# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





**ZNEO32! Family of Microcontrollers** 

# Z32F1281 MCU

### **Product Specification**

PS034504-0617

PRELIMINARY



Copyright ©2017 Zilog<sup>®</sup>, Inc. All rights reserved. www.zilog.com





ii

#### Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

#### LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

#### As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

#### **Document Disclaimer**

©2017 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

ZNEO32! is a trademark or registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.





## **Revision History**

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

|             | Revision |                                                                     |      |
|-------------|----------|---------------------------------------------------------------------|------|
| Date        | Level    | Description                                                         | Page |
| Jun<br>2017 | 04       | Updated part numbers to include the Cortex M identifier.            | All  |
| May<br>2016 | 03       | Added Quadrature Encoder Interface information.                     | 122  |
| Apr<br>2016 | 02       | Added timing information for peripherals; global edits for clarity. | All  |
| Nov<br>2015 | 01       | Original issue.                                                     |      |



## 1. Overview

## Introduction

Zilog's Z32F1281 MCU, a member of the ZNEO32! Family of microcontrollers is a cost-effective and highperformance 32-bit microcontroller. The Z32F1281 MCU provides 3-phase PWM generator units which are suitable for inverter bridges, including motor drive systems. The two built-in channels of these generators control two inverter motors simultaneously.

Three 12-bit high speed ADC units with 16-channel analog multiplexed inputs are included to gather information from the motor. The Z32F1281 MCU can control up to two inverter motors or one inverter motor and the Power Factor Correction (PFC) function simultaneously. Four on-chip operational AMPs and four analog comparators are available to measure analog input signals. The operational amplifier can amplify the input signal to the proper signal range and transfer it to the ADC input channel. The comparator monitors external signals and helps create an internal emergency signal. Multiple powerful external serial interface engines communicate with on-board sensors.



Figure 1.1 shows a block diagram of the Z32F1281 MCU.

Figure 1.1. Z32F1281 MCU Block Diagram



#### Figure 1.2 and Figure 1.3 show the pin layouts.



Figure 1.2. Pin Layout (LQFP-80)





Figure 1.3. Pin Layout (LQFP-64)



### **Product Features**

The Z32F1281 MCU offers the following features:

- High performance low-power Cortex-M3 core
- 128 KB code Flash memory with cache function
- 12 KB SRAM
- 3-Phase Motor PWM with ADC triggering function
   2 channels
- 1.5Msps high-speed ADC with burst conversion function
  - o 2 or 3 units with 16 channel input
- Built-in Programmable Gain Amplifier (PGA) for ADC inputs
  - o 4 channels
    - 3 channels for 3 shunt resistor configuration
    - 1 channel for 1 shunt resistor configuration
- Built-in analog comparator
  - o 4 channels
    - 3 channels for 3 shunt resistor configuration
    - 1 channel for 1 shunt resistor configuration
- System fail-safe function by clock monitoring
- XTAL OSC fail monitoring
- Precision internal oscillator clock (20MHz ±3%)
- Watchdog timer
- Six general purpose timers
- Quadrature encoder interface counter
- External communication ports: 4 UARTs, 2 I<sup>2</sup>Cs, 2 SPIs
- High current driving port for UART photo couplers
- Debug and emergency stop function
- Real-time monitoring function support for more effective development
- JTAG and Serial Wire Debug (SWD) in-circuit debugger
- Various memory size and package options
  - o LQFP-80, LQFP-64
- Industrial grade operating temperature (-40 ~ +85 ℃)

| Table | 1.1. Dev | vice Type | ) |  |
|-------|----------|-----------|---|--|
|       |          | 100       |   |  |

| Part Number  | Flash | SRAM | UART | SPI | I2C | MPWM | ADC    | I/O PORT | PKG     |
|--------------|-------|------|------|-----|-----|------|--------|----------|---------|
| Z32F12811ATS | 10968 | 10KB | 4    | 2   | 2   | 2    | 3-unit | 68       | LQFP-80 |
| Z32F12811ARS | 128KB | IZND | 2    | 2   | 1   | 2    | 16 ch  | 48       | LQFP-64 |



### Architecture

### **Block Diagram**

An internal block diagram of the Z32F1281 MCU is shown in Figure 1.4.



Figure 1.4. Internal Block Diagram



### **Functional Description**

The following section provides an overview of the features of the Z32F1281 microcontroller.

#### ARM Cortex-M3

- ARM powered Cortex-M3 Core based on v7M architecture, which is optimized for small size and low-power systems. On core system timer (SYSTICK) provides a simple 24-bit timer that makes it easy to manage the system operations
- Thumb-compatible Thumb-2 only instruction set processor core makes code high-density
- Hardware division and single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC) provides deterministic interrupt handling
- Full featured debug solutions JTAG and SWD, FPB, DWT, ITM, and TPIU
- Maximum 72 MHz operating frequency with zero wait execution

#### **Nested Vector-Interrupt Controller (NVIC)**

- The ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core handles all internal and external exceptions. When an interrupt condition is detected, the processor state is automatically stored to the stack and automatically restored from the stack at the end of the interrupt service routine.
- The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.
- The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoring.

#### 128 KB Internal Code Flash Memory

- The Z32F1281 MCU provides internal 128 KB code Flash memory and its controller. This is enough to program the motor algorithm and control the system. Self-programming is available and ISP and JTAG programming is also supported in Boot or Debugging Mode.
- Instruction and data cache buffer overcome the limitations of low-bandwidth Flash memory. The CPU can execute from Flash memory with zero wait state up to 72 MHz bus frequency.

#### 12 KB Zero-wait Internal SRAM

• On chip 12 KB zero-wait SRAM can be used for working memory space and program code can be loaded on this SRAM.

