

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZNEO32! Cortex-M3

Z32F0641 MCU

Product Specification

PS034404-0417

PRELIMINARY

ii

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2017 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

ZNEO32! is a trademark or registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Description	Page
Apr 2017	04	Updated part numbers to include the Cortex M identifier.	All
Aor 2016	03	Added timing information for peripherals; global edits for clarity.	All
Feb 2016	02	Updated Figure 18.2 LQFP-32 Package Dimension.	178
Nov 2015	01	Original issue.	

1. Overview

Introduction

Zilog's Z32F0641 MCU, a member of the ZNEO32! Family of microcontrollers, is a cost-effective and high-performance 32-bit microcontroller. The Z32F0641 MCU provides a 3-phase PWM generator unit which is suitable for inverter bridges, including motor drive systems.

Two 12-bit high speed ADC units with 16-channel analog multiplexed inputs support feedback retrieval from the inverter bridge. Multiple powerful external serial interfaces help communicate with on-board sensors and devices.

Figure 1.1 shows a block diagram of the Z32F0641 MCU.

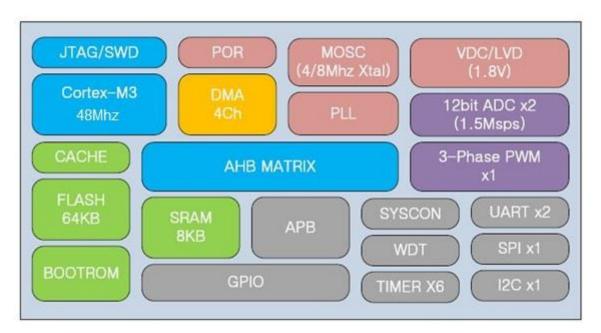


Figure 1.1 Block Diagram

Figure 1.2 and Figure 1.3 show the pin layouts.

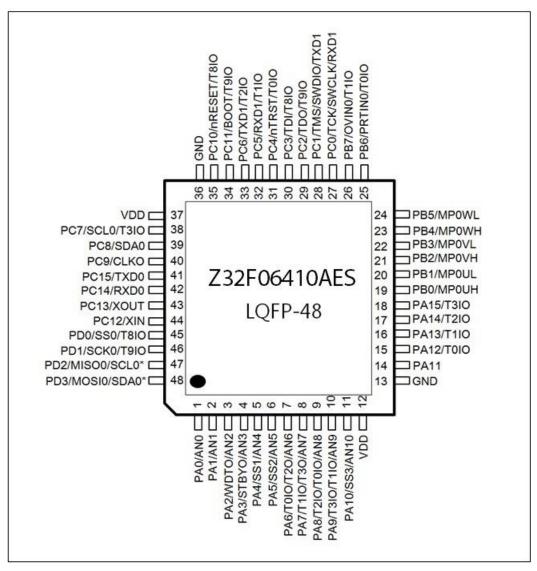


Figure 1.2 Pin Layout (LQFP-48)

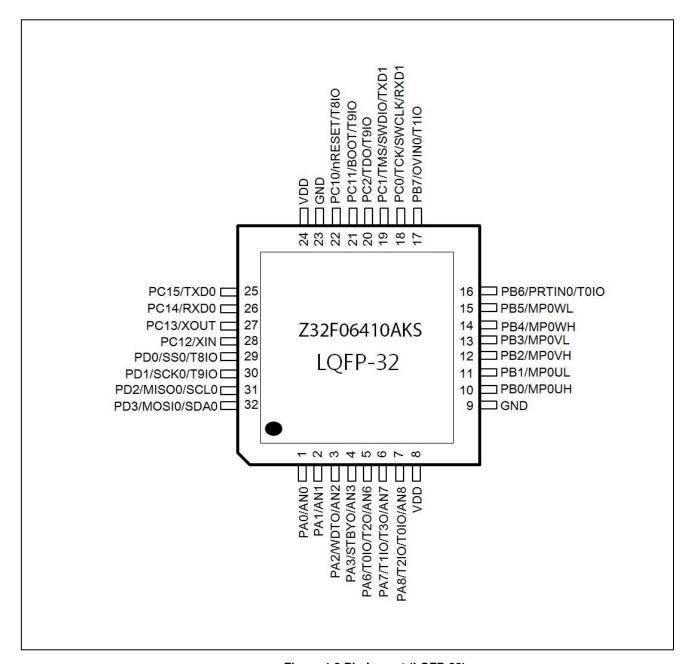


Figure 1.3 Pin Layout (LQFP-32)

Product Features

The Z32F0641 MCU offers the following features:

