Differential Ring Output
TRING12	V22		TRING is the negative differential output to the line interface. Along with the
TRING11	T20		TTIP signal, these pins should be coupled to a 1:2 step up transformer for
TRING10	M22		proper operation.
TRING9	J22		
TRING8	D22		
TRING7	B12		
TRING6	B11		
TRING5	C2		
TRING4	H2		
TRING3	M2		
TRING2	U2		
TRING1	V3		
TRING0	AB11		

CONTROL FUNCTION

NAME	Pin	Түре	DESCRIPTION
TEST	D4	I	Factory Test Mode For normal operation, the TEST pin should be tied to ground. Note: Internally pulled "Low" with a $50k\Omega$ resistor.
ĪCT	A2	I	In Circuit Testing When this pin is tied "Low", all output pins are forced to "High" impedance for in circuit testing. Note: Internally pulled "High" with a $50K\Omega$ resistor.
PhDIN	L1	I	Test Pin For testing purposes only. For normal operation leave this pin unconnected. Note: Internally pulled "Low" with a $50k\Omega$ resistor.
CMPOUT	K2	0	Test Pin For testing purposes only. For normal operation leave this pin unconnected.

CLOCK SECTION

NAME	Pin	Түре	DESCRIPTION
MCLKin	A6	I	Master Clock Input The master clock input can accept a wide range of inputs that can be used to generate T1 or E1 clock rates on a per channel basis. See the register map for details. Note: Internally pulled "Low" with a $50k\Omega$ resistor.
8kHzOUT	D8	0	8kHz Output Clock
MCLKE1out	A 5	0	2.048MHz Output Clock
MCLKE1Nout	A4	0	2.048MHz, 4.096MHz, 8.192MHz, or 16.384MHz Output Clock See the register map for programming details.
MCLKT1out	A 7	0	1.544MHz Output Clock
MCLKT1Nout	B8	0	1.544MHz, 3.088MHz, 6.176MHz, or 12.352MHz Output Clock See the register map for programming details.

JTAG SECTION

NAME	PIN	Түре	DESCRIPTION
ATP_TIP ATP_RING	D21 K21	I/O	Analog Test Pin_TIP Analog Test Pin_RING These pins are used to check continuity of the Transmit and Receive TIP and RING connections on the assembled board. Note: See "Section 5.7, Analog Board Continuity Check" on page 39
TMS	E4	I	for more detailed description. Test Mode Select This pin is used as the input mode select for the boundary scan chain. Note: Internally pulled "High" with a $50K\Omega$ resistor.
TCK	B1	I	Test Clock Input This pin is used as the input clock source for the boundary scan chain. Note: Internally pulled "High" with a $50K\Omega$ resistor.
TDI	A1	I	Test Data In This pin is used as the input data pin for the boundary scan chain. Note: Internally pulled "High" with a $50K\Omega$ resistor.
TDO	D3	0	Test Data Out This pin is used as the output data pin for the boundary scan chain.

