: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DIN Track Mounted, Standard 17.5-mm Width Timer Range

- A wide AC/DC power supply range (24 to $230 \mathrm{VAC} / 24$ to 48 VDC) reduces the number of timer models kept in stock. (24 to 230 VAC/VDC with H3DS-XL \square)
- Smart Dial/Selector-locking Mechanism: Prevents the dials and selectors on the Timer's front panel from being inadvertently operated or being operated without authorization. The lock can only be unlocked and locked with an optional pen-type Lock Key.
- Screw-Less Clamp type available. (H3DS- $\square \mathrm{LC}$)
- Sticker provided for easy timer identification and management.
- Terminal clamp left open when delivered (screw terminal type).
- Finger protection terminal block to meet VDE0106/P100.
- Enables easy sequence checks through instantaneous outputs for a zero set value at any time range.
- Incorporates environment-friendly, cadmium-free contacts.
- Conforms to EN61812-1 and IEC60664-1 4 kV/2 for Low Voltage, and EMC Directives.

Broad Line-up of H3DS Series

Contents

Solid-state Timer
H3DS-M/-S/-A. 2
H3DS-F. 13
H3DS-G 20
H3DS-X 27
Common to ALL Timers
Installation of Screw-Less Clamp Models. 33
Accessories 36
Precautions. 37

- Eight operating modes (H3DS-M) and four operating modes (H3DS-S) cover a wide range of applications.
- A wide time setting range of 0.10 s to 120 h .
- Two LEDs indicate power and relay status respectively.

Model Number Structure

Model Number Legend

H3DS $-\square \frac{L}{2} \frac{\square}{3}$

1. M : Multi-function type

S: Standard type
A: Single-function type
2. L: Smart lock mechanism
3. None: Screw terminal type

C: Screw-Less Clamp type

Ordering Information

List of Models

Supply voltage	Control output	Input type	$\underset{\text { (see note) }}{\text { Operating mode }}$	Model	
				Screwterminal type	Screw-Less Clamp type
$\begin{aligned} & 24 \text { to } 230 \mathrm{VAC}(50 / 60 \mathrm{~Hz}) / \\ & 24 \text { to } 48 \mathrm{VDC} \end{aligned}$	Contact output: SPDT (time-limit output SPDT)	Voltage input	$\begin{aligned} & \text { Eight multi-modes: A, B, } \\ & \text { B2, C, D, E, G, J } \end{aligned}$	H3DS-ML	H3DS-MLC
		No-input available	Four multi-modes: A, B2, E, J	H3DS-SL	H3DS-SLC
			Single mode: A	H3DS-AL	H3DS-ALC

Note: The operating modes are as follows:
A: ON-delay
B: Flicker OFF start
B2: Flicker ON start
C: Signal ON/OFF-delay
D: SIgnal OFF-delay
E: Interval
G: Signal ON/OFF-delay
J: One shot

Accessories (Order Separately)

Lock Key		Y92S-38
Mounting Track	50 cm (l) $\times 7.3 \mathrm{~mm}$ (t)	PFP-50N
	1 m (I) $\times 7.3 \mathrm{~mm}$ (t)	PFP-100N
	1 m (I) $\times 16 \mathrm{~mm}$ (t)	PFP-100N2
End Plate		PFP-M
Spacer		PEP-S

Specifications

General

Item	H3DS-ML \square	H3DS-SL \square	H3DS-AL \square
Operating mode	A: ON-delay (Signal or Power) B: Flicker OFF start (Signal or Power) B2: Flicker ON start (Signal or Power) C: Signal ON/OFF-delay D: Signal OFF-delay E: Interval (Signal or Power) G: Signal ON/OFF-delay J: One-shot (Signal or Power)	A: ON-delay B2: Flicker ON start E: Interval J: One-shot	A: ON-delay (fixed)
Input type	Voltage input	---	
Output type	Relay: SPDT		
External connections	Screw terminal, Screw-Less Clamp		
Terminal block	Screw terminal type: Clamps two $2.5-\mathrm{mm}^{2}$ max. bar terminals without sleeves. Screw-Less Clamp type: Clamps two $1.5-\mathrm{mm}^{2} \mathrm{max}$. bar terminals without sleeves.		
Terminal screw tightening torque	0.98 N•m max.		
Mounting method	DIN track mounting (see note)		
Attachment	Nameplate label		
Approved standards	```UL508, CSA C22.2 No.14 Conforms to EN61812-1, IEC60664-1 4 kV/2, VDE0106/P100 Output category according to IEC60947-5-1 (AC-13; 250 V 5 A/AC-14; 250 V 1 A/AC-15; 250 V 1 A/DC-13; 30 V 0.1 A/ DC-14; 30 V 0.05 A)```		