- High Performance low-power Cortex-M3 core
- 64 KB code Flash memory with cache function
- 8 KB SRAM
- 3-Phase PWM with ADC triggering function
- 1.5Msps high-speed ADC with sequential conversion function
 - 2 units with 11 channel Inputs
- Watchdog timer
- Six general purpose timers
 - o Periodic, One-shot, PWM, Capture mode
 - Multi-timer synchronization option
- External communication ports:
 - o 2 UARTs
 - \circ 1 I^2C
 - o 1 SPI
- Direct Memory Access (DMA) controller with 4 channels
- System fail-safe function by clock monitoring
- XTAL OSC fail monitoring
- Debug and emergency stop function
- Serial Wire Debug (SWD) and JTAG Debugger (JTAG is only for LQFP-48)
- Supports UART and SPI ISP
- Two types of package options
 - o LQFP-48 (0.5mm pitch)
 - LQFP-32 (0.65mm pitch)
- Industrial grade operating temperature (-40 ~ +85 °C)

Table 1.1 Device Type

Part Number	Flash	SRAM	UART	SPI	I2C	MPWM	ADC	I/O Ports	Package
Z32F06410AES	64KB	8KB	2	1	1	1	2-unit 11 ch	44	LQFP-48
Z32F06410AKS	64KB	8KB	2	1	1	1	2-unit 8 ch	30	LQFP-32

Architecture

Block Diagram

An internal block diagram of the Z32F0641 MCU is shown in Figure 1.4.

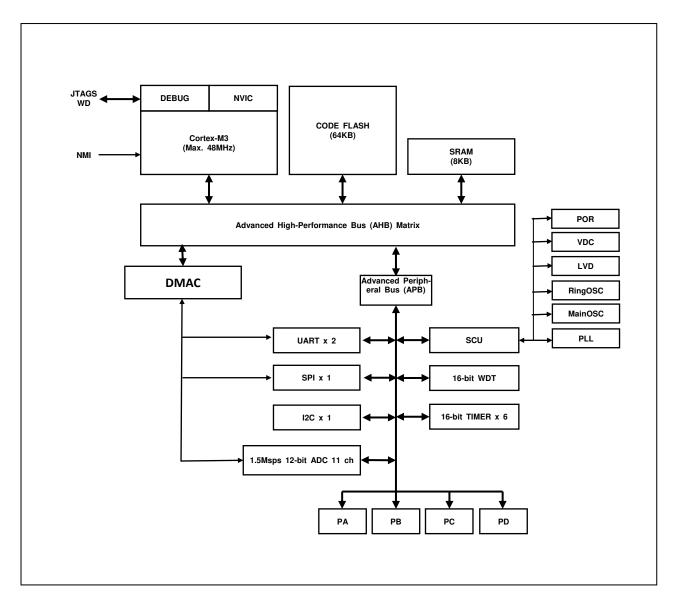


Figure 1.4 Internal Block Diagram

Functional Description

The following section provides an overview of the features of the Z32F0641 microcontroller.

ARM Cortex-M3

- ARM-powered Cortex-M3 core based on ARMv7M architecture, which is optimized for small-size and low-power systems. On core system timer (SYSTICK) provides a simple 24-bit timer that enables easy management of system operations
- Thumb-compatible Thumb-2 only instruction set processor core makes code high-density
- Hardware division and single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC) provides deterministic interrupt handling
- JTAG and SWD debugging features
- Maximum 48 MHz operating frequency with zero wait execution

Nested Vector-Interrupt Controller (NVIC)

- The ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core handles all
 internal and external exceptions. When an interrupt condition is detected, the processor state is
 automatically stored to the stack and automatically restored from the stack at the end of interrupt
 service routine.
- The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.
- The processor supports tail-chaining, which allows for back-to-back interrupts to be performed without the overhead of state saving and restoring

64 KB Internal Code Flash Memory

- The Z32F0641 MCU provides internal 64 KB code Flash memory and its controller, which is sufficient to program the motor algorithm and control the system. Self-programming is available and ISP and JTAG programming is also supported in boot or debugging mode.
- Instruction and data cache buffer are present and overcome the low-bandwidth Flash memory. The CPU can execute from Flash memory with zero wait state up to 48 MHz bus frequency.