POWER AND GROUND

NAME	Pin	Түре	DESCRIPTION
TVDD13 TVDD12 TVDD11 TVDD10 TVDD9 TVDD8 TVDD7 TVDD6 TVDD5 TVDD4 TVDD3 TVDD2 TVDD1	AB13 V21 T21 N22 H22 E21 B13 B10 D2 J3 N2 T3 U4	PWR	Transmit Analog Power Supply (3.3V ±5%) TVDD can be shared with DVDD. However, it is recommended that TVDD be isolated from the analog power supply RVDD. For best results, use an internal power plane for isolation. If an internal power plane is not available, a ferrite bead can be used. Each power supply pin should be bypassed to ground through an external 0.1μF capacitor.
TVDD0 RVDD13 RVDD12 RVDD11 RVDD10 RVDD9 RVDD8 RVDD7 RVDD6 RVDD5 RVDD4 RVDD3 RVDD2 RVDD1 RVDD1 RVDD1	AB10 AC15 AA23 T22 R23 F23 E22 A15 A8 E2 F1 R1 T2 Y2 AB9	PWR	Receive Analog Power Supply (3.3V ±5%) RVDD should not be shared with other power supplies. It is recommended that RVDD be isolated from the digital power supply DVDD and the analog power supply TVDD. For best results, use an internal power plane for isolation. If an internal power plane is not available, a ferrite bead can be used. Each power supply pin should be bypassed to ground through an external 0.1μF capacitor.
DVDD_DRV DVDD_DRV DVDD_DRV DVDD_DRV DVDD_DRV DVDD_DRV	AC2 K3 U22 C21 AA16	PWR	Digital Power Supply (3.3V ±5%) DVDD should be isolated from the analog power supplies. For best results, use an internal power plane for isolation. If an internal power plane is not available, a ferrite bead can be used. Every two DVDD power supply pins should be bypassed to ground through at least one 0.1μF capacitor. Digital Power Supply (1.8V ±5%)
DVDD_PRE DVDD_PRE DVDD_PRE DVDD DVDD DVDD DVDD DVDD DVDD DVDD DV	C3 D20 Y20 J2 V2 D12 AA12 U21 K23 AA15		DVDD should be isolated from the analog power supplies. For best results, use an internal power plane for isolation. If an internal power plane is not available, a ferrite bead can be used. Every two DVDD power supply pins should be bypassed to ground through at least one $0.1\mu F$ capacitor.

14-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT

POWER AND GROUND

NAME	PIN	Түре	DESCRIPTION
AVDD_BIAS	K4	PWR	Analog Power Supply (1.8V ±5%)
AVDD_PLL22	C15		AVDD should be isolated from the digital power supplies. For best results, use
AVDD_PLL21	B15		an internal power plane for isolation. If an internal power plane is not available,
AVDD_PLL12	AB16		a ferrite bead can be used. Each power supply pin should be bypassed to
AVDD_PLL11	AC16		ground through at least one 0.1μF capacitor.
TGND13	Y13	GND	Transmit Analog Ground
TGND12	V20		It's recommended that all ground pins of this device be tied together.
TGND11	R20		
TGND10	M20		
TGND9	J20		
TGND8	F20		
TGND7	D13		
TGND6	D11		
TGND5	F4		
TGND4	J4		
TGND3	M4		
TGND2	R4		
TGND1	V4		
TGND0	Y11		
RGND13	AC12	GND	Receive Analog Ground
RGND12	W22		It's recommended that all ground pins of this device be tied together.
RGND11	V23		
RGND10	M23		
RGND9	J23		
RGND8	C23		
RGND7	A12		
RGND6	A11		
RGND5	C1		
RGND4	J1		
RGND3	M1		
RGND2	V1		
RGND1	W2		
RGND0	AC11		
DGND	L2	GND	Digital Ground
DGND	T4		It's recommended that all ground pins of this device be tied together.
DGND	C12		
DGND	Y12		
DGND	U20		
DGND	L23		

XRT83VSH314

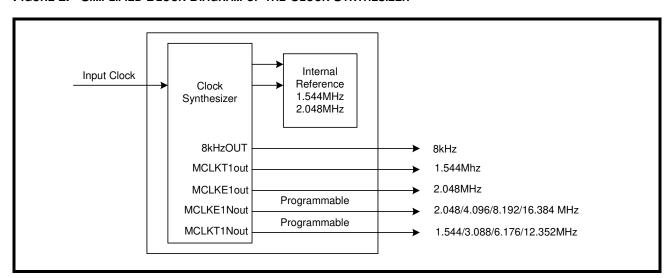
POWER AND GROUND

NAME	Pin	Түре	DESCRIPTION
DGND_DRV	B2	GND	Digital Ground
DGND_DRV	U3		It's recommended that all ground pins of this device be tied together.
DGND_DRV	A16		
DGND_DRV	AA8		
DGND_DRV	AB23		
DGND_PRE	D15		
DGND_PRE	AB8		
DGND_PRE	L20		
DGND_UP	AB15		
AGND_BIAS	L3	GND	Analog Ground
AGND_PLL22	C9		It's recommended that all ground pins of this device be tied together.
AGND_PLL21	C8		
AGND_PLL12	Y9		
AGND_PLL11	AC8		