Note: Can be mounted to $35-\mathrm{mm}$ DIN Track with a plate thickness of 1 to 2.5 mm .
Time Ranges

Time scale display	Time range
0.1 s	0.1 to 1.2 s
1 s	1 to 12 s
0.1 m	0.1 to 1.2 min
1 m	1 to 12 min
0.1 h	0.1 to 1.2 h
1 h	1 to 12 h
10 h	10 to 120 h

Note: When the time setting dial is set to " 0 " for any time scale, the output will operate instantaneously.
Ratings

Rated supply voltage (see notes 1 and 2)	24 to 230 VAC (50/60 Hz)/24 to 48 VDC
Operating voltage range	85% to 110% of rated supply voltage
Power reset	Minimum power-off time: 0.1 s
Reset voltage	2.4 VAC/DC max.
Power consumption (see note 3)	AC: 32 VA max./3.0 W max. (typical: $30 \mathrm{VA} / 2.7 \mathrm{~W}$) at 230 VAC DC: 0.7 W max. (typical: 0.6 W) at 24 VDC 1.4 W max. (typical: 1.3 W) at 48 VDC
Voltage input	Max. permissible capacitance between inputs lines (terminals B1 and A2): 2,000 pF Load connectable in parallel with inputs (terminals B1 and A1). H-level: 20.4 to 253 VAC/20.4 to 52.8 VDC L-level: 0 to 2.4 VAC/DC
Control output	Contact output: 5 A at 250 VAC with resistive load $(\cos \phi=1)$ 1 A at 250 VAC with inductive load $(\cos \phi=0.3)$ 5 A at 30 VDC with resistive load $(\cos \phi=1)$ 0.15 A max. at 125 VDC with resistive load, 0.1 A max. at 125 VDC with L/R of 7 ms . The minimum applicable load is 10 mA at 5 VDC (P reference value). Contact materials: Ag-alloy
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 85\%

Note: 1. DC ripple rate: 20\% max.

2. Since an inrush current of 0.5 A will occur when using the power supply voltage at 24 VDC , pay careful attention when turning on or off the power supply to the Timer with a solid-state output such as a sensor.
3. The power consumption is for mode A after the Timer counts the time-up time and for the AC input at 50 Hz . The power consumption of the H3DS-ML includes the input circuit with the B1 and A1 terminals short-circuited

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS ($\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Setting error	$\pm 10 \% \pm 50 \mathrm{~ms} \mathrm{max}$. of FS
Signal input time	50 ms min .
Influence of voltage	$\pm 0.7 \%$ max. of FS ($\pm 0.7 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Influence of temperature	$\pm 5 \%$ max. of FS ($\pm 5 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC for 1 min. Between control output terminals and operating circuit: 2,000 VAC for 1 min . Between contacts not located next to each other: 1,000 VAC for 1 min .
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions
Impulse withstand voltage	5 kV (between power terminals) 5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}$, 1-ns rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations/h) Electrical: 100,000 operations min. (5 A at 250 VAC, resistive load at 360 operations $/ \mathrm{h}$) (see note)
EMC	(EMI) EN61812-1 Emission Enclosure: EN55011 Group 1 class B Emission AC Mains: EN55011 Group 1 class B Harmonic Current: EN61000-3-2 Voltage Fluctuation and Flickering: EN61000-3-3 (EMS) EN61812-1 Immunity ESD: IEC61000-4-2 Immunity RF-interference: IEC61000-4-3 Immunity Burst: IEC61000-4-4 Immunity Surge: IEC61000-4-5 Immunity Conducted Disturbance: IEC61000-4-6 Immunity Voltage Dip/Interruption: IEC61000-4-11
Case color	Light gray (5Y7/1)
Degree of protection	IP30 (Terminal block: IP20)
Weight	Approx. 70 g

Note: For reference: In both cases, a life of 100,000 operations can be expected.

