

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZHX1810

Slim Series SIR Transceiver

Product Specification

PS009320-0910

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2010 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Zilog is a registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.

Revision History

Each instance in the following table reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Date	Revision Level	Description	Page #
September 2010	20	Updated Figure 9 and Figure 10. Deleted text about two different fab sources.	13, 14
June 2008	19	Removed Figure 8, Figure 9, Figure 13, and Figure 14 because Stars and Everlight supplied parts are obsolete.	

Table of Contents

Description
Features 1
Block Diagram
Pin Descriptions 2 LEDA LED Driver Anode 2 TXD Transmit Data 3 RXD/Receive Data 3 SD Shutdown 3 VCC Positive Supply 3 GND Ground 3 TAB 3
Recommended Application Circuits4
Electrical and Timing Specifications5
Mechanical Drawings 9
Soldering and Cleaning Recommendations
Packing, Storage, and Baking Recommendations
Taping Specifications
Ordering Information
Customer Support

PS009320-0910 Table of Contents

Description

The ZILOG ZHX1810 is a low-profile version of Zilog's popular ZHX1010 1-meter transceiver. The transceiver is mechanically enhanced for ultra compact, power-conscious portable products, such as mobile phones, portable printers, handheld computers, and personal data assistants (PDAs). Designed to operate using the IrDA-Data mode, the transceiver combines an infrared emitting diode (IRED) emitter, a PIN photo-diode detector, a digital AC coupled LED driver, and a receiver/decoder in a single package.

The ZILOG ZHX1810 provides an efficient implementation of the SIR standard in a small-outline footprint format. Application circuit space is also minimized, as only three components are required.

ZHX1810 also features an independently controlled shutdown that minimizes current draw to a maximum of 1 μ A.

Features

- Compliant to IrDA Data Specification SIR
- Wide power supply voltage range, 2.4 to 5.5 V
- Minimum link distance, 1 M
- Low-power, listening current, 90 μA (typical) at 3.0 V
- Slim form factor (9.1 mm long x 3.8 mm wide x 2.73 mm high)
- Only two external components required
- Extended operating temperature range (-30 °C to +85 °C)
- Meets IEC 825-1 Class 1 Eye Safety Specifications

Block Diagram

Figure 1 is the block diagram for the Slim SIR transceiver.

PS009320-0910 Description

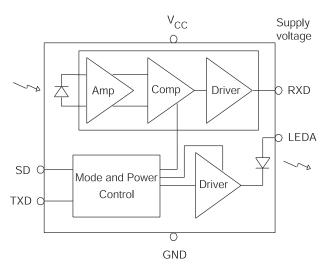


Figure 1. Slim SIR Transceiver Block Diagram

Pin Descriptions

The ZHX1810 transceiver uses the pins listed in Table 1. The pins are described in this section.

Table 1. Pin Out for the ZHX1810 Transceiver

Pin	Name	Function	I/O
1	LEDA	IRED anode	_
2	TXD	Transmitter input	I
3	RXD	Receiver output	0
4	SD	Enables shutdown mode	I
5	V_{CC}	Supply voltage	_
6	GND	Ground	_
_	TAB	Shield ground	_

LEDA LED Driver Anode

(Power)

This output is connected to the LED anode. Current to the LED is sourced through an external resistor.

PS009320-0910 Pin Descriptions

TXD Transmit Data

(Input, active high)

This CMOS input is used to transmit serial data. This input has an internal pull-down resistor that is disabled (open-circuited) during shutdown.

RXD/Receive Data

(Output, active low)

This output indicates received serial data. It is a tri-state, slew rate controlled CMOS output (tri-stated during shutdown) driver capable of driving a standard CMOS load. No external resistor is required.

SD Shutdown

(Input, active high)

This input is used to place the integrated circuit into shutdown mode. Module shutdown current is influenced by the choice of capacitor used from V_{CC} to ground.

V_{CC} Positive Supply

(Power)

Connect to positive power supply (2.4–5.5 V). Filter with a 0.33- μ F ceramic bypass capacitor and terminating resistor as close as possible to the V_{CC} pin.