NO CONNECTS

NAME	Pin	Түре	DESCRIPTION
NC	AA1	NC	No Connect
NC	AC1		These pins can be left floating or tied to ground.
NC	K20		
NC	K22		
NC	L22		
NC	AA22		
NC	B23		
NC	L4		
NC	L21		
NC	D9		

2.0 CLOCK SYNTHESIZER

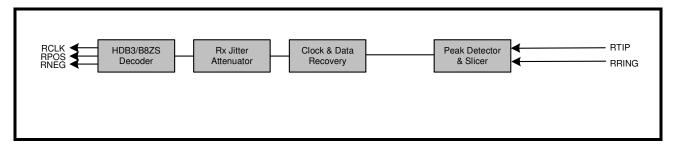

In system design, fewer clocks on the network card could reduce noise and interference. Network cards that support both T1 and E1 modes must be able to produce 1.544MHz and 2.048MHz transmission data. The XRT83VSH314 has a built in clock synthesizer that requires only one input clock reference by programming CLKSEL[3:0] in the appropriate global register. A list of the input clock options is shown in Table 1.

CLKSEL[3:0]	INPUT CLOCK REFERENCE
0h (0000)	2.048 MHz
1h (0001)	1.544MHz
8h (1000)	4.096 MHz
9h (1001)	3.088 MHz
Ah (1010)	8.192 MHz
Bh (1011)	6.176 MHz
Ch (1100)	16.384 MHz
Dh (1101)	12.352 MHz
Eh (1110)	2.048 MHz
Fh (1111)	1.544 MHz

TABLE 1: INPUT CLOCK SOURCE SELECT

The single input clock reference is used to generate multiple timing references. The first objective of the clock synthesizer is to generate 1.544MHz and 2.048MHz for each of the 14 channels. This allows each channel to operate in either T1 or E1 mode independent from the other channels. The state of the equalizer control bits in the appropriate channel registers determine whether the LIU operates in T1 or E1 mode. The second objective is to generate additional output clock references for system use. The available output clock references are shown in Figure 2.

FIGURE 2. SIMPLIFIED BLOCK DIAGRAM OF THE CLOCK SYNTHESIZER



14-CHANNEL T1/E1/J1 SHORT-HAUL LINE INTERFACE UNIT

3.0 RECEIVE PATH LINE INTERFACE

The receive path of the XRT83VSH314 LIU consists of 14 independent T1/E1/J1 receivers. The following section describes the complete receive path from RTIP/RRING inputs to RCLK/RPOS/RNEG outputs. A simplified block diagram of the receive path is shown in Figure 3.

FIGURE 3. SIMPLIFIED BLOCK DIAGRAM OF THE RECEIVE PATH

3.1 Line Termination (RTIP/RRING)

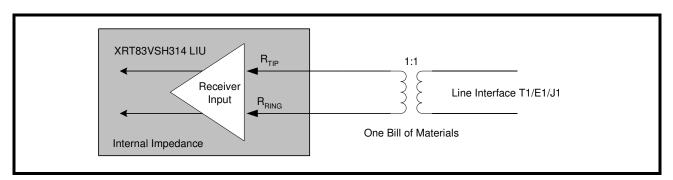
3.1.1 Internal Termination

The input stage of the receive path accepts standard T1/E1/J1 twisted pair or E1 coaxial cable inputs through RTIP and RRING. The physical interface is optimized by placing the terminating impedance inside the LIU. This allows one bill of materials for all modes of operation reducing the number of external components necessary in system design. The receive termination impedance (along with the transmit impedance) is selected by programming TERSEL[1:0] to match the line impedance. Selecting the internal impedance is shown in Table 2.