Connections

Block Diagram

H3DS-ML \square

H3DS-SL $\square /-A L \square$

I/O Functions

Item		H3DS-ML \square	H3DS-SL $\square /-A L \square$
Input	Start	Starts operation.	No input is available.
Output	Control output	Outputs are turned ON according to designated out- put mode when preset value is reached.	Outputs are turned ON according to designated out- put mode when preset value is reached.

Terminal Arrangement

Note: 1. DC supply voltage does not require the designation of polarity.
2. The contact symbol for the H3DS is indicated with ${ }^{\circ} \$_{\square}$ because it offers multiple operating modes and is different from the delayed contact for conventional timers.

Input Connections

The inputs of the H3DS-ML \square are voltage (voltage imposition or open) inputs.

No-contact Input
(Connection to PNP output sensor.)

Operates with PNP transistor ON

No-contact Input (Connection to NPN output sensor.)

Contact Input

Operates with relay ON

Voltage Input Signal Levels

No-contact input	1. Transistor ON Residual voltage: 1 V max. (Voltage between terminals B_{1} and A_{2} must be more than the rated "H-level" voltage (20.4 VDC min.).)
	2. Transistor OFF Leakage current: 0.01 mA max. (Voltage between terminals B_{1} and A_{2} must be less than the rated "L-level" voltage (2.4 VDC max.).)
	Use contacts that can adequately switch 0.1 mA at each voltage to be imposed. (When the contacts are ON or OFF, voltage between terminals B_{1} and A_{2} must be within the following ranges: When contacts are ON: 20.4 to $253 \mathrm{VAC} / 20.4$ to 52.8 VDC When contacts are OFF: 0 to 2.4 VAC/DC

Operation

Basic Operation

Setting of Selector

The selectors can be turned clockwise and counterclockwise to select the desired time scale, or operating mode.
Each selector has a snap mechanism that secures the selector at a given position. Set the selector at a position at which it is secured. Do not set it midway between two securing positions or a malfunction could result from improper setting.

Selection of Operating Mode (except for H3DS-AL)

The H3DS-ML/-SL can be set to any one of the operating modes A to J. Turn the operating mode selector with a screwdriver until the desired operating mode appears in the operating mode display window.

H3DS-ML (8 modes): A, B, B2, C, D, E, G, J
(In order of appearance)
H3DS-SL (4 modes): A, E, B2, J, E, E, J, J (In order of appearance)
Note: Letters that appear more than once indicate exactly the same operating mode.

Selection of Time Scale

The time scale is selected by turning the time scale selector. The time scales will appear in the following order in the time scale display window on the left of the selector:
$1 \mathrm{~s}, 0.1 \mathrm{~s}, 1 \mathrm{~h}, 0.1 \mathrm{~h}, 10 \mathrm{~h}, 1 \mathrm{~h}, 1 \mathrm{~m}, 0.1 \mathrm{~m}$.
Note: The time scale " 1 h " appears twice. Both instances indicate exactly the same time scale.

Locking/Unlocking of Selectors and Time Setting Dial

The time setting dial, time scale selector, and operating mode selector can be locked using the Y92S-38 Lock Key, a special pen type tool that is sold separately. To lock the dial or selectors, insert the Lock Key in the keyhole to the lower right of the dial or selector and turn it clockwise until the dial or selector is completely covered with the red cover. To unlock, turn the Lock Key in the opposite direction.

Timing Chart

Note: 1. The minimum power reset time is 0.1 s and the minimum signal input time is 0.05 s .
2. The letter " t " in the timing charts stands for the set time and " $\mathrm{t}-\mathrm{a}$ " means that the period is less than the time set.
3. There is no start input for H3DS-SL $\square /-\mathrm{AL} \square$ models. Operation starts at power-on.

Note: The start input of the H3DS-ML \square model is activated by applying a voltage to B1 and A2 terminals.
The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement).