8 KB 0-wait Internal SRAM

 On chip 8 KB 0-wait SRAM can be used for working memory space and program code can be loaded on this SRAM

Boot Logic

• Smart boot logic supports Flash programming. The Z32F0641 MCU can be accessed by an external boot pin; UART and SPI programming are available in Boot Mode

System Control Unit

• The System Control Unit (SCU) block manages internal power, clock, reset, and Operation Mode. The SCU also controls analog blocks (Oscillator Block, VDC and LVD)

32-bit Watchdog Timer

• The Watchdog Timer (WDT) performs the system monitoring function. The WDT generates an internal reset or interrupt if the system is in abnormal state

Multi-purpose 16-bit Timer

- Six-channel 16-bit general purpose timers support the following functions
 - Periodic timer mode
 - Counter mode
 - PWM mode
 - Capture mode

 Built-in timer also supports counter-synchronization mode which can generate synchronized waves and timing

Motor PWM Generator

- 3-phase Motor PWM Generator is implemented. 16-bit up/down counter with prescaler supports triangular and saw tooth waveforms
- PWM has the ability to generate internal ADC trigger signals to measure the signal on time
- Dead time insertion and emergency stop functionality provide overcurrent protection for the chip and system

Serial Peripheral Interface (SPI)

- The Serial Peripheral Interface (SPI) block provides synchronous serial communication. The Z32F0641 MCU has 1 channel SPI module which includes the DMA function supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation
- Boot Mode uses this SPI block to download the Flash program

Inter-Integrated Circuit Interface

The Z32F0641 MCU has 1 channel Inter-Integrated Circuit (I²C) block which supports up to 400 kHz I²C communication. Master and slave modes are supported

Universal Asynchronous Receiver/Transmitter

- The Z32F0641 MCU has 2 channels Universal Asynchronous Receiver/Transmitter (UART) block. For accurate baud rate control, the fractional baud rate generator is provided
- The UART features the DMA function, supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation

General PORT I/Os

- 16-bit PA, PB, PC, and PD ports are available and provide multiple functionality:
 - o General I/O port
 - Independent bit set/clear function
 - External interrupt input port
- Programmable pull-up and open-drain selection
- On-chip input debounce filter

12-bit Analog-to-Digital Converter (ADC)

- 2 built-in Analog-to-Digital Converters (ADC) can convert analog signals up to 1.5 Msps conversion rate. 11-channel analog MUX provides various combinations from external analog signals.
- The ADC features the DMA function, supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation.

Pin Description

Pin configurations are listed in Table 1.2.

Table 1.2 Pin Description

Pin Name		Pin Name Type		Description	Remark
LQFP48	LQFP32	riii Naille	туре	Description	nemark
1	1	PA0*	IOUS	PORT A Bit 0 Input/Output	
!	'	AN0	IA	Analog Input 0	
2	2 PA1*		IOUS	PORT A Bit 1 Input/Output	
۷	2	AN1	IA	Analog Input1	
		PA2*	IOUS	PORT A Bit 2 Input/Output	
3	3	WDTO	0	Watchdog timer overflow output	
		AN2	IA	Comparator 2 Input	
4	4	PA3*	IOUS	PORT A Bit 3 Input/Output	
4	4	AN3	IA	Analog Input 3	
		PA4*	IOUS	PORT A Bit 4 Input/Output	
5	-	SS1	I/O	Slave Select 1 for SPI0	
		AN4	IA	Analog Input 4	
		PA5*	IOUS	PORT A Bit 5 Input/Output	
6	-	SS2	I/O	Slave Select 2 for SPI0	
		AN5	IA	Analog Input 5	
		PA6*	IOUS	PORT A Bit 6 Input/Output	
7	5	T0IO	I/O	Timer 0 Input/Output	
/	5	T2IO	I/O	Timer 2 Input/Output	
		AN6	IA	Analog Input 6	
		PA7*	IOUS	PORT A Bit 7 Input/Output	
8	6	T1IO	I/O	Timer 1 Input/Output	
0	0	T3IO	I/O	Timer 3 Input/Output	
		AN7	IA	Analog Input 7	
		PA8*	IOUS	PORT A Bit 8 Input/Output	
0	7	T2IO	I/O	Timer 2 Input/Output	
9	/	T0IO	I/O	Timer 0 Input/Output	
		AN8	IA	Analog Input 8	
		PA9*	IOUS	PORT A Bit 9 Input/Output	
10		T3IO	I/O	Timer 3 Input/Output	
10	-	T1IO	I/O	Timer 1 Input/Output	
		AN9	IA	Analog Input 9	
		PA10*	IOUS	PORT A Bit 10 Input/Output	
11	-	SS3	Output	ETM Trace Data 1	
		AN10	IA	Analog Input 10	
12	8	VDD	Р	VDD	
13	9	GND	Р	Ground	
14	-	PA11*	IOUS	PORT A Bit 11 Input/Output	
		PA12*	IOUS	PORT A Bit 12 Input/Output	
15	_	TOIO	I/O	Timer 0 Input/Output	
10		1000	1,0	Timor o input/output	

