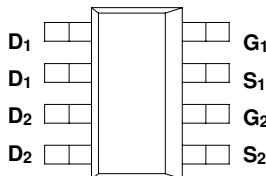


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

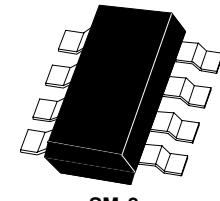
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com


Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

**SM-8 DUAL N-CHANNEL ENHANCEMENT
MODE MOSFETS**
ISSUE 1 - NOVEMBER 1995

ZDM 4306N

PART MARKING DETAIL - M4306N

SM-8
(8 LEAD SOT223)

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Drain-Source Voltage	V_{DS}	60	V
Continuous Drain Current at $T_{amb}=25^{\circ}C$	I_D	2	A
Pulsed Drain Current	I_{DM}	15	A
Gate-Source Voltage	V_{GS}	± 20	V
Operating and Storage Temperature Range	$T_j \cdot T_{stg}$	-55 to +150	°C

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	VALUE	UNIT
Total Power Dissipation at $T_{amb} = 25^{\circ}C^*$ Any single die "on" Both die "on" equally	P_{tot}	2.5 3.0	W W
Derate above $25^{\circ}C^*$ Any single die "on" Both die "on" equally		20 24	mW/ °C mW/ °C
Thermal Resistance - Junction to Ambient*			
Any single die "on"		50.0	°C/ W
Both die "on" equally		41.6	°C/ W

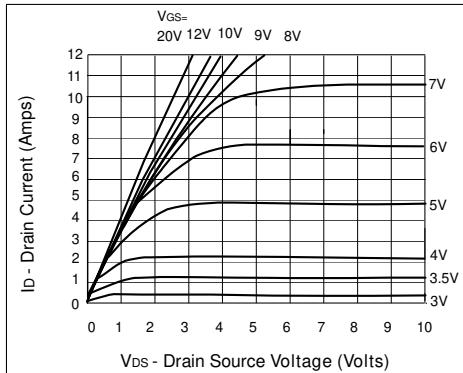
* The power which can be dissipated assuming the device is mounted in a typical manner on a PCB with copper equal to 2 inches square.

Note:

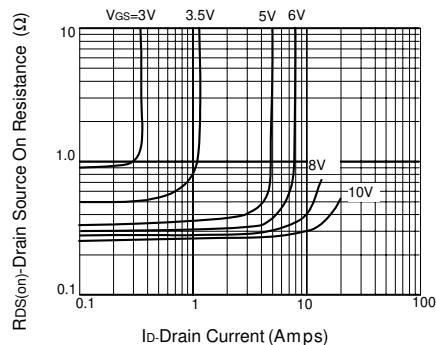
This data is derived from development material and does not necessarily mean that the device will go into production

ZDM4306N

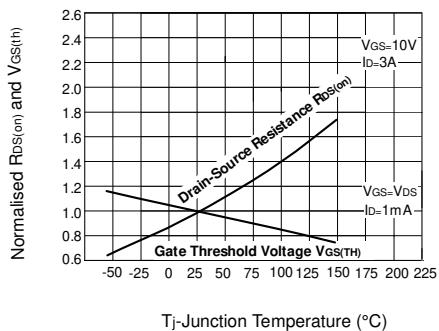
ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^\circ C$ unless otherwise stated).

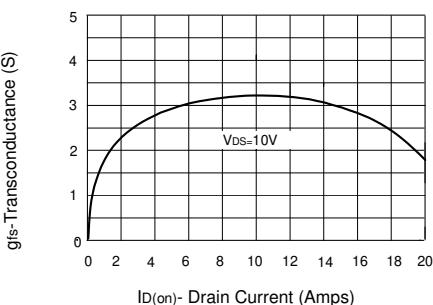

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
Drain-Source Breakdown Voltage	BV_{DSS}	60			V	$I_D=1mA, V_{GS}=0V$
Gate-Source Threshold Voltage	$V_{GS(th)}$	1.3		3	V	$I_D=1mA, V_{DS}=V_{GS}$
Gate-Body Leakage	I_{GSS}			100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$
Zero Gate Voltage Drain Current	I_{DSS}			10 100	μA μA	$V_{DS}=60V, V_{GS}=0$ $V_{DS}=48V, V_{GS}=0V, T=125^\circ C$ (2)
On-State Drain Current(1)	$I_{D(on)}$	12			A	$V_{DS}=10V, V_{GS}=10V$
Static Drain-Source On-State Resistance (1)	$R_{DS(on)}$		0.22 0.32	0.33 0.45	Ω Ω	$V_{GS}=10V, I_D=3A$ $V_{GS}=5V, I_D=1.5A$
Forward Transconductance (1)(2)	g_{fs}	700			mS	$V_{DS}=25V, I_D=3A$
Input Capacitance (2)	C_{iss}			350	pF	$V_{DS}=25 V, V_{GS}=0V, f=1MHz$
Common Source Output Capacitance (2)	C_{oss}			140	pF	
Reverse Transfer Capacitance (2)	C_{rss}			30	pF	
Turn-On Delay Time (2)(3)	$t_{d(on)}$			8	ns	$V_{DD}\sim 25V, V_{GEN}=10V, I_D=3A$
Rise Time (2)(3)	t_r			25	ns	
Turn-Off Delay Time (2)(3)	$t_{d(off)}$			30	ns	
Fall Time (2)(3)	t_f			16	ns	

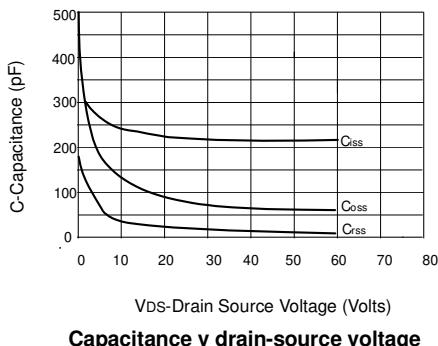
1) Measured under pulsed conditions. Width=300 μs . Duty cycle $\leq 2\%$

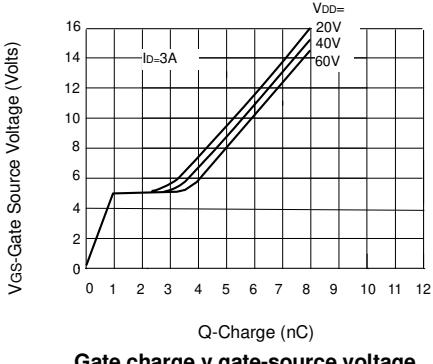

(2) Sample test.

(3) Switching times measured with 50 Ω source impedance and <5 ns rise time on a pulse generator


TYPICAL CHARACTERISTICS


Saturation Characteristics


On-resistance v drain current


Normalised Rd(on) and Vgs(th) v Temperature

Transconductance v drain current

Capacitance v drain-source voltage

Gate charge v gate-source voltage