#### Boot Logic

• The smart boot logic supports Flash programming. The Z32F1281 MCU can be entered by external boot pin and UART and SPI programming are available in Boot Mode. UART0 or SPI0 is used in Boot mode communication.

#### System Control Unit (SCU)

• The SCU block manages internal power, clock, reset and operation mode. It also controls analog blocks (INTOSC, VDC and LVD).

#### 32-bit Watchdog Timer (WDT)

• The watchdog timer performs the system monitoring function. It generates an internal reset or interrupt to notice an abnormal status of the system.

#### Multi-purpose 16-bit Timer

- Six-channel 16-bit general purpose timers support:
  - Periodic timer mode
  - Counter mode
  - PWM mode
  - o Capture mode



#### **PWM Generator**

- Two channels of the 3-phase PWM generator are implemented. 16 bit up/down counter with prescaler supports triangular and saw tooth waveforms.
- The PWM generates an internal ADC trigger signal to measure the signal on time.
- Dead time insertion and emergency stop functionality ensure that the chip and system operate under safe conditions.

#### Serial Peripheral Interface (SPI)

- Synchronous serial communication is provided by the SPI block. The Z32F1281 MCU has 2 channel SPI modules. The DMA function is supported by the DMA controller. Transfer data is moved to/from the memory area without CPU operation.
- Boot mode uses this SPI block to download the Flash program.

#### Inter-Integrated Circuit Interface (I<sup>2</sup>C)

• The Z32F1281 MCU has a 2-channel I<sup>2</sup>C block and it supports up to 400 kHz I<sup>2</sup>C communication. Master and the slave modes are supported.

#### Universal Asynchronous Receiver/Transmitter (UART)

- The Z32F1281 MCU includes a 4-channel UART block. For accurate baud rate control, a fractional baud rate generator is provided.
- The DMA function is supported by the DMA controller. Transfer data is moved to/from memory area without CPU operation.

#### General PORT I/Os

- 16-bit PA, PB, PC, PD ports are available and provide multiple functionality:
- General I/O port
- Independent bit set/clear function
- External interrupt input port
- Pull-up/Open-drain
- On chip debounce Filter

#### 12-bit Analog-to-Digital Converter (ADC)

• 3 built-in ADCs can convert analog signal up to 1usec conversion rate. 16-channel analog mux and OP-AMP provides various combinations from external analog signals.

#### Analog Front End (AFE)

- Operational Amplifier (OPAMP)
  - 4 built-in OPAMPs amplify analog signals up to x8.74 gain
- Analog Comparator (COMP)
  - o 4 built-in analog comparators

### **Pin Description**

The pin configurations are shown in Table 1.2. 16 pins are reserved for power/ground pair and dedicated pins.

#### Table 1.2. Pin Description

|        |        | _        |        |                                     |        |
|--------|--------|----------|--------|-------------------------------------|--------|
| Pin N  | ame    | Туре     |        | Description                         | Remark |
| LQFP80 | LQFP64 |          |        |                                     |        |
| 79     | 63     | VDD      | Р      | VDD                                 |        |
| 80     | 64     | GND      | Р      | Ground                              |        |
| 1      | 1      | GND      | Р      | Ground                              |        |
| С      |        | PD2      | IOUS   | PORT D Bit 2 Input/Output           |        |
| 2      | _      | MOSI1    | I/O    | SPI Channel 1 Master Out / Slave In |        |
| 2      | _      | PD3*     | IOUS   | PORT D Bit 3 Input/Output           |        |
|        | _      | MISOI1   | I/O    | SPI Channel 1 Master In / Slave Out |        |
|        |        | PA0*     | IOUS   | PORT A Bit 0 Input/Output           |        |
| 4      | 2      | AN0      | IA     | Analog Input 0                      |        |
|        |        | COMP0    | IA     | Comparator 0 Input                  |        |
|        |        | PA1*     | IOUS   | PORT A Bit 1 Input/Output           |        |
| 5      | 3      | AN1      | IA     | Analog Input1                       |        |
|        |        | COMP1    | IA     | Comparator 1 Input                  |        |
|        |        | PA2*     | IOUS   | PORT A Bit 2 Input/Output           |        |
| 6      | 4      | AN2      | IA     | Analog Input 2                      |        |
|        |        | COMP2    | IA     | Comparator 2 Input                  |        |
|        |        | PA3*     | IOUS   | PORT A Bit 3 Input/Output           |        |
| 7      | 5      | AN3      | IA     | Analog Input 3                      |        |
|        |        | COMP3    | IA     | Comparator 3 Input                  |        |
|        |        | PA4*     | IOUS   | PORT A Bit 4 Input/Output           |        |
| 8      | 6      | тоо      | Output | Timer 0 Output                      |        |
|        |        | AN4      | IA     | Analog Input 4                      |        |
|        |        | PA5*     | IOUS   | PORT A Bit 5 Input/Output           |        |
| 9      | 7      | T10      | Output | Timer 1 Output                      |        |
|        |        | AN5      | IA     | Analog Input 5                      |        |
|        |        | PA6*     | IOUS   | PORT A Bit 6 Input/Output           |        |
| 10     | 0      | T2O      | Output | Timer 2 Output                      |        |
| 10     | 0      | AN6      | IA     | Analog Input 6                      |        |
|        |        | CREF0    | IA     | Comparator 0 Reference Input        |        |
|        |        | PA7*     | IOUS   | PORT A Bit 7 Input/Output           |        |
|        |        | TRACED3  | Output | ETM Trace Data 3                    |        |
| 11     | 9      | Т3О      | Output | Timer 3 Output                      |        |
|        |        | AN7      | IA     | Analog Input 7                      |        |
|        |        | CREF1    | IA     | Comparator 1 Reference Input        |        |
| 12     | 10     | AGND     | Р      | Analog Ground                       |        |
| 13     | 11     | AVDD     | Р      | Analog VDD                          |        |
|        |        | PA8*     | IOUS   | PORT A Bit 8 Input/Output           |        |
| 1.4    | 12     | TRACECLK | Output | ETM Trace Clock                     |        |
| 14     | 12     | AD00     | Output | ADC0 Start Signal                   |        |
|        |        | AN8      | IA     | Analog Input 8                      |        |
|        |        | PA9*     | IOUS   | PORT A Bit 9 Input/Output           |        |
| 15     | 12     | TRACED0  | Output | ETM Trace Data 0                    |        |
| 15     | 15     | AD1O     | Output | ADC1 Start Signal                   |        |
|        |        | AN9      | IA     | Analog Input 9                      |        |
|        |        | PA10*    | IOUS   | PORT A Bit 10 Input/Output          |        |
| 10     | 14     | TRACED1  | Output | ETM Trace Data 1                    |        |
| 16     | 14     | AD2O     | Output | ADC2 Start Signal                   |        |
|        |        | AN10     | IA     | Analog Input 10                     |        |
| 17     | 15     | PA11*    | IOUS   | PORT A Bit 11 Input/Output          |        |
| 17     | 15     | TRACED2  | Output | ETM Trace Data 2                    |        |