		PA13*	IOUS	PORT A Bit 13 Input/Output	
16	_	T1IO	I/O	Timer 1 Input/Output	
		PA14*	IOUS	PORT A Bit 14 Input/Output	
17	_	T2IO	I/O	Timer 2 Input/Output	
		-		1,22,23,42,2	
		PA15*	IOUS	PORT A Bit 15 Input/Output	
18	_	T3IO	I/O	Timer 3 Input/Output	
		PB0	IOUS	PORT B Bit 0 Input/Output	
19	10	PWM0UH	Output	PWM0 UH Output	
-		PB1	IOUS	PORT B Bit 1 Input/Output	
20	11	PWM0UL	Output	PWM0 UL Output	
-		PB2	IOUS	PORT B Bit 0 Input/Output	
21	12	PWM0VH	Output	PWM0 VH Output	
		PB3	IOUS	PORT B Bit 1 Input/Output	
22	13	PWM0VL	Output	PWM0 VL Output	
		PB4	IOUS	PORT B Bit 4 Input/Output	
23	14	PWM0WH	Output	PWM0 WH Output	
-		PB5	IOUS	PORT B Bit 5 Input/Output	
24	15	PWM0WL	Output	PWM0 WL Output	
		PB6	IOUS	PORT B Bit 6 Input/Output	
25	16	PRTIN0	Input	PWM0 Protection Input signal 0	
_0		TOIO	I/O	Timer 0 Input/Output	
-		PB7	IOUS	PORT B Bit 7 Input/Output	
26	17	OVIN0	Input	PWM0 Over-voltage input signal 0	
_0	''	T1IO	I/O	Timer 1 Input/Output	
		PC0	IOUS	PORT C Bit 0 Input/Output	
		TCK/SWC		· · · · · · · · · · · · · · · · · · ·	
27	18	K	Input	JTAG TCK, SWD Clock Input	
		RXD1	Input	UART0 Rx Data Input	
		PC1	IOUS	PORT C Bit 1 Input/Output	
28	19	TMS/SWDI O	I/O	JTAG TMS, SWD Data Input/Output	
		TXD1	Input	UART0 Tx Data Output	
-		PC2	IOUS	PORT C Bit 2 Input/Output	
29	20	TDO/SWO	Output	JTAG TDO, SWO Output	
		T8IO	I/O	Timer 8 Input/Output	
		PC3	IOUS	PORT C Bit 3 Input/Output	
30	-	TDI	Input	JTAG TDI Input	
		T9IO	I/O	Timer 9 Input/Output	
		PC4	IOUS	PORT C Bit 4 Input/Output	
31	-	nTRST	Input	JTAG nTRST Input	
		TOIO	Input	Timer 0 input/Output	
		PC5	IOUS	PORT C Bit 5 Input/Output	
32	-	RXD1	Input	UART1 RXD Input	
		T1IO	I/O	Timer 1 input/Output	
		PC6	IOUS	PORT C Bit 6 Input/Output	
33	-	TXD1	Output	UART1 TXD Output	
_		ı	•	·	

		T2IO	I/O	Timer 2 input/Output	
_		PC11	IOUS	PORT C Bit 11 Input/Output	
34	21	BOOT	Input	Boot mode Selection Input	
		T9IO	I/O	Timer 9 input/Output	
		PC10	IOUS	PORT C Bit 10 Input/Output	
35	22	nRESET	Input	External Reset Input	Pull-up
		T8IO	I/O	Timer 8 input/Output	
36	23	GND	Р	Ground	
37	24	VDD	Р	VDD	
		PC7	IOUS	PORT C Bit 7 Input/Output	
38	-	SCL0	Output	I ² C Channel 0 SCL In/Out	
		T3IO	I/O	Timer 3 input/Output	
		PC8	IOUS	PORT C Bit 8Input/Output	
39	-	SDA0	Output	I ² C Channel 0 SDA In/Out	
40		PC9	IOUS	PORT C Bit 9 Input/Output	
40	-	CLKO	Output	System Clock Output	
		PC15	IOUS	PORT C Bit 14 Input/Output	
41	25	TXD0	Output	UART0 TXD Output	
		MISO0	I/O	SPI0 Master-Input/Slave-Output	
		PC14	IOUS	PORT C Bit 14 Input/Output	
42	26	RXD0	Input	UART0 RXD Input	
		MOSI0	I/O	SPI0 Master-Output/Slave-Input	
43	27	PC13	IOUS	PORT C Bit 13 Input/Output	
43	21	XOUT	OA	External Crystal Oscillator Output	
44	28	PC12	IOUS	PORT C Bit 12 Input/Output	
44	20	XIN	IA	External Crystal Oscillator Input	
		PD0	IOUS	PORT D Bit 0 Input/Output	
45	29	SS0	I/O	SPI1 Slave Select	
		T8IO	I/O	Timer 8 input/Output	
		PD1	IOUS	PORT D Bit 1 Input/Output	
46	30	SCK0	I/O	SPI0 Clock Input/Output	
		T9IO	I/O	Timer 9 input/Output	
		PD2	IOUS	PORT D Bit 2 Input/Output	
47	31	MISO0	I/O	SPI Channel 0 Master In / Slave Out	
		SCL0	Output	I ² C Channel 0 SCL In/Out	
		PD3*	IOUS	PORT D Bit 3 Input/Output	
48	32	MOSI0	I/O	SPI Channel 0 Master Out / Slave In	
		SDA0	Output	I ² C Channel 0 SDA In/Out	