 TERSEL[1:0]
 RECEIVE TERMINATION

 0h (00)
 100Ω

 1h (01)
 110Ω


 2h (10)
 75Ω

 3h (11)
 120Ω

TABLE 2: SELECTING THE INTERNAL IMPEDANCE

The XRT83VSH314 has the ability to switch the internal termination to "High" impedance by programming RxTSEL in the appropriate channel register. For internal termination, set RxTSEL to "1". By default, RxTSEL is set to "0" ("High" impedance). For redundancy applications, a dedicated hardware pin (RxTSEL) is also available to control the receive termination for all channels simultaneously. This hardware pin takes priority over the register setting if RxTCNTL is set to "1" in the appropriate global register. If RxTCNTL is set to "0", the state of this pin is ignored. See Figure 4 for a typical connection diagram using the internal termination.

FIGURE 4. TYPICAL CONNECTION DIAGRAM USING INTERNAL TERMINATION

Experience Our Connectivity.

TABLE 3: RECEIVE TERMINATIONS

RXTSEL	TERSEL1	TERSEL0	RXRES1	RXRES0	R _{ext}	R _{int}	Mode	
0	Х	Х	Х	Х	R _{ext}	∞	T1/E1/J1	
1	0	0	0	0	∞	100Ω	T1	
1	0	1	0	0	∞	110Ω	J1	
1	1	0	0	0	∞	75Ω	E1	
1	1	1	0	0	∞	120Ω	E1	
1	0	0	0	1	240Ω	172Ω	T1	
1	0	1	0	1	240Ω	204Ω	J1	
1	1	0	0	1	240Ω	108Ω	E1	
1	1	1	0	1	240Ω	240Ω	E1	
1	0	0	1	0	210Ω	192Ω	T1	
1	0	1	1	0	210Ω	232Ω	J1	
1	1	0	1	0	210Ω	116Ω	E1	
1	1	1	1	0	210Ω	280Ω	E1	
1	0	0	1	1	150Ω	300Ω	T1	
1	0	1	1	1	150Ω	412Ω	J1	
1	1	0	1	1	150Ω	150Ω	E1	
1	1	1	1	1	150Ω	600Ω	E1	

3.2 **Clock and Data Recovery**

The receive clock (RCLK) is recovered by the clock and data recovery circuitry. An internal PLL locks on the incoming data stream and outputs a clock that's in phase with the incoming signal. This allows for multichannel T1/E1/J1 signals to arrive from different timing sources and remain independent. In the absence of an incoming signal, RCLK maintains its timing by using the internal master clock as its reference. The recovered data can be updated on either edge of RCLK. By default, data is updated on the rising edge of RCLK. To update data on the falling edge of RCLK, set RCLKE to "1" in the appropriate global register. Figure 5 is a timing diagram of the receive data updated on the rising edge of RCLK. Figure 6 is a timing diagram of the receive data updated on the falling edge of RCLK. The timing specifications are shown in Table 4.

REV. 1.0.1

FIGURE 5. RECEIVE DATA UPDATED ON THE RISING EDGE OF RCLK

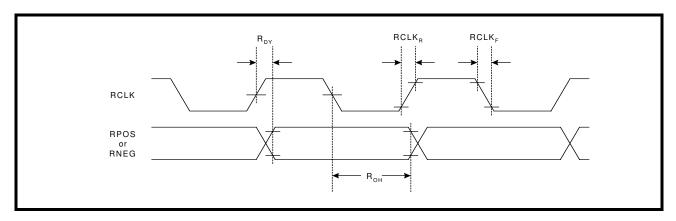


FIGURE 6. RECEIVE DATA UPDATED ON THE FALLING EDGE OF RCLK

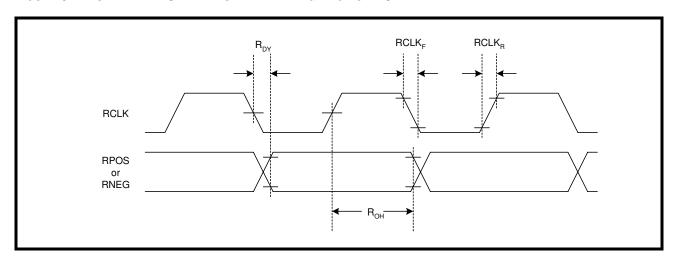
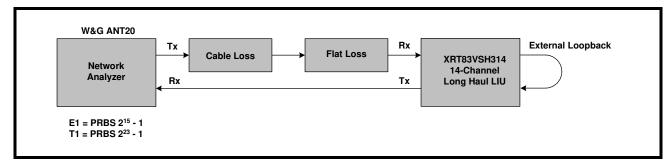