#### Z32F1281 Product Specification

|           |    |         | 1      |                                            |       |
|-----------|----|---------|--------|--------------------------------------------|-------|
|           |    | AN11    | IA     | Analog Input 11                            |       |
|           |    | PA12*   | IOUS   | PORT A Bit 12 Input/Output                 |       |
| 18        | 16 | SSO     | I/O    | SPIO Slave Select signal                   |       |
| 10        | 10 | AD2I    | Input  | ADC2 Start Input signal                    |       |
|           |    | AN12    | IA     | Analog Input 12                            |       |
| 10        | _  | PD4     | IOUS   | PORT D Bit 4 Input/Output                  |       |
| 19        | -  | SCL1    | Output | I <sup>2</sup> C Channel 1 SCL In/Out      |       |
| 20        |    | PD5     | IOUS   | PORT D Bit 5 Input/Output                  |       |
| 20        | -  | SDA1    | Output | I <sup>2</sup> C Channel 1 SDA In/Out      |       |
| 21        | 17 | VDD     | Р      | VDD                                        |       |
| 22        | 18 | GND     | Р      | Ground                                     |       |
|           |    | PD6*    | IOUS   | PORT D Bit 6 Input/Output                  |       |
| 23        | -  | TXD2    | Output | UART Channel 2 TxD Input                   |       |
|           |    | AD0I    | Input  | ADC0 Start Input signal                    |       |
|           |    | PD7*    | IOUS   | PORT D Bit 7 Input/Output                  |       |
| 24        | -  | RXD2    | Input  | UART Channel 2 RxD Input                   |       |
|           |    | AD1I    | Input  | ADC1 Start Input signal                    |       |
|           |    | PA13*   | IOUS   | PORT A Bit 13 Input/Output                 |       |
| 25        | 19 | SCK0    | I/O    | SPI0 Data Clock Input/Output               |       |
|           | _  | AN13    | IA     | Analog Input 13                            |       |
|           |    | PA14*   | IOUS   | PORT A Bit 14 Input/Output                 |       |
| 26        | 20 | MOSIO   | 1/0    | SPIO Master-Output/Slave-Input Data signal |       |
| 20        | 20 | AN14    | IA     | Analog Input 14                            |       |
|           |    | ΡΔ15*   |        | PORT A Bit 15 Input/Output                 |       |
| 27        | 21 | MISOO   | 1/0    | SPIO Master-Input/Slave-Output Data signal |       |
| 27        | 21 | AN15    | 1/0    | Applog Input 15                            |       |
|           |    |         |        | POPT P Bit 0 Input /Output                 |       |
| 28        | 22 |         | Output |                                            |       |
|           |    |         |        | POPT P Pit 1 Input (Output                 |       |
| 29        | 23 |         | Output |                                            |       |
|           |    |         |        | PORT R Rit 0 Input (Output                 |       |
| 30        | 24 |         | 0tot   |                                            |       |
|           |    |         |        |                                            |       |
| 31        | 25 |         | 0tot   |                                            |       |
| ·         |    | PWWIULI | Output |                                            | D. II |
| 32        | 26 | TEST    | Input  | Test-mode Input (Always tied 'L')          | Pull- |
|           |    |         |        |                                            | down  |
| 33        | 27 | SCANMD  | Input  | Scan-mode Input (Always tied 'L')          | Pull- |
|           |    | DP4     |        | POPT P Pit 4 Input /Output                 | uowii |
| 24        | 20 |         | Output |                                            |       |
| 34        | 28 |         |        | Timer 0 Clock (Conture Input               |       |
|           |    | 190     | 1/0    |                                            |       |
| 25        | 20 | PBD     | 1003   |                                            |       |
| 35        | 29 |         | Output | Timer 0 Output                             |       |
|           |    | 190     | 1/0    |                                            |       |
|           |    | PB6     | 1005   | PORT B Bit 6 Input/Output                  |       |
| 36        | 30 |         | Input  | PWMU Protection Input signal U             |       |
|           |    | WDIO    | Output | WDI Output                                 |       |
|           |    | PB7     | IOUS   | PORI B Bit 7 Input/Output                  |       |
| 37        | 31 | OVIN0   | Input  | PWM0 Over-voltage put signal 1             |       |
| . <u></u> |    | STBYO   | Output | Power-down mode indication signal          |       |
|           |    | PB8     | IOUS   | PORT B Bit 8 Input/Output                  |       |
| 38        | 32 | PRTIN1  | Input  | PWM1 Protection Input signal 0             |       |
|           |    | RXD3    | Input  | UART3 RXD Input                            |       |



