imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Miniature Smart RF Transceiver

ZETAPLU

Features

- Intelligent Wire replacement SMARTRADIO
- form factor: 16mm x 18mm
- 2Km range
- Transmit Power +13dBm
- High sensitivity -116dBm (@ 2.4kbps)
- Max data rate @ 500Kbps
- Simple UART and SPI interface
- Best in Class cost performance
- Available as 433/868/915MHz
- 1.8V 3.6V Operating Voltage
- Low power consumption
 - 0.5nA Standby
 - 10mA Rx
 - 18mA Tx @ 10dBm
- 64 byte Buffer (FIFO)
- Integrated battery voltage sensor
- Based on Silicon Labs' Si4455 chipset
- No configuration necessary
- No external components
- Fast and effective Plug and Play RF Comms

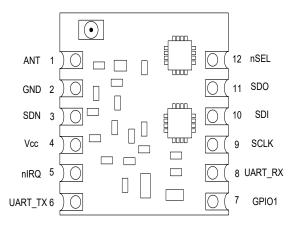
Applications

- Home automation
- Sensor / mesh RF networks
- Telemetry
- Keyless entry
- Health monitors
- RF Data comms

Applications

The ZETAPLUS Smart Module is a plug and play Radio Communications module with simple SPI and UART (LV RS232) interface.

With only a few connections to power, comms and antenna, the user can quickly start sending and receiving data. No other external components are required.

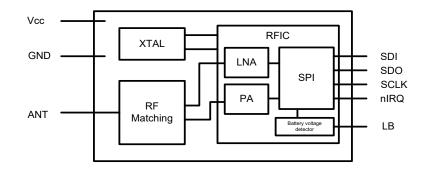

With a highly tuned on-board RF matching network ZETAPLUS outperforms other modules achieving range far in excess of its competitors for the given power output/power consumption.

Additional features, include a 64-byte TX/RX FIFOs, preamble detection, sync word detector, and CRC are all automatically handled, reducing current consumption and allow for the use of lower-cost system MCUs. The ZETAPLUS also gives access to the integrated auxiliary 11-bit ADC used for the integrated battery voltage detector making low battery detect very simple to implement on your design.

ZETAPLUS Smart RF Transceiver

Pin Description

PIN	Definition	Туре	Function
1	Antenna Pin	In/Out	Antenna pin connection. Keep short and match to 50phms for best performance
2	GND	In	Ground connection
3	Shutdown	own Active high The shutdown state is the lowest current c state of the device and is entered by drivin In this state, all register contents are lost a no SPI access. Drive low to exit	
4	Vcc	In	Power connection
5	Interrupt	Output	Active Low Interrupt Status Output – Read interrupt status for event details E.g. The FIFO on the ZETAPLUS module contains data
6	UART_TX	Out	RS232 Transmit pin
7	GPI01	In / Out	General Purpose I/O can be configured by Si4455 to provide additional function
8	UART_RX	In	RS232 Receive Pin
9	Serial clock	In	Serial Clock Input (O – VDD V): Provides serial data clock for 4-line serial data bus
10	Serial data In	In	Serial Data Input (O – VDD V): Serial data stream input for 4-line serial data bus
11	Serial data Out	Out	Serial Data Output (0 – VDD V)
12	Serial interface select	In	Serial Interface Select Input (0 – VDD V): Provides se- lect/enable function for 4-line serial data bus.