Note: The start input of the H3DS-ML \square model is activated by applying a voltage to B1 and A2 terminals.
The voltage can be applied by turning on the contact between B1 and A1 (Refer to Terminal Arrangement).

Nomenclature

(Front View)

H3DS-AL \square

(Front View)

H3DS-MLC/-SLC

(Front View)

H3DS-ALC

(Front View)

Dimensions

Note: All units are in millimeters unless otherwise indicated.
H3DS-ML/-SL/-AL

H3DS-MLC/-SLC/-ALC

- Operates in flicker-OFF or flicker-ON start mode with one Unit.
- Independent ON- and OFF-time settings.

Combinations of long ON- or OFF-time and short OFF- or ONtime setting are possible.

- Long time range from 0.1 s to 12 h for both ON and OFF time settings.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Model Number Structure

Model Number Legend

$$
\text { H3DS } \frac{-F}{1} \frac{L}{2} \frac{\square}{3}
$$

1. F: Twin timers
2. L: Smart lock mechanism
3. None: Screw terminal type

C: Screw-Less Clamp type

Ordering Information

List of Models

Operating mode	Supply voltage		Model	
		Screw terminal type	Screw-Less Clamp type	
Flicker-OFF/Flicker-ON start	24 to $230 \mathrm{VAC}(50 / 60 \mathrm{~Hz}) / 24$ to 48 VDC	H3DS-FL	H3DS-FLC	

Accessories (Order Separately)

Lock Key		Y92S-38
Mounting Track	$50 \mathrm{~cm}(\mathrm{I}) \times 7.3 \mathrm{~mm}$ (t)	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 7.3 \mathrm{~mm}$ (t)	PFP-100N
	$1 \mathrm{~m}(\mathrm{I}) \times 16 \mathrm{~mm}$ (t)	PFP-100N2
End Plate		PFP-M
Spacer		PEP-S

Specifications

General

Item	H3DS-F
Operating mode	Flicker-OFF/Flicker-ON start
Output type	Relay: SPDT
External connections	Screw terminal, Screw-Less Clamp
Terminal block	Screw terminal type: Clamps two 2.5-mm² max. bar terminals without sleeves. Screw-Less Clamp type: Clamps two 1.5-mm
Terminal screw tightening torque bar terminals without sleeves.	

Note: Can be mounted to $35-\mathrm{mm}$ DIN Track with a plate thickness of 1 to 2.5 mm .

- Time Ranges

Time scale display	Time range
0.1 s	0.1 to 1.2 s
1 s	1 to 12 s
0.1 m	0.1 to 1.2 min
1 m	1 to 12 min
0.1 h	0.1 to 1.2 h
1 h	1 to 12 h

Note: When the time setting dial is set to " 0 " for any time scale, the output will operate instantaneously.
Ratings

Rated supply voltage (See note.)	24 to 230 VAC (50/60 Hz)/24 to 48 VDC
Operating voltage range	85% to 110% of rated supply voltage
Power reset	Minimum power-off time: 0.1 s
Reset voltage	2.4 VAC/DC max.
Power consumption	AC: 33 VA max./2.2 W max. (typical: $31 \mathrm{VA} / 2.0 \mathrm{~W}$) at 230 VAC DC: 0.7 W max. (typical: 0.6 W) at 24 VDC 1.4 W max. (typical: 1.2 W) at 48 VDC
Voltage input	Max. permissible capacitance between inputs lines (terminals B1 and A2): 2,000 pF Load connectable in parallel with inputs (terminals B1 and A1). H-level: 20.4 to 253 VAC/20.4 to 52.8 VDC L-level: 0 to 2.4 VAC/DC
Control output	Contact output: 5 A at 250 VAC with resistive load $(\cos \phi=1)$ 1 A at 250 VAC with inductive load $(\cos \phi=0.3)$ 5 A at 30 VDC with resistive load $(\cos \phi=1)$
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 85\%