*Notation:

I=Input, O=Output, U=Pull-up, D=Pull-down,

S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power

(*) Selected pin function after reset condition

Pin order may be changed with revision notice.

Memory Map

Address	Memories mapped
0x0000_0000	FLASH ROM (64KB)
0x0000_FFFF 0x0001_0000	RESERVED
0x0001_FFFF 0x0002_0000	RESERVED
0x1FFE_FFFF 0x1FFF_0000	BOOT ROM (2KB)
0x1FFF_07FF 0x1FFF_0800	RESERVED
0x1FFF_FFFF 0x2000_0000	SRAM (8KB)
0x2000_1FFF 0x2000_2000	RESERVED
0x2FFF_FFFF 0x3000_0000	FLASH ROM Mirrored (64KB)
0x3000_FFFF 0x3001_0000	RESERVED
0x3001_FFFF 0x3002_0000	BOOT ROM (2KB) Mirror
0x3002_07FF 0x3003_0000	OTP Mirror
0x3003_07FF 0x3004_0000	RESERVED
0x3FFF_FFFF 0x4000_0000	PERIPHERALS
0x4000_FFFF 0x4001 0000	RESERVED
0x5FFF_FFFF 0x6000 0000	External RAM (Not support)
0x9FFF_FFFF 0xA000_0000	External DEVICE(Not support)
0xDFFF_FFFF 0xE000_0000	Private peripheral bus: Internal
0xE003_FFFF 0xE004_0000	Private peripheral bus: Debug/External
0xE00F_FFFF 0xE010_0000 0xFFFF_FFFF	Vendor Specific

Figure 1.5 Main Memory Map

Address	Peripherals mapped	
0x4000_0000	SCU	
0x4000_00FF 0x4000_0100	FMC	
0x4000_01FF 0x4000_0200	WDT	
0x4000_02FF 0x4000_0300	Reserved	
0x4000_03FF 0x4000_0400	DMAC	
0x4000_04FF 0x4000_0500	Reserved	
0x4000_05FF 0x4000_0600	Reserved	
0x4000_0FFF 0x4000_1000	PCU	
0x4000_1FFF 0x4000_2000	GPIO	
0x4000_2FFF 0x4000_3000	TIMER	
0x4000_3FFF 0x4000_4000	MPWM0	
0x4000_4FFF 0x4000_5000	Reserved	
0x4000_7FFF 0x4000_8000	UART0	
0x4000_80FF 0x4000_8100	UART1	
0x4000_81FF 0x4000_8200	Reserved	
0x4000_8FFF 0x4000_9000	SPI0	
0x4000_90FF 0x4000_9100	Reserved	
0x4000_9FFF 0x4000_A000	I2C0	
0x4000_A0FF 0x4000_A100	Reserved	
0x4000_AFFF 0x4000_B000	ADC0	
0x4000_B0FF 0x4000_B100	ADC1	
0x4000_B1FF 0x4000_B200 0x4000_FFFF	Reserved	

Figure 1.6 Peripheral Memory Map

Address	Core Memory Map
0xE000_0000	ITM
0xE000_0FFF	
0xE000_1000	DWT
0xE000_1FFF	
0xE000_2000	FPB
0xE000_2FFF	
0xE000_3000	Reserved
0xE000_DFFF	
0xE000_E000	System Control
0xE000_EFFF	•
0xE000_F000	Reserved
0xE003_FFFF	
0xE004_0000	TPIU
0xE004_0FFF	
0xE004_1000	ETM
0xE004_1FFF	
0xE004_2000	
0xE00F_EFFF	External PPB
0xE00F F000	DOM T. I.I
_	ROM Table
0xE00F_FFFF	

Figure 1.7 Cortex-M3 Private Memory Map

Note: Refer to document number DDI337 from ARM for more information about the memory maps.

2. CPU

Cortex-M3 Core

The CPU core is supported by the ARM Cortex-M3 processor which provides a high-performance, low-cost platform. Document number DDI337 from ARM provides more information about Cortex-M3.