GND Ground

(Power)

Connect to ground of the power supply. A solid ground plane is recommended for proper operation.

TAB

(Shield)

The Shield tab must be soldered to the ground plane.

PS009320-0910 Pin Descriptions

Recommended Application Circuits

Figure 2 shows application block diagrams for the ZHX1810 transceiver.

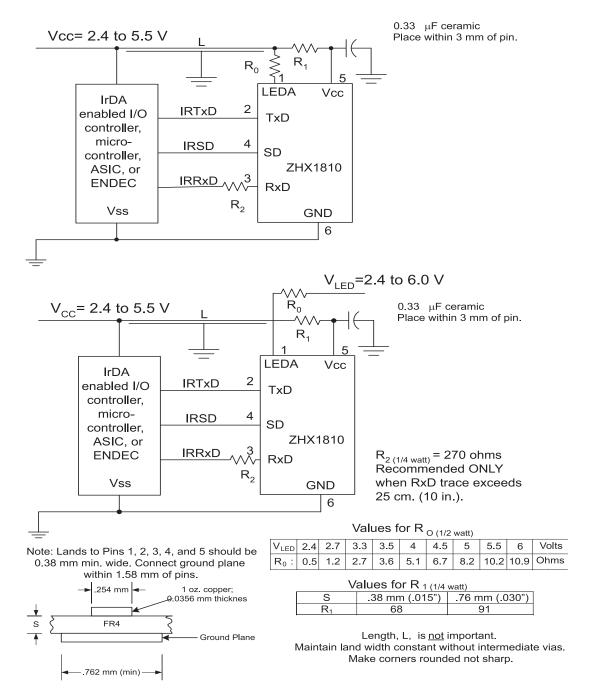


Figure 2. Application Block Diagrams

Electrical and Timing Specifications

Table 2 through Table 4 present the electrical and timing specifications for the ZHX1810 transceiver.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Unit	Comment
Supply Voltage	V_{cc}	-0.3	6.0	V	V _{cc} , GND
Input Voltage	V_{IN}	GND-0.3	V _{cc} +0.3	V	TxD, SD
Output (External) Voltage	V_{OUT}	GND-0.3	V _{cc} +0.3	V	RxD
LED Current	I _{LED}		700	mA	20% duty cycle, Ta=25 °C, t _{ON} ≤90 μS
Storage Temperature	T_{ST}	-40	100	°C	
Solder Temperature	T_{SOL}		240	°C	
ESD			1,000	V	

Table 3. Recommended Operating Conditions

Parameter	Symbol	Minimum	Maximum	Unit
Supply Voltage	V_{cc}	2.4	5.5	V
LED Voltage	V_{LED}	2.4	6.0	V
Ambient Operating Temperature	T _{OP}	-30	85	°C

Table 4. Electrical Characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Unit	Remarks	
High-Level Input Voltage	V_{IH}		0.6 V _{cc}		V _{cc} +0.5	V	TXD, SD	
Low-Level Input Voltage	V_{IL}		-0.5		0.2 V _{cc}	V	TXD, SD	
High-Level Output Voltage	V_{OH}		2.2			V	RxD	
Low-Level Output Voltage	V_{OL}				0.4	V	RxD	
Transmitter Current	I_{LED}			300		mA		
Listening Current	I_{CC}			90	150	μΑ		
Note: Unless otherwise noted: V_{cc} =3.3 V, GND= 0 V, T_A = 25 °C								

Table 4. Electrical Characteristics (Continued)