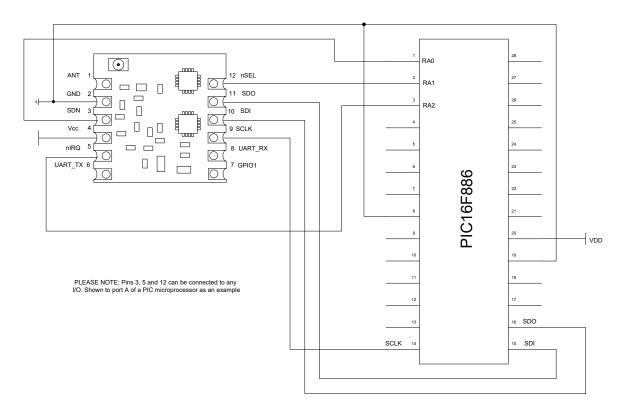
Ordering information

Part Number	Description
ZETAPLUS-433-SO	FM transceiver module, 433MHz (marked Red Dot) SMT
ZETAPLUS-433-D	FM transceiver module, 433MHz (marked Red Dot) DIP
ZETAPLUS-868-SO	FM transceiver module, 868MHz (marked Blue Dot) SMT
ZETAPLUS-868-D	FM transceiver module, 868MHz (marked Blue Dot) DIP
ZETAPLUS-915-SO	FM transceiver module 915MHz (marked Yellow Dot) SMT
ZETAPLUS-915-D	FM transceiver module 915MHz (marked Yellow Dot) DIP

Block Diagram

Application notes

Communication with ZETAPLUS module can be via SPI interface or UART (LVTTL). For transmission using SPI load the correct decimal byte values into the SPI TX register. When a byte is received using SPI the nIRQ line will be pulled low, this shows that data will be ready to be read from the SPI register.


Using the UART (LVTTL) load the correct decimal byte values into the UART TX register, this will be sent to the ZETAPLUS via it's RX pin. When data is received by a ZETAPLUS the module will output the data through the TX pin of the module to the RX pin of the controlling device (microprocessor) where this can be read.

SPI Command Set and Interface

Application schematic- ZETAPLUS and PIC16F886

Mode selection:

Command for M	Command for MODE select: ATM 1-3						
Command	Name Description						
1	RX	The command enters RX mode using whichever settings were last configured using the #R command below.					
2	Ready	Ready is a low power wake state which can be used for fast entry to RX or switching between TX and RX. Time to RX or TX from READY <1ms					
3	Sleep	Low power sleep mode with register retention.					

Command	А	Т	М	1
Decimal byte value	65	84	77	1

Example: Place the codec in receive mode

Note: alternative possible example of mode select for some terminal programs: ATM#001.

Receive mode:

Command for RECEIVER select: ATR CHANNEL, PACKET LENGTH					
Command	Name	Description			
0-15	CHANNEL	Set in 250KHz increments starting at (FREQ dependent): At 433MHz: 0=433.92 At 868MHz: 0=869.50 At 915MHz: 0=915			
1-65	PACKET LENGTH	Length of data packet to be sent in 8 bit bytes			

Example: Enter receiver mode on channel 2 with a packet length of 10 (8 bit) bytes.

ommand	А	Т	R	2	10
Decimal byte value	65	84	82	2	10

Transmit mode

Command for Transmit Mode: ATS CHANNEL, PACKET LENGTH, DATA						
Command	Name Description					
0-15	Channel	Set in 250KHz increments starting at (FREQ dependent): At 433MHz: 0=433.92 At 868MHz: 0=869.50 At 915MHz: 0=915				
1-64	Packet length	The length of the data packet to follow. In 8 bit bytes.				
Data		Your data to be transmitted.				

Command	А	Т	S	2	13	DATA
Decimal byte value	65	84	83	2	13	Your 13 bytes

Sync bytes / addressing

Configure mod	Configure module sync bytes: Command: ATA SYNC1, SYNC2, SYNC3, SYNC4						
Command Name Description							
1-4	SYNC1-4	Sent sync bytes 1-4. The sync bytes appear directly after the pre-amble in data pack- et and can be used as a form of addressing to discriminate be- tween required and spurious data. Set these bytes and the mod- ule will then only pass on data which contains the correct sync bytes configuration. Set all to AA if not required. NOTE: Reverse order bytes: ie 2D = D4, D4 = 2B					
Example: Set the sync bytes to 12 34 56 78							

•	,	,						
Command		А	Т	А	12	34	56	78
Decimal byte valu	е	65	84	65	12	34	56	78

RF Baud Rate

Configure the RF baud rate: Command: ATB 0-19 Note SDN must be toggled high/low for setting to take affect and can take up to 15ms to com- plete.