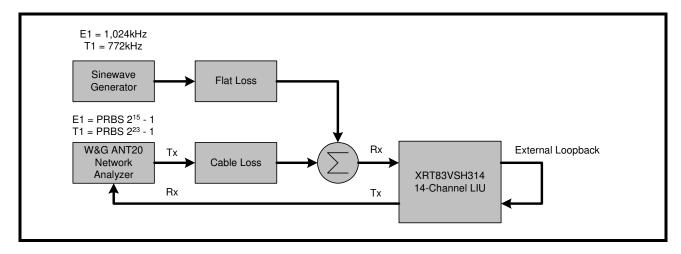
TABLE 4: TIMING SPECIFICATIONS FOR RCLK/RPOS/RNEG

PARAMETER	SYMBOL	MIN	Түр	Max	Units
RCLK Duty Cycle	R _{CDU}	45	50	55	%
Receive Data Setup Time	R _{SU}	150	-	-	ns
Receive Data Hold Time	R _{HO}	150	-	-	ns
RCLK to Data Delay	R _{DY}	-	-	40	ns
RCLK Rise Time (10% to 90%) with 25pF Loading	RCLK _R	-	-	40	ns
RCLK Fall Time (90% to 10%) with 25pF Loading	RCLK _F	-	-	40	ns


NOTE: VDD=3.3V ±5%, VDDc=1.8V ±5%, T_A=25°C, Unless Otherwise Specified

3.2.1 **Receive Sensitivity**

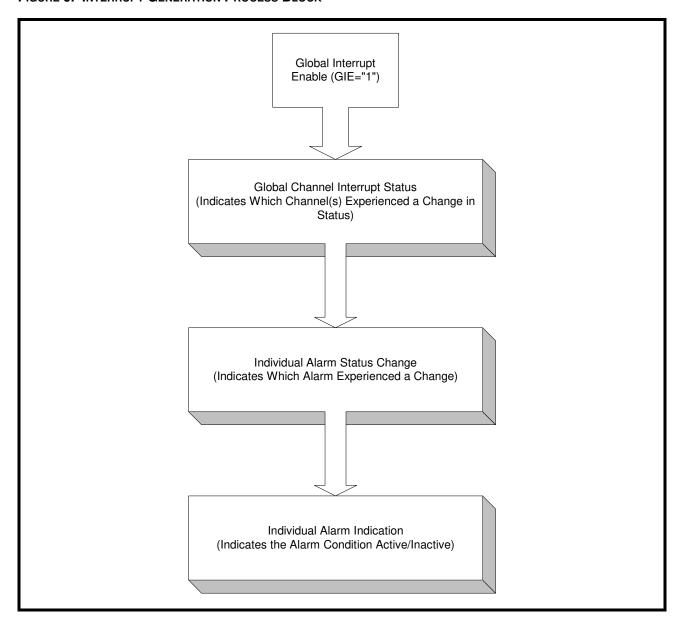
To meet short haul requirements, the XRT83VSH314 can accept T1/E1/J1 signals that have been attenuated by 6dB of cable loss plus 6db of flat loss. Although data integrity is maintained, the RLOS function (if enabled) will report an RLOS condition according to the receiver loss of signal section in this datasheet. The test configuration for measuring the receive sensitivity is shown in Figure 7.


FIGURE 7. TEST CONFIGURATION FOR MEASURING RECEIVE SENSITIVITY

3.2.2 **Interference Margin**

The test configuration for measuring the interference margin is shown in Figure 8.