Interrupt Controller

Table 2.1 Interrupt Vector Map

Priority	Vector Address	Interrupt Source
-16	0x0000_0000	Stack Pointer
-15	0x0000_0004	Reset Address
-14	0x0000_0008	NMI Handler
-13	0x0000_000C	Hard Fault Handler
-12	0x0000_0010	MPU Fault Handler
-11	0x0000_0014	BUS Fault Handler
-10	0x0000_0018	Usage Fault Handler
-9	0x0000_001C	Reserved
-8	0x0000_0020	Reserved
-7	0x0000_0024	Reserved
-6	0x0000_0028	Reserved
-5	0x0000_002C	SVCall Handler
-4	0x0000_0030	Debug Monitor Handle r
-3	0x0000_0034	Reserved
-2	0x0000_0038	PenSV Handler
-1	0x0000_003C	SysTick Handler
0	0x0000_0040	LVDDETECT
1	0x0000_0044	SYSCLKFAIL
2	0x0000_0048	XOSCFAIL
3	0x0000_004C	WDT
4	0x0000_0050	Reserved
5	0x0000_0054	TIMER0
6	0x0000_0058	TIMER1
7	0x0000_005C	TIMER2
8	0x0000_0060	TIMER3
9	0x0000_0064	Reserved
10	0x0000_0068	Reserved
11	0x0000_006C	Reserved
12	0x0000_0070	Reserved
13	0x0000_0074	TIMER8
14	0x0000_0078	TIMER9
15	0x0000_007C	Reserved
16	0x0000_0080	GPIOAE
17	0x0000_0084	GPIOAO
18	0x0000_0088	GPIOBE

19	0x0000 008C	GPIOBO
20	0x0000_0090	GPIOCE
21	0x0000_0094	GPIOCO
22	0x0000_0098	GPIODE
23	0x0000_009C	GPIODO
24	0x0000_00A0	MPWM0
25	0x0000_00A4	MPWM0PROT
26	0x0000_00A8	MPWM0OVV
27	0x0000_00AC	Reserved
28	0x0000_00B0	Reserved
29	0x0000_00B4	Reserved
30	0x0000_00B8	Reserved
31	0x0000_00BC	Reserved
32	0x0000_00C0	SPI0
33	0x0000_00C4	Reserved
34	0x0000_00C8	Reserved
35	0x0000_00CC	Reserved
36	0x0000_00D0	I2C0
37	0x0000_00D4	Reserved
38	0x0000_00D8	UART0
39	0x0000_00DC	UART1
40	0x0000_00E0	Reserved
41	0x0000_00E4	Reserved
42	0x0000_00E8	Reserved
43	0x0000_00EC	ADC0
44	0x0000_00F0	ADC1
45	0x0000_00F4	Reserved
46	0x0000_00F8	Reserved
47	0x0000_00FC	Reserved
48	0x0000_0100	Reserved
49	0x0000_0104	Reserved
50	0x0000_0108	Reserved
51	0x0000_010C	Reserved
52	0x0000_0110	Reserved
53	0x0000_0114	Reserved
54	0x0000_0118	Reserved
55	0x0000_011C	Reserved
56	0x0000_0120	Reserved
57	0x0000_0124	Reserved
58	0x0000_0128	Reserved
59	0x0000_012C	Reserved
60	0x0000_0130	Reserved
61	0x0000_0134	Reserved
62	0x0000_0138	Reserved
63	0x0000_013C	Reserved

3. Boot Mode

Boot Mode Pins

The Z32F0641 MCU includes a Boot Mode option to program internal Flash memory. To enter Boot Mode, set the BOOT pin to **Low** at reset timing.

Note: The Normal state of the BOOT pin is High.

Boot Mode supports UART boot and SPI boot.UART boot uses the UART0 port, and SPI boot uses SPI0.The pins used for Boot Mode are listed in Table 3.1.

Block	Pin Name	Dir	Description		
SYSTEM	nRESET/PC10	I	Reset Input signal		
SISILIM	BOOT/PC11	I	'0' to enter Boot mode		
UART0	RXD0/PC14	I	UART Boot Receive Data		
UANTU	TXD0/PC15	0	UART Boot Transmit Data		
	SS0/PA12	I	SPI Boot Slave Select		
SPI0	SCK0/PA13	I	SPI Boot Clock Input		
	MOSI0/PA14	I	SPI Boot Data Input		
	MISO0/PA15	0	SPI Boot Data Output		

Table 3.1 Boot Mode Pins

Boot Mode Connections

Design the target board using either of the Boot Mode ports – UART or SPI. Figure 3.1 and Figure 3.2 display sample Boot Mode connections.