Note: DC ripple rate: 20% max.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS ($\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Setting error	$\pm 10 \% \pm 50 \mathrm{~ms} \mathrm{max}$. of FS
Influence of voltage	$\pm 0.5 \%$ max. of FS ($\pm 0.5 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Influence of temperature	$\pm 5 \%$ max. of FS ($\pm 5 \% \pm 10 \mathrm{~ms} \mathrm{max}$. at 1.2-s range)
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC (50/60 Hz) for 1 min. Between control output terminals and operating circuit: 2,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min . Between contacts not located next to each other: 1,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min .
Impulse withstand voltage	3 kV (between power supply terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}, 1-\mathrm{ns}$ rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in 6 directions Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$, 3 times each in 6 directions
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations $/ \mathrm{h}$) Electrical: 100,000 operations min. (5 A at 250 VAC, resistive load at 360 operations/h) (see note)
EMC	
Case color	Light gray (5Y7/1)
Degree of protection	IP30 (IP20 for terminal block)
Weight	Approx. 70 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Connections

■ Block Diagram

I/O Function

Inputs	Flicker-ON start operation begins when inputs are turned ON.	
Outputs	Control output	Outputs are turned ON/OFF according to the time set by the ON-and OFF-time setting dial.

Terminal Arrangement

Note: 1. If voltage is applied to terminal B1, or if terminals A1 and B1 are shorted, the operating mode is switched to flicker-ON start mode. If these terminals are disconnected, the mode switches to flicker-OFF start mode.
2. DC supply voltage does not require the designation of polarity.

Operation

Basic Operation

Setting of Selector

The selectors can be turned clockwise and counterclockwise to select the desired time scale, or operating mode.
Each selector has a snap mechanism that secures the selector at a given position. Set the selector at a position at which it is secured. Do not set it midway between two securing positions or a malfunction could result from improper setting.

Settings for ON/OFF Start

If voltage is applied to terminal B1, or if terminals A1 and B1 are shorted, the operating mode is switched to flicker-ON start mode. If these terminals are disconnected, the mode switches to flicker-OFF start mode. The operating mode will not change if the state of the applied voltage changes during timer operation.

Selection of Time Scale

The time scale is selected by turning the ON-time scale selector and OFF-time scale selector. The time scales will appear in the following order in each time scale display window on the left of the selector: $0.1 \mathrm{~s}, 1 \mathrm{~h}, 0.1 \mathrm{~h}, 1 \mathrm{~m}, 1 \mathrm{~s}, 0.1 \mathrm{~h}, 0.1 \mathrm{~m}, 1 \mathrm{~s}$.
Note: The time scales " 1 s " and " 0.1 h " appear twice. Both instances indicate exactly the same time scale.

Time Setting

Use the ON/OFF-time setting dials to set the ON/OFF time

Locking/Unlocking of Selectors and Time Setting Dial

The ON/OFF-time setting dials and time scale selectors can be locked using the Y92S-38 Lock Key, a special pen type tool that is sold separately. To lock the dials or selectors, insert the Lock Key in the keyhole to the lower right of the dial or selector and turn it clockwise until the dial or selector is completely covered with the red cover. To unlock, turn the Lock Key in the opposite direction.

Timing Charts

Operating mode			Timing chart	
$\begin{aligned} & \hline \text { Flicker-OFF } \\ & \text { start } \\ & \text { (See note 1.) } \end{aligned}$	Power $\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{A}_{2}\right)$ Output relay: NO 15 and 18 (ON indicator) Output relay: NC 15 and 16 OFF indicator	$\begin{aligned} & \text { ON } \\ & \text { OFF } \\ & \text { ON } \\ & \text { OFF } \\ & \text { ON } \\ & \text { OFF } \\ & \text { ON } \\ & \text { OFF } \end{aligned}$		ton: ON set time toff: OFF set time
$\begin{aligned} & \hline \text { Flicker-ON } \\ & \text { start } \\ & \text { (See note 1.) } \end{aligned}$	$\operatorname{Power}\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{A}_{2}\right)$ Signal (B_{1} and A_{2}) Output relay: NO 15 and 18 (ON indicator) Output relay: NC 15 and 16 OFF indicator	ON OFF ON OFF ON OFF ON OFF ON OFF		ton: ON set time toff: OFF set time

Note: 1. If voltage is applied to terminal B1, or if terminals A1 and B1 are shorted, the operating mode is switched to flicker-ON start mode. If these terminals are disconnected, the mode switches to flicker-OFF start mode.
2. The reset time requires a minimum of 0.1 s .
3. When power is supplied in flicker-ON start mode, the OFF indicator lights momentarily. This, however, has no effect on the performance of the Timer.