Command	Name	Description
1-19	Baud rate	GFSK RF baud rates in kbps 1=4.8 kbps 2=9.6 kbps 3=38.4 kbps 4=128.0 kbps 5=256.0 kbps 6=500.0 kbps

Example: Set the RF baud rate to 500kbps GFSK:

Command	А	Т	В	6
Decimal byte value	65	84	66	6

RF Output Power

Configure the RF power output: Command: ATP 1-127					
Command Name Description					
1-127Power outputPower output in increments from 1-127					

Example: Set the power outputs to 32:

Command	А	Т	Ρ	15
ASCII	65	84	80	32

NOTE

"SI4455 o/p power as defined in the datasheet:-

The PA circuitry in the chip contains an output device whose size may be adjusted by enabling/disabling different numbers of device fingers. Selection of a higher value results in an increase in TX output power. The relationship between output power and the number of enabled device fingers is not necessarily linear, and is dependent upon the PA mode of operation (e.g., Class-E or Switched Current), the duty cycle of the drive signal to the output circuit, the VDD supply voltage, and the output match. As a result, there is no simple formula to relate the setting of the PA_PWR_LVL property to an absolute value of output power in dBm. The adjustment resolution of the TX output power is very fine (step size < 0.1 dB) when operating near the maximum power setting, but becomes coarser as the output power level is reduced."

Communication with the ZETAPLUS via SPI interface.

Maximum SPI data rate: 1.4Mhz

Data is sent over the SPI bus on the ZETAPLUS codec in standard SPI format using the correct command set. A 50ms timeout exists to avoid lock-up if not all requested data bytes are sent - in this scenario the packet would be aborted and no data sent.

When in receive mode and an RF packet is received the U_IRQ pin will go low indicating SPI data is ready to be read.

The following two pages show example timing diagrams for the SPI bus communication.

Selecting preferred communication method.

Only one communication method can be used at a time and priority is set by the last access method.

For example if you enable receive mode via SPI it will revert to SPI communication from there on unless you access the device via UART it will then revert to UART communication only from then on.

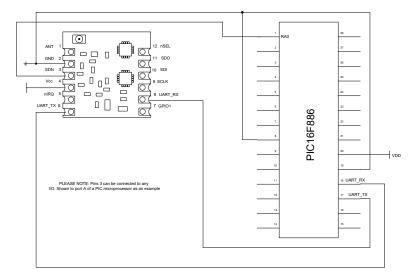
MS0-X 2012A, MY51360370: Thu Jul 30 18:54:22 2015

Above is the first byte of SPI data following U_IRQ going low after an RF packet has been received.

Sequence:-

- 1. IRQ goes low indicating a packet has been received.
- 2. Read byte over SPI bus.
- 3. If IRQ remains low then more data is still available to read. Goto 2.

The first two bytes read should be #R followed by the packet length & RSSI value then the packet data.


Above is the complete SPI & IRQ Timing diagram for #R<RSSI> <Packet > plus 12 byte data packet

UART Application

Application schematic- ZETAPLUS and PIC16F886

UART command set

UART configuration:

Baud rate: 19200, Data bits: 8, Parity: none, Stop bits: 1

Note all UART I/O are at Low level and must not exceed 5V.

UART in

Data is sent to the RX pin on the ZETAPLUS n standard UART format using the correct command set. A 50ms timeout exists to avoid lock-up if not all requested data bytes are sent - in this scenario the packet would be aborted and no data sent.

UART out

Data is output from the TX pin on the ZETAPLUS.

When in receive mode and an RF packet is received the data packet is automatically send over the UART.