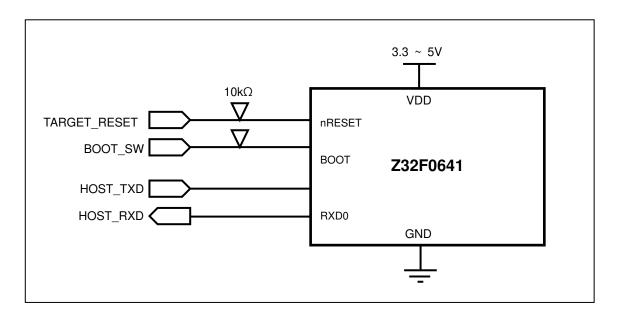


Figure 3.1 UART Boot Connection Diagram

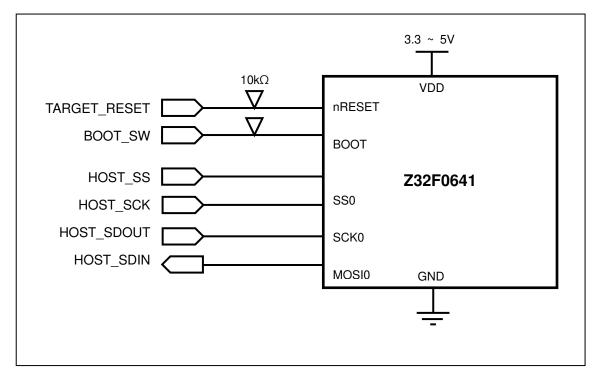


Figure 3.2 SPI Boot Connection Diagram

4. System Control Unit

Overview

The Z32F0641 microcontroller has an in-built intelligent power control block which manages the system analog blocks and operating modes. Internal reset and clock signals are controlled by the SCU block to maintain optimal system performance and power dissipation.

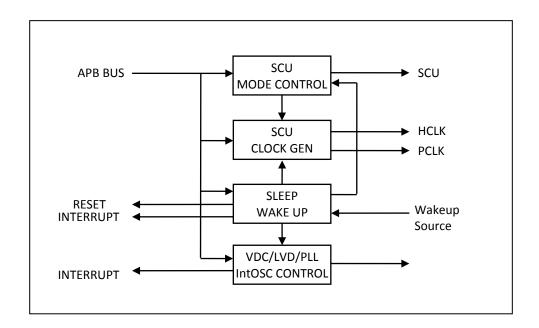
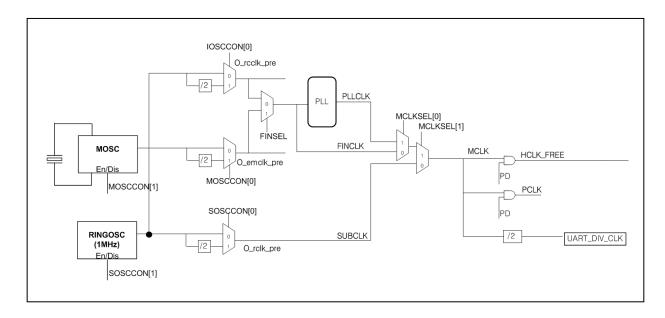


Figure 4.1 SCU Block Diagram

Clock System


The Z32F0641 MCU has the following two main operating clocks:

HCLK - Clock for the CPU and AHB bus system

PCLK - Clock for peripheral systems

Figure 4.2 and Figure 4.3 show the chip's clock system. Table 4.1 lists the clock source descriptions.

Figure 4.2 Clock Source Configuration

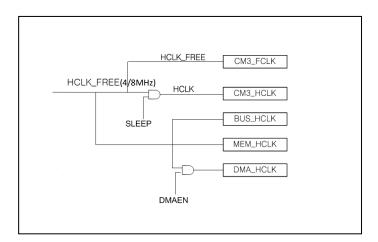


Figure 4.3 System Clock Configuration

Each of the multiplexers for switching the clock source contains a circuit which allows glitch-free switching between clock modes.

Table 4.1 Clock Sources

Clock name	Frequency	Description
MainOSC	XTAL(4MHz~8MHz)	External Crystal IOSC
PLL Clock	8MHz ~ 80MHz	On Chip PLL
ROSC	1MHz	Internal RING OSC

The PLL can synthesize the PLLCLK clock up to 80 MHz with the FIN reference clock. It also has an internal pre-divider and post-divider.