Nomenclature

H3DS-FLC

Dimensions

H3DS-FL

H3DS-FLC

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Model Number Structure

Model Number Legend

H3DS - $\frac{G}{1} \frac{L}{3}$

1. G: Star-delta timer
2. L: Smart lock mechanism
3. None: Screw terminal type

C: Screw-Less Clamp type

Ordering Information

List of Models

Operating mode	Model		
		Screw terminal type	
Star-delta operation	24 to $230 \mathrm{VAC}(50 / 60 \mathrm{~Hz}) / 24$ to 48 VDC	H3DS-GL	H3DS-GLC

Accessories (Order Separately)

Lock Key		Y92S-38
Mounting Track	$50 \mathrm{~cm}(\mathrm{l}) \times 7.3 \mathrm{~mm}$ (t)	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 7.3 \mathrm{~mm}$ (t)	PFP-100N
	1 m (I) $\times 16 \mathrm{~mm}$ (t)	PFP-100N2
End Plate		PFP-M
Spacer		PEP-S

Specifications

General

Item	H3DS-G
Operating mode	Star-delta operation
Operating/Reset method	Time-limit operation/Self-reset
External connections	Screw terminal, Screw-Less Clamp
Terminal block	Screw terminal type: Clamps two 2.5-mm² max. bar terminals without sleeves. Screw-Less Clamp type: Clamps two 1.5-mm² max. bar terminals without sleeves.
Terminal screw tightening torque	0.98 N-m max.
Output type	(Star operation circuit) Relay: SPST-NO (Delta operation circuit) Relay: SPST-NO
Mounting method	DIN track mounting (see note)
Attachment	Nameplate label
Approved standards	UL508, CSA C22.2 No.14 Conforms to EN61812-1, IEC60664-14 4 kV/2, VDE0106/P100 Output category according to IEC60947-5-1 (AC-13; 250 V 5A/AC-15; 250 V 1 A/DC-13; 30 V 0.1 A)

Note: Can be mounted to $35-\mathrm{mm}$ DIN Track with a plate thickness of 1 to 2.5 mm .

Time Ranges

Time scale	Star operation time ranges
x 1	1 to 12 s
$\times 10$	10 to 120 s

Star-delta transfer time	Programmable at $0.05 \mathrm{~s}, 0.1 \mathrm{~s}, 0.5 \mathrm{~s}$, or 1 s

Ratings

Rated supply voltage (see note)	24 to 230 VAC (50/60 Hz)/24 to 48 VDC
Operating voltage range	85% to 110% of rated supply voltage
Power reset	Minimum power-off time: 0.5 s
Reset voltage	2.4 VAC/DC max.
Power consumption	AC: 21 VA max./1.7 W max. (typical: 20 VA/1.6 W) at 230 VAC DC: 1.3 W max. (typical: 1.2 W) at 24 VDC 0.7 W max. (typical: 0.6 W) at 48 VDC
Control output	$\begin{array}{\|ll} \hline \text { Contact output: } & 5 \mathrm{~A} \text { at } 250 \text { VAC with resistive load }(\cos \phi=1) \\ & 1 \mathrm{~A} \text { at } 250 \text { VAC with inductive load }(\cos \phi=0.3) \\ & 5 \text { A at } 30 \text { VDC with resistive load }(\cos \phi=1) \\ \hline \end{array}$
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $\quad-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 85\%

Note: DC ripple rate: 20\% max.