Firmware Version

Use this command to check which firmware version of the ZETAPLUS-PLUS you are using.			
Command	Name	Description	
N/A	Firmware Version	Example reply: # V 1 . 0 0 EXAMPLE 35 86 31 46 30 30	

Example: Check firmware version

Command	А	Т	V
Decimal byte value	65	84	86

Retrieve Configuration and

Use this command to check the current settings of the device						
Command	Name	Description				
N/A	Configuration and settings	Example reply:				
		#? FOLLOWED BY 8 BYTE AS BELOW OPERATING MODE				
		(MODE:- 1= RX 2=READY)				
		RF BAUD RATE (1- 19 AS PER DS)				
		RF POWER OP (1-				
		127) SYNC BYTE 1 SYNC BYTE 2 SYNC BYTE 3 SYNC BYTE 4 CHANNEL NUMBER (0				
		-15 AS PER DS)				
		EXAMPLE 35 63 1 1 127 45 210 0 0 0				

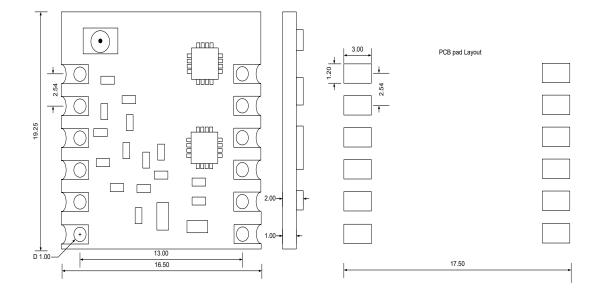
Example: Retrieve settings

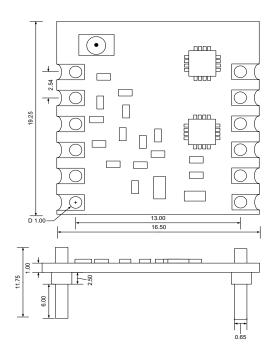
Command	А	Т	?
Decimal byte value	65	84	63

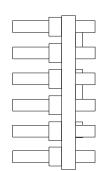
RSSI

Use this comn	Use this command to retrieve the RSSI value					
Command	Name	Description				
N/A	RSSI	Example reply: #Q FOLLOWED BY ONE BYTE RSSI VALUE (0-255) EXAMPLE 35 81 56				

Example: Retrieve settings


Command	А	Т	?
Decimal byte value	65	84	63




Mechanical dimensions

Surface Mount Package

P-DIP Package

1. Electrical Specifications

Recommended operating conditions

Parameter	Symbol	Test condition	Min	Тур.	Max	Unit
Ambient Temperature	T _A		-40	25	85	°C
Supply Voltage	V _{DD}		1.8		3.6	V
I/O Drive Voltage	V _{GPIO}		1.8		3.6	V

DC characteristics

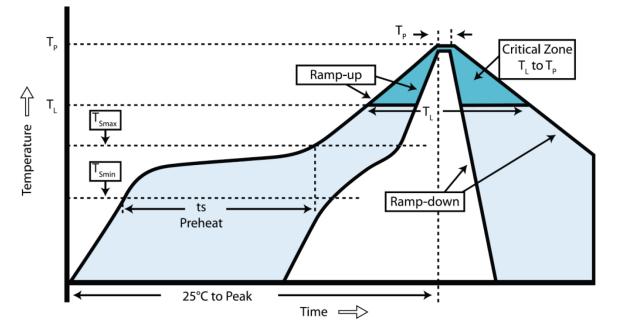
Parameter	Symbol	Test condition	Min	Тур.	Max	Unit
Supply voltage range	V _{DD}		1.8	3.3	3.6	V
Power saving modes	Shutdown	RC oscillator, main digital regulator, and low power digital regulator OFF.		30	_	nA
	Standby	Register values maintained.	—	50	_	nA
	Ready	Crystal oscillator and main digital regulator ON, all other blocks OFF.	_	2	_	mA
	ISPI Active	SPI active state		1.35		mA
TUNE mode current	I _{Tune_RX}	RX tune	—	6.5	—	mA
	I _{Tune_TX}	TX tune	_	6.9	—	mА
RX mode current	I _{RX}			10	-	mΑ
TX mode current	I _{TX}	+10 dBm output power, 868 MHz	_	18	_	mA
		+13 dBm output power, 868 MHz		30	—	mA