FIGURE 8. TEST CONFIGURATION FOR MEASURING INTERFERENCE MARGIN



3.2.3 General Alarm Detection and Interrupt Generation

The receive path detects RLOS, AIS, QRPD and FLS. These alarms can be individually masked to prevent the alarm from triggering an interrupt. To enable interrupt generation, the Global Interrupt Enable (GIE) bit must be set "High" in the appropriate global register. Any time a change in status occurs (it the alarms are enabled), the interrupt pin will pull "Low" to indicate an alarm has occurred. Once the status registers have been read, the INT pin will return "High". The status registers are Reset Upon Read (RUR). The interrupts are categorized in a hierarchical process block. Figure 9 is a simplified block diagram of the interrupt generation process.

FIGURE 9. INTERRUPT GENERATION PROCESS BLOCK

Note: The interrupt pin is an open-drain output that requires a $10k\Omega$ external pull-up resistor.

3.2.3.1 RLOS (Receiver Loss of Signal)

The XRT83VSH314supports both G.775 or ETSI-300-233 RLOS detection scheme.

In G.775 mode, RLOS is declared when the received signal is less than 375mV for 32 consecutive pulse periods (typical). The device clears RLOS when the receive signal achieves 12.5% ones density with no more than 15 consecutive zeros in a 32 bit sliding window and the signal level exceeds 425mV (typical).

In ETSI-300-233 mode the device declares RLOS when the input level drops below 375mV (typical) for more than 2048 pulse periods (1msec).

The device exits RLOS when the input signal exceeds 425mV (typical) and has transitions for more than 32 pulse periods with 12.5% ones density with no more than 15 consecutive zero's in a 32 bit sliding window. ETSI-300-233 RLOS detection method is only available in Host mode.

In T1 mode RLOS is declared when the received signal is less than 320mV for 175 consecutive pulse period (typical). The device clears RLOS when the receive signal achieves 12.5% ones density with no more than 100 consecutive zeros in a 128 bit sliding window and the signal level exceeds 425mV (typical).

3.2.3.2 EXLOS (Extended Loss of Signal)

By enabling the extended loss of signal by programming the appropriate channel register, the digital RLOS is extended to count 4,096 consecutive zeros before declaring RLOS in T1 and E1 mode. By default, EXLOS is disabled and RLOS operates in normal mode.

3.2.3.3 AIS (Alarm Indication Signal)

The XRT83VSH314 adheres to the ITU-T G.775 specification for an all ones pattern. The alarm indication signal is set to "1" if an all ones pattern (at least 99.9% ones density) is present for T, where T is 3ms to 75ms in T1 mode. AIS will clear when the ones density is not met within the same time period T. In E1 mode, the AIS is set to "1" if the incoming signal has 2 or less zeros in a 512-bit window. AIS will clear when the incoming signal has 3 or more zeros in the 512-bit window.

3.2.4 FLSD (FIFO Limit Status Detection)

The purpose of the FIFO limit status is to indicate when the Read and Write FIFO pointers are within a predetermined range (over-flow or under-flow indication). The FLSD is set to "1" if the FIFO Read and Write Pointers are within ±3-Bits.

3.2.4.1 LCVD (Line Code Violation Detection)

The LIU contains 14 independent, 16-bit LCV counters. When the counters reach full-scale, they remain saturated at FFFFh until they are reset globally or on a per channel basis. For performance monitoring, the counters can be updated globally or on a per channel basis to place the contents of the counters into holding registers. The LIU uses an indirect address bus to access a counter for a given channel. Once the contents of the counters have been placed in holding registers, they can be individually read out from register 0xE8h 8-bits at a time according to the BYTEsel bit in the appropriate global register. By default, the LSB byte is in register 0xE8h until the BYTEsel is pulled "High" where upon the MSB byte will be placed in the register for read back. Once both bytes have been read, the next channel may be selected for read back.

By default, the LCV_OFD will be set to a "1" if the receiver is currently detecting line code violations or excessive zeros for HDB3 (E1 mode) or B8ZS (T1 mode). In AMI mode, the LCVD will be set to a "1" if the receiver is currently detecting bipolar violations or excessive zeros. However, if the LIU is configured to monitor the 16-bit LCV counter by programming the appropriate global register, the LCV_OFD will be set to a "1" if the counter saturates.