Parameter	Symbol	Condition	Min	Typical	Max	Unit	Remarks
Receive Current	I_{CC}			90	150	μΑ	
Standby Current	I _{STB}				1	μΑ	SD=V _{cc} , TxD=0 V
Optical Rise/Fall Time	t _{Rr} , t _{Rf}			100		nS	
RxD Pulse Width	t _{PWA}	SIR=115.2 Kbps	1.1	1.6	3.9	μS	
Power Shutdown Time	T_{SD}				1	μS	
Startup Time	T_{STU}				200	μS	
Receiver Latency	T_{L}			100		μs	
Trans. Radiant Intensity	l _E	I _{LED} =260 mA	40		100	mW/sr	θh, θv <u><(+</u> 15°)
Min. Threshold Irradiance	E _{emin}	V _{cc} =3.3 V		2	3	μ W/cm ²	θh, θv <u><(+</u> 15°)
Angle of Half Intensity	θ			20		0	Hor. and Vert.
Light Pulse Rise, Fall Time	t _{or} , t _{of}			40		nS	
Optical Pulse Width	t _{OPW}			20		μS	TxD="H"
Optical Overshoot	t _{OPO}				3	%	
Peak Wavelength	$\lambda_{ m P}$			870		nm	
Note: Unless otherwise noted:	V _{cc} =3.3 V,	GND= 0 V, T _A = 2	25 °C	·	•	·	•

Figure 3 through Figure 6 show various electrical characteristics.

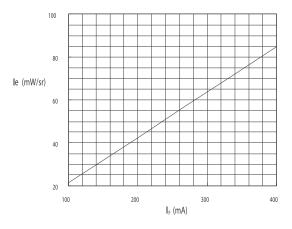


Figure 3. I_F -le Characteristics (0°)

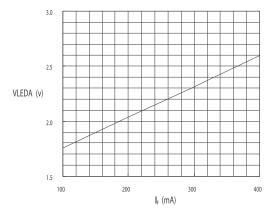


Figure 4. I_F -LEDA Characteristics (0°)

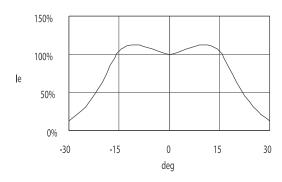


Figure 5. Directive Characteristics (Emitting)

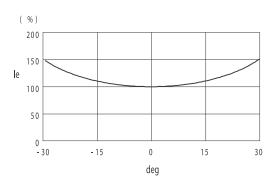


Figure 6. Directive Characteristics (Receiving)

Mechanical Drawings

The mechanical drawing for the transceiver is shown in Figure 7.

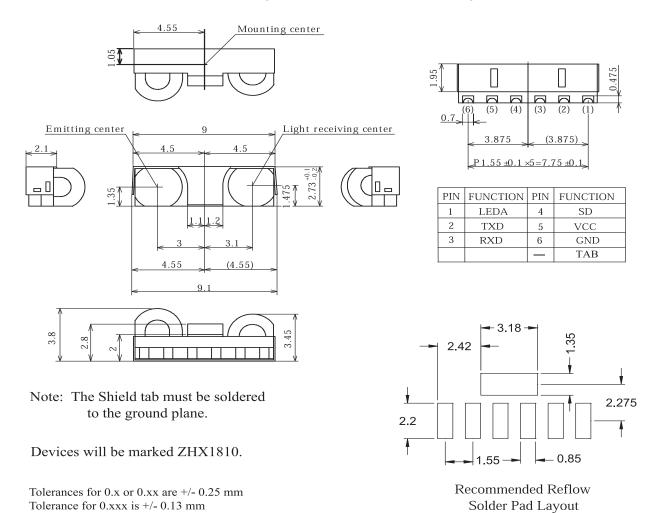


Figure 7. ZHX1810 Mechanical Drawing

PS009320-0910 Mechanical Drawings

Soldering and Cleaning Recommendations

Follow these recommendations to maintain the performance of the ZHX1810 transceiver.

Reflow Soldering

Note: Please refer to Zilog's Lead-Free Solder Reflow: Packaging Application Note (AN0161, http://www.zilog.com/docstools.asp) for more information about the solder profile.

Manual Soldering

- Use 63/37 or silver solder.
- Use a soldering iron of 25 W or smaller. Adjust the temperature of the soldering iron below 300 °C.
- Finish soldering within 3 seconds.
- Handle only after ZHX1810 has cooled off.