HCLK Clock Domain

The HCLK clock feeds the clock to the CPU and AHB bus. The Cortex-M3 CPU requires two clocks related with the HCLK clock:

FCLK – FCLK is a free-running clock which runs continuously except during Power-Down Mode HCLK – HCLK can be stopped during Idle Mode

Miscellaneous Clock Domain for Cortex-M3

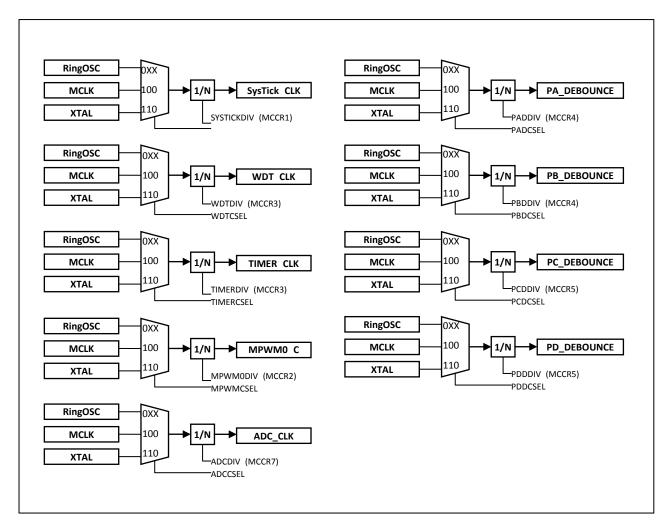


Figure 4.4 Miscellaneous Clock Configuration

PCLK Clock Domain

PCLK is the master clock of all the peripherals. It can be stopped in Power-Down Mode. Each peripheral clock is generated by the PCER register set.

Clock Configuration

After power up, the default system clock is fed by the RINGOSC (1 MHz) clock. RINGOSC is enabled by default at power up. The other clock sources are enabled by user controls with the RINGOSC system clock.

The MOSC clock can be enabled by the CSCR register. Before enabling the MOSC block, the pin mux configuration should be set for XIN, XOUT function. PC12 and PC13 pins are shared with MOSC's XIN and XOUT function - PCCMR and PCCCR registers should be correctly configured. After enabling the MOSC block, you must wait for more than 1 msec to ensure stable operation of crystal oscillation.

The PLL clock can be enabled by the PLLCON register. After enabling the PLL block, you must wait for the PLL lock flag. When the PLL output clock is stable; you can select MCLK for your system requirement. Before changing the system clock, Flash access wait should be set to the maximum value. After the system clock is changed, you will need to set the desired Flash access wait time.

An example flow chart outlining the steps to configure the system clock is shown in Figure 4.5.

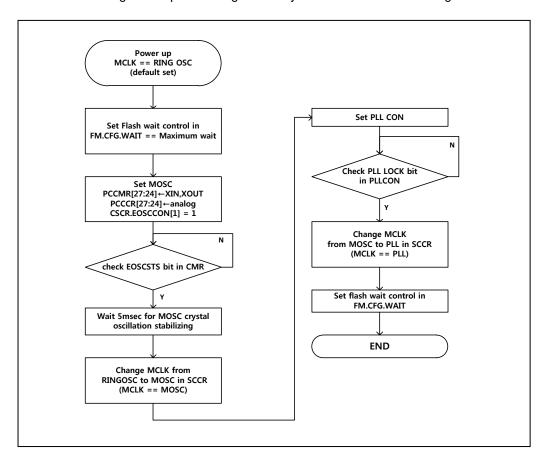


Figure 4.5. Clock Configuration Flow Chart

When you speed up the system clock up to maximum operating frequency, you should check the Flash wait control configuration. Flash read access time is one of the limiting factors in performance. The wait control recommendation is provided in Table 4.2.

Table 4.2	Flash	Wait Contr	ol Recomme	ndation

FM.CFG.WAIT	FLASH Access Wait	Available Max System Clock Frequency
000	0 clock wait	~16MHz
001	1 clock wait	~32MHz
010	2 clock wait	~48MHz
011	3 clock wait	~48MHz

Reset

The Z32F0641 MCU has two system resets:

- Cold reset by POR, which is effective during power up or down sequence, and
- Warm reset, which is generated by several reset sources. The reset event causes the chip to return to initial state.

The cold reset has only one reset source, POR. The warm reset has the following reset sources:

- nRESET pin
- WDT reset
- LVD reset
- MCLK Fail reset
- MOSC Fail reset
- S/W reset
- CPU request reset

Cold Reset

Cold reset is an important feature of the chip when power is up. This characteristic globally affects the system boot. Internal VDC is enabled when VDD power is turned on. The internal VDD level slope is followed by the external VDD power slope. The internal PoR trigger level is 1.4 V of internal VDC voltage out level. At this time, boot operation is started. The RINGOSC clock is enabled and counts to 4 msec for internal VDC level stabilizing. During this time, the external VDD voltage level should be greater than the initial LVD level (2.3 V). After counting 4 msec, the CPU reset is released and the operation is started.

Figure 4.6 shows the power up sequence and internal reset waveform.