Characteristics

Accuracy of operating time	$\pm 1 \%$ max. of FS
Setting error	$\pm 10 \% \pm 50 \mathrm{~ms} \mathrm{max}$. of FS
Total tolerance of transfer time	\pm (25\% FS + 5 ms) max.
Influence of voltage	$\pm 0.5 \%$ max. of FS
Influence of temperature	$\pm 5 \%$ max. of FS
Insulation resistance	$100 \mathrm{M} \Omega$ min. at 500 VDC
Dielectric strength	Between current-carrying metal parts and exposed non-current-carrying metal parts: 2,000 VAC (50/60 Hz) for 1 min. Between control output terminals and operating circuit: 2,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min . Between contacts not located next to each other: 1,000 VAC $(50 / 60 \mathrm{~Hz})$ for 1 min .
Impulse withstand voltage	3 kV (between power supply terminals) 4.5 kV (between current-carrying metal parts and exposed non-current-carrying metal parts)
Noise immunity	Square-wave noise generated by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}$, 1-ns rise) $\pm 1.5 \mathrm{kV}$
Static immunity	Malfunction: 4 kV Destruction: 8 kV
Vibration resistance	Malfunction: $0.5-\mathrm{mm}$ single amplitude at 10 to 55 Hz Destruction: $0.75-\mathrm{mm}$ single amplitude at 10 to 55 Hz
Shock resistance	Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$, 3 times each in 6 directions Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$, 3 times each in 6 directions
Life expectancy	Mechanical: 10 million operations min. (under no load at 1,800 operations/h) Electrical: $\quad 100,000$ operations min. (5 A at 250 VAC, resistive load at 360 operations $/ \mathrm{h}$) (see note)
EMC	(EMI) EN61812-1 Emission Enclosure: EN55011 Group 1 class B Emission AC Mains: EN55011 Group 1 class B Harmonic Current: EN61000-3-2 Voltage Fluctuation and Flickering: EN61000-3-3 (EMS) EN61812-1 Immunity ESD: EN61000-4-2: 6 kV contact discharge (level 3) Immunity RF-interference from AM Radio Waves: 8 kV air discharge (level 3) EN61000-4-3: $10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz}$ to 1 GHz) (level 3) Immunity Burst: EN61000-4-4: 2 kV power port and output port (level 3) Immunity Surge: EN61000-4-5: 2 kV control port with capacitive clamp (level 3)
Case color	Light gray (5Y7/1)
Degree of protection	IP30 (IP20 for terminal block)
Weight	Approx. 70 g

Note: For reference:
A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$.
A maximum current of 0.1 A can be switched if L / R is 7 ms .
In both cases, a life of 100,000 operations can be expected.
The minimum applicable load is 10 mA at 5 VDC (failure level: P).

Connections

Block Diagram

I/O Functions

Inputs	---	Star output is turned OFF when the dial set value is reached and delta output is ON after the preset transfer time elapses
Outputs	Control output	

Terminal Arrangement

H3DS-GL

Note: DC supply voltage does not require the designation of polarity.

Operation

Basic Operation

Setting of Selector

The selectors can be turned clockwise and counterclockwise to select the desired time scale, or operating mode.
Each selector has a snap mechanism that secures the selector at a given position. Set the selector at a position at which it is secured. Do not set it midway between two securing positions or a malfunction could result from improper setting.

Selection of Time Unit and Time Scale

The star-delta transfer time and star operation time scale are set with the same selector. The star-delta transfer time can be set to 0.05 , $0.1,0.5$, or 1 . The star operation time scale can be set to a multiplication factor of 1 or 10 . If the star-delta transfer time is displayed in the display window in white letters, this means that the star operation time scale is " $x 10$ ". Refer to the example below.

Star-delta transfer time	Star operation time scale
0.05 s	x1
0.1 s	
0.5 s	
1 s	
0.05 s	x10
0.1 s	
0.5 s	
1 s	

Time Setting

The star operation time of the Timer is set with the time setting dial.

Locking/Unlocking of Selectors and Time Setting Dial

The time setting dial and time scale selector can be locked using the Y92S-38 Lock Key, a special pen type tool that is sold separately. To lock the dial or selectors, insert the Lock Key in the keyhole to the lower right of the dial or selector and turn it clockwise until the dial or selector is completely covered with the red cover. To unlock, turn the Lock Key in the opposite direction.

- Timing Charts

Note: The reset time requires a maximum of 0.5 s .

Nomenclature

(Front View)

H3DS-GLC

(Front View)