Synthesiser AC electrical characteristics

Parameter	Symbol	Test condition	Min	Тур	Max	Unit
Synthesizer frequency Range	F_{syn}		860		869	MHz
Synthesizer frequency Resolution	F _{RES-868}	850-870 MHz	_	114.4	_	Hz

Transmitter AC electrical characteristics

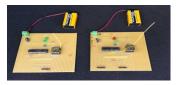
Parameter	Symbol	Test condition	Min	Тур	Max	Unit
TX frequency range	F_{Tx}		850	_	870	MHz
(G)FSK data rate			1.0	_	500	kbps
OOK data rate	DR _{ook}		0.5	_	120	kbps
Modulation deviation range	$Df_{_{960}}$	850-870 MHz		_	500	kHz
Modulation deviation resolution	Fres.960	850-870 MHz	_	114.4	_	Hz
Output power range	P _{TX}		-40	_	+13	dBm
TX RF output steps	DP	Using switched current match within 6 dB of max power	l	0.1	_	dB
TX RF output level variation vs. temperature	DP_{RF_TEMP}	-40 to +85 ℃	_	1	_	dB
TX RF output level Variation vs. frequency	DP_{RF_FREQ}	Measured across 850-870 MHz	_	0.5	_	dB
Transmit modulation filtering	B*T	Gaussian filtering bandwidth time product	ĺ	0.5	_	
Spurious emissions	P _{OB-TX1}	P _{out} = +13 dBm, Frequencies < 1 GHz	_	-54	_	dBm
	Р _{ов-тх2}	1–12.75 GHz, excluding harmonics		-42	-	dBm
Harmonics	P2 _{harm}	Using reference design TX matching network and filter with max output power. Harmonics reduce linearly with output power.	—	-42	—	dBm
	P3 _{harm}		_	-42	_	dBm


Receiver AC electrical characteristics

Parameter	Symbol	Test condition	Min	Тур.	Max.	Unit
RX frequency range	F _{RX}		850	_	870	MHz
RX sensitivity	P _{RX-2}	(BER < 0.1%) (2.4 kbps, GFSK, BT = 0.5, DF = ±30 kHz, 114 kHz Rx BW)	_	-116	_	dBm
	P _{RX40}	(BER < 0.1%) (40 kbps, GFSK, BT = 0.5, DF = ±25 kHz, 114 kHz Rx BW)	_	-108	_	dBm
	P _{RX-128}	(BER < 0.1%) (128 kbps, GFSK, BT = 0.5, DF = ±70 kHz, 305 kHz Rx BW)	_	-103	_	dBm
	P _{RX00K}	(BER < 0.1%, 1 kbps, 185 kHz Rx BW, OOK, PN15 data)	_	-113	_	dBm
		(BER < 0.1%, 40 kbps, 185 kHz Rx BW, OOK, PN15 data)	—	-102	—	dBm
RX channel bandwidth	BW		40	_	850	kHz
BER variation vs power Levelz	P_{RX_RES}	Up to +5 dBm Input Level	Ι	0	0.1	ppm
RSSI resolution	RES _{RSSI}		_	±0.5	_	dB
±1-Ch offset selectivity	C/I _{1-CH}	Desired Ref Signal 3 dB above sensitiv-	_	-56	_	dB
±2-Ch offset selectivity	C/I _{2-CH}	ity, BER < 0.1%. Interferer is CW and de- sired modulated with 1.2 kbps, DF = 5.2 kHz, GFSK with BT= 0.5, RX BW = 58 kHz channel spacing = 100 kHz		-59	_	dB
Blocking 200 kHz–1 MHz	200KBLOCK	Desired ref signal 3 dB above sensitiv- ity, BER < 0.1%. Interferer is CW and de- sired modulated with 1.2 kbps	-	-58	_	dB
Blocking 1 MHz offset	1M _{BLOCK}		—	-61	—	dB
Blocking 8 MHz offset	8M _{BLOCK}	DF = 5.2 kHz GFSK with BT = 0.5, RX BW = 58 kHz		-79	_	dB
Image rejection	lm _{rej}	Rejection at the image frequency IF = 468 kHz	—	-35	—	dB
Spurious emissions	P _{ob_rx1}	Measured at RX pins	—	-54	_	dBm