|    |     |           | 1      |                                     |  |
|----|-----|-----------|--------|-------------------------------------|--|
| 29 | _   | PD8       | IOUS   | PORT D Bit 8 Input/Output           |  |
|    |     | WDTO      | Output | WDT Output                          |  |
| 30 | _   | PD9       | IOUS   | PORT D Bit 9 Input/Output           |  |
|    |     | STBYO     | Output | Power-down mode indication signal   |  |
| 41 | 33  | VDD       | Р      | VDD                                 |  |
| 42 | 34  | GND       | Р      | Ground                              |  |
|    |     | PB9       | IOUS   | PORT B Bit 9 Input/Output           |  |
| 43 | 35  | OVIN1     | Input  | PWM1 Over-voltage Input signal 1    |  |
|    |     | TXD3      | Output | UART3 TXD Output                    |  |
| 44 | 36  | PB10      | IOUS   | PORT B Bit 10 Input/Output          |  |
|    | 50  | PWM1H0    | Output | PWM Channel 1 Phase 0 H-side Output |  |
| 45 | 37  | PB11      | IOUS   | PORT B Bit 11 Input/Output          |  |
| 45 | 57  | PWM1L0    | Output | PWM Channel 1 Phase 0 L-side Output |  |
| 46 | 38  | PB12      | IOUS   | PORT B Bit 12 Input/Output          |  |
| 40 | 50  | PWM1H1    | Output | PWM Channel 1 Phase 1 H-side Output |  |
| 47 | 20  | PB13      | IOUS   | PORT B Bit 13 Input/Output          |  |
| 47 | 33  | PWM1L1    | Output | PWM Channel 1 Phase 1 L-side Output |  |
| 19 | 40  | PB14      | IOUS   | PORT B Bit 14 Input/Output          |  |
| 40 | 40  | PWM1H2    | Output | PWM Channel 1 Phase 2 H-side Output |  |
| 10 | /11 | PB15      | IOUS   | PORT B Bit 15 Input/Output          |  |
| 49 | 41  | PWM1L2    | Output | PWM Channel 1 Phase 2 L-side Output |  |
| 50 | 42  | GND       | Р      | Ground                              |  |
| 51 | 43  | VDD       | Р      | VDD                                 |  |
| 50 | 44  | PCO       | IOUS   | PORT C Bit 0 Input/Output           |  |
| 52 | 44  | TCK/SWCK  | Input  | JTAG TCK, SWD Clock Input           |  |
| 52 | 45  | PC1       | IOUS   | PORT C Bit 1 Input/Output           |  |
|    | 45  | TMS/SWDIO | I/O    | JTAG TMS, SWD Data Input/Output     |  |
|    |     | PD10      | IOUS   | PORT D Bit 10 Input/Output          |  |
| 54 | -   | AD0SOC    | Output | ADC0 Start-of-Conversion            |  |
|    |     | тос/рна   | Input  | Timer 0 Clock/Capture/Phase-A Input |  |
|    |     | PD11      | IOUS   | PORT D Bit 10 Input/Output          |  |
| 55 | -   | AD0EOC    | Output | ADC0 End-of-Conversion              |  |
|    |     | Т1С/РНВ   | Input  | Timer 1 Clock/Capture/Phase-B Input |  |
| 56 | 46  | NMI       | Input  | Non-maskable Interrupt Input        |  |
|    |     | PD12      | IOUS   | PORT D Bit 12 Input/Output          |  |
| 57 | -   | AD1SOC    | Output | ADC1 Start-of-Conversion            |  |
|    |     | T2C/PHZ0  | Input  | Timer 2 Clock/Capture/Phase-Z Input |  |
|    |     | PD13      | IOUS   | PORT D Bit 13 Input/Output          |  |
| 58 | -   | AD1EOC    | Output | ADC1 End-of-Conversion              |  |
|    |     | T3C       | Input  | Timer 3 Clock/Capture Input         |  |
| 59 | 47  | VDD       | Р      | VDD                                 |  |
| 60 | 48  | GND       | Р      | Ground                              |  |
| 61 | 10  | PC2       | IOUS   | PORT C Bit 2 Input/Output           |  |
| 01 | 49  | TDO/SWO   | Output | JTAG TDO, SWO Output                |  |
| 62 | 50  | PC3       | IOUS   | PORT C Bit 3 Input/Output           |  |
| 02 | 50  | TDI       | Input  | JTAG TDI Input                      |  |
|    |     | PC4       | IOUS   | PORT C Bit 4Input/Output            |  |
| 63 | 51  | nTRST     | Input  | JTAG nTRST Input                    |  |
|    |     | ТОС/РНА   | Input  | Timer 0 Clock/Capture/Phase-A Input |  |
|    |     | PC5       | IOUS   | PORT C Bit 5Input/Output            |  |
| 64 | 52  | RXD1      | Input  | UART1 RXD Input                     |  |
|    |     | T1C/PHB   | Input  | Timer 1 Clock/Capture/Phase-B Input |  |
| 65 | 53  | PC6       | IOUS   | PORT C Bit 6Input/Output            |  |