ZETAPLUS MODULE is a 2 layer PCB, re-flow is based on IPC/JEDEC JSTD020C July 2004

Profile feature	Value (lead free)		
Ramp up rate	3°C /s		
Pre-heat temperature - Temperature Min (T _{smin}) - Temperature Max (T _{smax}) - Pre-heat time	150°C 200°C 60-100s		
Peak temperature (T _P)	240°C		
Time at T_P	10-20sec		
Ramp down rate	6°C/s		
Time from 25°C to peak	8 mins max.		



Range Test

Two Transceiver boards were built using simple prototyping board and a host PIC microcontroller . One board was programmed as a transmitter to send a beacon signal at 1 second interval. The other board was programmed as receiver which acknowledged the received signal back to the transmitter thus creating a ping-pong test set.

A simple piece of wire was used as antenna for both boards

Prototyping board and wire as antenna is not ideal, but many real applications are often a compromise!

Our Range Testing was conducted from Ditchling Beacon providing an open Line of Sight Test.

- 1. The Transmitter was placed Receiver was mounted on the back of a pick up truck and the receiver was carried by hand ~5ft from the ground .
- 2. As the receiver travelled away from the transmitter Line of sight was occasionally lost when we went in the shadow of a hill, at this time the RF signal was intermittent. A Reliable signal in Line of sight was observed to 2.4K range, thereafter we couldn't go any further as the pathway stopped. At this range in L.O.S the signal was 100% reliable.

Test conditions

- T_A = +18 °C
- V_{DD}= +3.3 Vdc
- Dry, Broken Sunshine, Relative Humidity 45%

Result:

The test achieve a maximum range of 2.4km after this point the terrain dropped away and a line of sight was completely lost, it is possible that the module may have achieved a longer range.

RF Solutions Ltd. Recycling Notice Meets the following EC Directives:

DO NOT

Discard with normal waste, please recycle.

ROHS Directive 2002/95/EC

Specifies certain limits for hazardous substances.

Waste Batteries and Accumulators Directive 2006/66/EC

Where batteries are fitted, before recycling the product, the batteries must be removed and disposed of at a licensed collection point.

Environment Agency producer registration number: WEE/JB0104WV.

Disclaimer:

Whilst the information in this document is believed to be correct at the time of issue, RF Solutions Ltd does not accept any liability whatsoever for its accuracy, adequacy or completeness. No express or implied warranty or representation is given relating to the information contained in this document. RF Solutions Ltd reserves the right to make changes and improvements to the product(s) described herein without notice. Buyers and other users should determine for themselves the suitability of any such information or products for their own particular requirements or specification(s). RF Solutions Ltd shall not be liable for any loss or damage caused as a result of user's own determination of how to deploy or use RF Solutions Ltd's products. Use of RF Solutions Ltd products or components in life support and/or safety applications is not authorised except with express written approval. No licences are created, implicitly or otherwise, under any of RF Solutions Ltd's intellectual property rights. Liability for loss or damage resulting or caused by reliance on the information contained herein or from the use of the product (including liability resulting from negligence or where RF Solutions Ltd was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict RF Solutions Ltd's liability for death or personal injury resulting from its negligence.

www.rfsolutions.co.uk

RF Solutions Ltd William Alexander House, William Way, Burgess Hill, West Sussex, RH15 9AG Sales: +44(0)1444 227 910 Tech Support: +44(0)1444 227909