|    |                 | TXD1    | Output | UART1 TXD Output                       |         |
|----|-----------------|---------|--------|----------------------------------------|---------|
|    |                 | T2C/PHZ | Input  | Timer 2 Clock/Capture/Phase-Z Input    |         |
|    |                 | PC7     | IOUS   | PORT C Bit 7Input/Output               |         |
| 66 | 54              | SCL0    | Output | I <sup>2</sup> C Channel 0 SCL In/Out  |         |
|    |                 | T3C     | Input  | Timer 3 Clock/Capture input            |         |
| 67 | PC8 IOUS PORT C |         | IOUS   | PORT C Bit 8 Input/Output              |         |
| 67 | 55              | SDA0    | Output | I <sup>2</sup> C Channel 0 SDA In/Out  |         |
|    |                 | PC9     | IOUS   | PORT C Bit 9 Input/Output              |         |
| 68 | 56              | CLKO    | Output | System Clock Output                    |         |
|    |                 | Т8О     | Output | Timer 8 Output                         |         |
| 60 | 57              | PC10    | IOUS   | PORT C Bit 10 Input/Output             |         |
| 69 | 57              | nRESET  | Input  | External Reset Input                   | Pull-up |
|    |                 | PC11    | IOUS   | PORT C Bit 11 Input/Output             |         |
| 70 | 58              | BOOT    | Input  | Boot mode Selection Input              |         |
|    |                 | T8C     | Input  | Timer 8 Clock/Capture Input            |         |
| 71 |                 | PD14    | IOUS   | PORT D Bit 14 Input/Output             |         |
| /1 | -               | AD2SOC  | Output | ADC2 Start-of-Conversion Output signal |         |
| 70 |                 | TD15    | IOUS   | PORT D Bit 15 Input/Output             |         |
| 72 | -               | AD2EOC  | Output | ADC2 Start-of-Conversion Output signal |         |
|    |                 | PC15    | IOUS   | PORT C Bit 14 Input/Output             |         |
| 73 | 59              | TXD0    | Output | UART0 TXD Output                       |         |
|    |                 | MISO0   | I/O    | SPI0 Master-Input/Slave-Output         |         |
|    |                 | PC14    | IOUS   | PORT C Bit 14 Input/Output             |         |
| 74 | 60              | RXD0    | Input  | UARTO RXD Input                        |         |
| 74 | 60              | MOSI0   | I/O    | SPI0 Master-Output/Slave-Input         |         |
|    |                 | VMARGIN | OA     | Not used. (test purpose)               |         |
|    | 64              | PC13    | IOUS   | PORT C Bit 13 Input/Output             |         |
| 75 | 61              | XOUT    | OA     | External Crystal Oscillator Output     |         |
| 76 | 62              | PC12    | IOUS   | PORT C Bit 12 Input/Output             |         |
| /0 | 62              | XIN     | IA     | External Crystal Oscillator Input      |         |
|    |                 | PD0     | IOUS   | PORT D Bit 0 Input/Output              |         |
|    | -               | SS1     | I/O    | SPI1 Slave Select                      |         |
| 70 |                 | PD1     | IOUS   | PORT D Bit 1 Input/Output              |         |
| 78 | -               | SCK1    | I/O    | SPI1 Clock Input/Output                |         |

\*Notation: I=Input, O=Output, U=Pull-up, D=Pull-down, S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power

(\*) Selected pin function after reset condition

Pin order may be changed with revision notice



## Memory Map

| Address                                                                                                                                                                                                                      | <i>.</i> .                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0000 0000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x0000_0000                                                                                                                                                                                                                  | Code Flash ROM                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                              | (128KB)                                                                                                                                                                                                                                                                      |
| 0x0001_FFFF                                                                                                                                                                                                                  | (12888)                                                                                                                                                                                                                                                                      |
| 0x0002_0000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                              | Reserved                                                                                                                                                                                                                                                                     |
| 0x1FFE_FFFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x1FFF_0000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                              | Boot ROM                                                                                                                                                                                                                                                                     |
| 0x1FFF_07FF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x1FFF_0800                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                              | Reserved                                                                                                                                                                                                                                                                     |
| 0x1FFF_FFFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x2000_0000                                                                                                                                                                                                                  | SRAM                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                              | (12K)                                                                                                                                                                                                                                                                        |
| 0x2000_5FFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x2FFF_FFFF                                                                                                                                                                                                                  | Reserved                                                                                                                                                                                                                                                                     |
| 0x2200_0000                                                                                                                                                                                                                  | CRAM Bit banding region                                                                                                                                                                                                                                                      |
| 0x23FF_FFFF                                                                                                                                                                                                                  | SKAW BIC-balluling legion                                                                                                                                                                                                                                                    |
| 0x2400_0000                                                                                                                                                                                                                  | Reserved                                                                                                                                                                                                                                                                     |
| 0x2FFF_FFFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                              | Code Flash ROM(Mirrored)                                                                                                                                                                                                                                                     |
| 0x3001 FFFF                                                                                                                                                                                                                  | (128KB)                                                                                                                                                                                                                                                                      |
| 0x3002_0000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 02000 07777                                                                                                                                                                                                                  | Boot ROM (Mirrored)                                                                                                                                                                                                                                                          |
| 0x3002_07FF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| · · · · · · · · · ·                                                                                                                                                                                                          | OTP ROM (Mirrored)                                                                                                                                                                                                                                                           |
| 0x3003_07FF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 083004_0000                                                                                                                                                                                                                  | Reserved                                                                                                                                                                                                                                                                     |
| 0x3FFF_FFFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x4000_0000                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                              | Peripherals                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |
| 0x4000 FFFF                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |
| 0x4000_FFFF<br>0x4001_0000                                                                                                                                                                                                   | Reserved                                                                                                                                                                                                                                                                     |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000                                                                                                                                                                     | Reserved                                                                                                                                                                                                                                                                     |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000                                                                                                                                                                     | Reserved Peripherals bit-banding region                                                                                                                                                                                                                                      |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>04400_0000                                                                                                                                        | Reserved Peripherals bit-banding region                                                                                                                                                                                                                                      |
| 0x4000 FFFF<br>0x4001 0000<br>0x41FF FFFF<br>0x4200_0000<br>0x43FF FFFF<br>0x4400_0000<br>0x5FFF FFFF                                                                                                                        | Reserved Peripherals bit-banding region Reserved                                                                                                                                                                                                                             |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF FFFF<br>0x6000_0000                                                                                                        | Reserved Peripherals bit-banding region Reserved                                                                                                                                                                                                                             |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF FFFF<br>0x6000_0000                                                                                                        | Reserved Peripherals bit-banding region Reserved External Memory (Not arrest of all)                                                                                                                                                                                         |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF                                                                                         | Reserved Peripherals bit-banding region Reserved External Memory (Not supported)                                                                                                                                                                                             |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0xA000_0000                                                                          | Reserved Peripherals bit-banding region Reserved External Memory (Not supported) External Device                                                                                                                                                                             |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0xA000_0000                                                                           | Reserved Peripherals bit-banding region Reserved External Memory (Not supported) External Device (Not supported)                                                                                                                                                             |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0xA000_0000<br>0x9FFF_FFFF                                                            | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)                                                                                                                       |
| 0x4000_FFFF<br>0x4001_0000<br>0x41FF_FFFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x55FF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0xA000_0000<br>0xDFFF_FFFF<br>0xE000_0000                                             | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:                                                                                       |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF FFFF<br>0x4400_0000<br>0x5FFF FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x6000_0000<br>0xDFFF_FFFF<br>0xE000_0000                                              | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal                                                                           |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF FFFF<br>0x4400_0000<br>0x5FFF FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x6000_0000<br>0xDFFF_FFFF<br>0xE000_0000<br>0xDFFF_FFFF                               | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal                                                                           |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF FFFF<br>0x4400_0000<br>0x5FFF FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x6000_0000<br>0xDFFF_FFFF<br>0xE000_0000<br>0xE003_FFFF<br>0xE004_0000                | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal         Private peripheral bus:                                           |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x43FF_FFFF<br>0x4400_0000<br>0x5FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0xE000_0000<br>0xEFF_FFFF<br>0xE000_0000<br>0xE003_FFFF<br>0xE004_0000                 | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal         Private peripheral bus:<br>Debug/External                         |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x5FFF_FFF<br>0x6000_0000<br>0x5FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x2000_0000<br>0xDFFF_FFFF<br>0x2000_0000<br>0xE003_FFFF<br>0x2000_0000<br>0x2000_FFFFF | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal         Private peripheral bus:<br>Debug/External                         |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x5FFF_FFF<br>0x6000_0000<br>0x5FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x2000_0000<br>0xE003_FFFF<br>0x2004_0000<br>0xE00F_FFFF<br>0x2000_0000                 | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal         Private peripheral bus:<br>Debug/External                         |
| 0x4000 FFFF<br>0x4001_0000<br>0x41FF_FFF<br>0x4200_0000<br>0x5FFF_FFF<br>0x6000_0000<br>0x5FFF_FFFF<br>0x6000_0000<br>0x9FFF_FFFF<br>0x2000_0000<br>0xE003_FFFF<br>0xE004_0000<br>0xE00F_FFFF<br>0xE010_0000                 | Reserved         Peripherals bit-banding region         Reserved         External Memory<br>(Not supported)         External Device<br>(Not supported)         Private peripheral bus:<br>Internal         Private peripheral bus:<br>Debug/External         Vendor Specific |

Figure 1.5. Main Memory Map



|                   | Core memory map |
|-------------------|-----------------|
| Address           | ,               |
| 0xE000 0000       |                 |
|                   |                 |
|                   | ITM             |
| 0~8000 0888       |                 |
| 0xE000 1000       |                 |
| · · · · – · · · · |                 |
|                   | DWT             |
| 0~8000 1888       |                 |
| 0xE000 2000       |                 |
| · · · · – · · · · |                 |
|                   | FPB             |
| 0.48000 2888      |                 |
| 0xE000 3000       |                 |
|                   | Posorvad        |
| 0                 | Reserveu        |
| OXECCO DFFF       |                 |
| CALCOULDOOD       |                 |
|                   | System Control  |
|                   | System control  |
| 0xE000 EFFF       |                 |
| 0xE000_F000       |                 |
| 0                 | Reserved        |
| 0xE003_FFFF       |                 |
|                   | TOUL            |
|                   | IPIU            |
| 0xE004_0FFF       |                 |
| 0xE004_1000       |                 |
|                   | ETM             |
| 0xE004_1FFF       |                 |
| 0xE004_2000       |                 |
|                   | External PPR    |
|                   |                 |
| 0xE00F_EFFF       |                 |
| UXEUOF_F000       |                 |
|                   | ROM Table       |
| 0xE00F_FFFF       |                 |

Figure 1.6. Cortex-M3 Private Memory Map

Note: For more information about the memory maps, refer to document number DDI337 from ARM.



| Address     | Peripheral map    |
|-------------|-------------------|
| 0x4000_0000 | SCU               |
| 0x4000_0100 | FMC               |
| 0x4000_0200 | WDT               |
| 0x4000_0300 | Reserved          |
| 0x4000_0400 | DMAC(15)          |
| 0x4000_0500 | Reserved          |
| 0x4000_1000 | PCU               |
| 0x4000_2000 | GPIO(A,B,C,D)     |
| 0x4000_3000 | TIMER(6)          |
| 0x4000_4000 | MPWM0             |
| 0x4000_5000 | MPWM1             |
| 0x4000_6000 | Reserved          |
| 0x4000_8000 | UARTO             |
| 0x4000_8100 | UART1             |
| 0x4000_8200 | UART2             |
| 0x4000_8300 | UART3             |
| 0x4000_8600 | Reserved          |
| 0x4000_9000 | SPIO              |
| 0x4000_9100 | SPI1              |
| 0x4000_9200 | Reserved          |
| 0x4000_A000 | I <sup>2</sup> C0 |
| 0x4000_A100 | I <sup>2</sup> C1 |
| 0x4000_A200 | Reserved          |
| 0z4000_B000 | ADC0              |
| 0x4000_B100 | ADC1              |
| 0x4000_B200 | ADC2              |
| 0x4000_B300 | AFE               |
| 0x4000_B400 | Reserved          |

Figure 1.7. Peripheral Memory Map



# 2. CPU

### **Cortex-M3 Core**

The CPU core is supported by the ARM Cortex-M3 processor which provides a high-performance, low-cost platform. For more information about Cortex-M3, refer to document number DDI337 from ARM.

## System Timer

The System Timer (SYSTICK) is a 24-bit timer and is part of the Cortex-M3 core. The system timer can be configured either through the registers (see the Cortex-M3 Technical Reference Manual) or through the provided functions defined in core\_cm3.h. There is an interrupt vector for the system timer. To configure the system timer, call SysTickConfig() with the number of system clocks in between interrupt intervals (up to a maximum of 24 bits).



### **Interrupt Controller**

The Nested Vectored Interrupt Controller (NVIC) is part of the core Cortex-M3 MCU. The NVIC controls system exceptions and peripheral interrupts and is closely coupled with the core to provide low latency and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the nested interrupts to enable tail-chaining of interrupts.

The Z32F1281 MCU supports 64 peripheral interrupts (of which 25 are not used) and 16 system interrupts. The NVIC also allows setting software interrupts and resetting the system.

Interrupts can be assigned a PRIORITY GROUP (common interrupts with the same priorities) as well as individual priorities. There are 8 priority levels available. For an interrupt to be active, it must be enabled in the peripheral and the NVIC registers. For more information on NVIC, see the Cortex M3 Technical Reference Manual.

The system includes functions to set the NVIC registers which are defined in core cm3.h.

| Interrupt<br>Number | Vector Address | Interrupt Source      |  |
|---------------------|----------------|-----------------------|--|
| -16                 | 0x0000_0000    | Stack Pointer         |  |
| -15                 | 0x0000_0004    | Reset Address         |  |
| -14                 | 0x0000_0008    | NMI Handler           |  |
| -13                 | 0x0000_000C    | Hard Fault Handler    |  |
| -12                 | 0x0000_0010    | MPU Fault Handler     |  |
| -11                 | 0x0000_0014    | BUS Fault Handler     |  |
| -10                 | 0x0000_0018    | Usage Fault Handler   |  |
| -9                  | 0x0000_001C    |                       |  |
| -8                  | 0x0000_0020    | Beconved              |  |
| -7                  | 0x0000_0024    | reserved              |  |
| -6                  | 0x0000_0028    |                       |  |
| -5                  | 0x0000_002C    | SVCall Handler        |  |
| -4                  | 0x0000_0030    | Debug Monitor Handler |  |
| -3                  | 0x0000_0034    | Reserved              |  |
| -2                  | 0x0000_0038    | PenSV Handler         |  |
| -1                  | 0x0000_003C    | SysTick Handler       |  |
| 0                   | 0x0000_0040    | LVDDETECT             |  |
| 1                   | 0x0000_0044    | SCLKFAIL              |  |
| 2                   | 0x0000_0048    | XOSCFAIL              |  |
| 3                   | 0x0000_004C    | WDT                   |  |
| 4                   | 0x0000_0050    | Reserved              |  |
| 5                   | 0x0000_0054    | TIMER0                |  |
| 6                   | 0x0000_0058    | TIMER1                |  |
| 7                   | 0x0000_005C    | TIMER2                |  |
| 8                   | 0x0000_0060    | TIMER3                |  |
| 9                   | 0x0000_0064    | Beconved              |  |
| 10                  | 0x0000_0068    | - Keserveu            |  |

#### Table2.1. Interrupt Vector Map



| ົ | DI |    |
|---|----|----|
| ັ | Γ. | υ. |

| 11 | 0x0000_006C |           |  |
|----|-------------|-----------|--|
| 12 | 0x0000_0070 |           |  |
| 13 | 0x0000_0074 | TIMER8    |  |
| 14 | 0x0000_0078 | TIMER9    |  |
| 15 | 0x0000_007C | Reserved  |  |
| 16 | 0x0000_0080 | GPIOAE    |  |
| 17 | 0x0000_0084 | GPIOAO    |  |
| 18 | 0x0000_0088 | GPIOBE    |  |
| 19 | 0x0000_008C | GPIOBO    |  |
| 20 | 0x0000_0090 | GPIOCE    |  |
| 21 | 0x0000_0094 | GPIOCO    |  |
| 22 | 0x0000_0098 | GPIODE    |  |
| 23 | 0x0000_009C | GPIODO    |  |
| 24 | 0x0000_00A0 | MPWM0     |  |
| 25 | 0x0000_00A4 | MPWM0PROT |  |
| 26 | 0x0000_00A8 | MPWM00VV  |  |
| 27 | 0x0000_00AC | MPWM1     |  |
| 28 | 0x0000_00B0 | MPWM1PROT |  |
| 29 | 0x0000_00B4 | MPWM10VV  |  |
| 30 | 0x0000_00B8 | Reserved  |  |
| 31 | 0x0000_00BC | Reserved  |  |
| 32 | 0x0000_00C0 | SPIO      |  |
| 33 | 0x0000_00C4 | SPI1      |  |
| 34 | 0x0000_00C8 | Reserved  |  |
| 35 | 0x0000_00CC |           |  |
| 36 | 0x0000_00D0 | 12C0      |  |
| 37 | 0x0000_00D4 | 12C1      |  |
| 38 | 0x0000_00D8 | UARTO     |  |
| 39 | 0x0000_00DC | UART1     |  |
| 40 | 0x0000_00E0 | UART2     |  |
| 41 | 0x0000_00E4 | UART3     |  |
| 42 | 0x0000_00E8 | Reserved  |  |
| 43 | 0x0000_00EC | ADC0      |  |
| 44 | 0x0000_00F0 | ADC1      |  |
| 45 | 0x0000_00F4 | ADC2      |  |
| 46 | 0x0000_00F8 | СОМРО     |  |
| 47 | 0x0000_00FC | COMP1     |  |
| 48 | 0x0000_0100 | COMP2     |  |
| 49 | 0x0000_0104 | СОМРЗ     |  |
| 50 | 0x0000_0108 | Reserved  |  |
| 51 | 0x0000_010C | Reserved  |  |
| 52 | 0x0000_0110 | Reserved  |  |
| 53 | 0x0000_0114 | Reserved  |  |



#### Z32F1281 Product Specification

| 54 | 0x0000_0118 | Reserved |
|----|-------------|----------|
| 55 | 0x0000_011C | Reserved |
| 56 | 0x0000_0120 | Reserved |
| 57 | 0x0000_0124 | Reserved |
| 58 | 0x0000_0128 | Reserved |
| 59 | 0x0000_012C | Reserved |
| 60 | 0x0000_0130 | Reserved |
| 61 | 0x0000_0134 | Reserved |
| 62 | 0x0000_0138 | Reserved |
| 63 | 0x0000_013C | Reserved |





## 3. Boot Mode

## **Boot Mode Pins**

The Z32F1281 MCU has a Boot Mode option to program internal Flash memory. When the BOOT pin is pulled low, the system will start up in the BOOT area  $(0 \times 1 \text{FFF}_{0000})$  instead of the default Flash area  $(0 \times 0000\_0000)$ . This provides the ability to flash the part using either UART or SPI interfaces. The BOOT pin has an internal pull up resistor. Therefore, when the BOOT pin is not connected, it rides high (normal state).

Boot Mode uses the UART0 port and the SPI0 ports for the interface. The JTAG and SW interfaces can also be used, which provide the ability to recover from a bad Flash update that prevents the JTAG or SW debugger from attaching.

The pins for Boot Mode are listed in Table 3.1.

| Block  | Pin Name    | Dir | Description             |
|--------|-------------|-----|-------------------------|
| SYSTEM | nRESET/PC10 | I   | Reset Input signal      |
|        | BOOT/PC11   | I   | '0' to enter Boot mode  |
| UART0  | RXD0/PC14   | I   | UART Boot Receive Data  |
|        | TXD0/PC15   | 0   | UART Boot Transmit Data |
| SPI0   | SS0/PA12    | I   | SPI Boot Slave Select   |
|        | SCK0/PA13   | Ι   | SPI Boot Clock Input    |
|        | MOSI0/PA14  | I   | SPI Boot Data Input     |
|        | MISO0/PA15  | 0   | SPI Boot Data Output    |

Table 3.1. Boot Mode Pin List



## **Boot Mode Connections**

The target board can be designed using either of the Boot Mode ports – UART or SPI.

Figure 3.1 and Figure 4.1 Figure 3.2 show sample connection diagrams in Boot Mode.



Figure 3.1. Connection Diagram of UART Boot





# 4. System Control Unit

## Overview

The Z32F1281 MCU has a built-in intelligent power control block which manages system analog blocks and operating modes. Internal reset and clock signals are controlled by the SCU block to maintain optimal system performance and power dissipation.



Figure 4.1. SCU Block Diagram

## **Clock System**

The Z32F1281 MCU contains two main operating clocks – HCLK, which supplies the clock to the CPU and the AHB bus system; and PCLK, which supplies the clock to the peripheral systems. Users can control the clock system variation by software. Figure 4.2 shows the clock system of the chip. Table 4.1 lists the clock source descriptions.



Figure 4.2. System Clock Configuration

Each of the registers to switch the clock source has a glitch-free circuit. Therefore, the clock can be switched without the risk of glitches.

#### Table 4.1. Clock Sources



#### Z32F1281 Product Specification

| Clock name | Frequency       | Description           |
|------------|-----------------|-----------------------|
| IOSC20     | 20MHz           | Internal OSC          |
| MOSC       | XTAL(4MHz~8MHz) | External Crystal IOSC |
| PLL Clock  | 8MHz ~ 80MHz    | On Chip PLL           |
| ROSC       | 1MHz            | Internal RING OSC     |

The PLL can synthesize the PLLCLK clock up to 80 MHz with the FIN reference clock. It also has an internal pre-divider and post-divider.

### HCLK Clock Domain

The HCLK clock feeds the clock to the CPU and AHB bus. The Cortex-M3 CPU requires two clocks related with HCLK clock – FCLK and HCLK. FCLK is the free running clock and it is always running except in Power-down mode. HCLK can be stopped in Idle mode.