Cleaning (Preferred)

Perform cleaning after soldering under the following conditions:

- Cleaning agent: Alcohol
- Temperature and time: 30 seconds below 50 °C or 3 minutes below 30 °C
- Ultrasonic cleaning: Below 20 W

Additional cleaning methods can also be used. Please see the www.zilog.com documentation pages for details.

Packing, Storage, and Baking Recommendations

Follow these recommendations to maintain the performance of the ZHX1810 transceiver.

Storage

To avoid moisture absorption, ZHX1810 reels must remain in the original, unopened moisture-proof packing. Parts must be soldered within 72 hours after unpacking. Reels that have been unpacked, but will not be soldered within 72 hours, must be stored in a desiccator.

Baking

Parts that have been stored over 12 months or unpacked over 72 hours must be baked under the following guidelines.

Reels

60 °C for 48 hours or more

Loose Parts

- 100 °C for 4 hours or more
 - or
- 125 °C for 2 hours or more or
- 150 °C for 1 hour or more

Moisture-Proof Packing

In order to avoid moisture absorption during transportation and storage, ZHX1810 reels are packed in aluminum envelopes (see Figure 8) that contain a desiccant with a humidity indicator. While this packaging is an impediment to moisture absorption, it is by no means absolute, and no warranty is implied. The user should store these parts in a controlled environment to prevent moisture entry. Please read the label on the aluminum bag for indicator instructions.

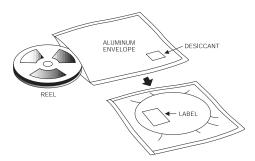
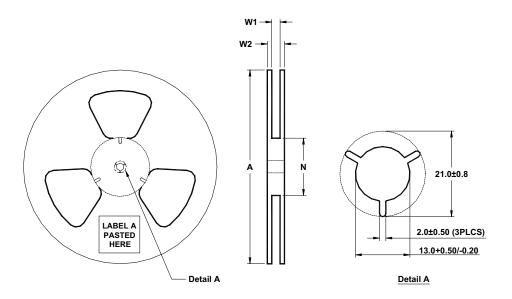



Figure 8. ZHX1810 Packaging

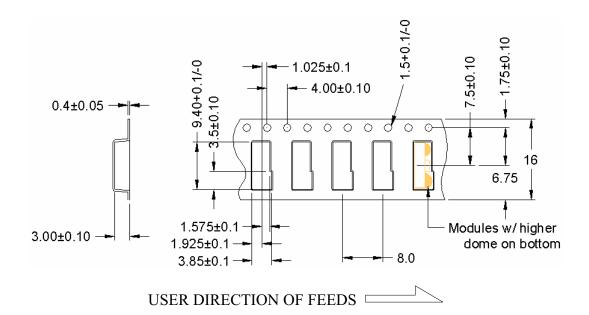
13

Taping Specifications

Figure 9 shows the reel dimensions for the ZHX1810. Figure 10 shows the tape dimensions and configuration for the ZHX1810.

Note: 1. Material: Anti-Static Polysterene.

2. Surface Resistivity: 10E8 to 10E10 Ohms/SQ.


3. Unless specified, Tol : \pm 0.1

DEVICE	Carrier Tape	Α	W1	W2 (max)	N (Hub Dia.)	Reel Qty
	Size	± 0.25	+2/-0			
ZHX1810	16 mm	330	16.4	21.6	80 mm	2,000

Figure 9. ZHX1810 Reel Dimensions (Unit: mm)

PS009320-0910 Taping Specifications

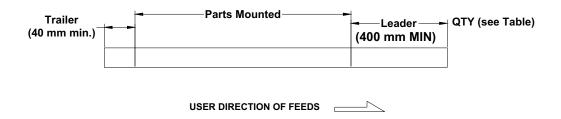


Figure 10. ZHX1810 Tape Dimensions and Configuration (Unit: mm)

PS009320-0910 **Taping Specifications**

Ordering Information

To order ZHX1810, use Zilog part number ZHX1810MV115THTR.

Notes:

All Zilog devices are available lead free. Since 2005, ZHX1810 has been manufactured with lead-free components. When ordering from your Zilog distributor, there is a possibility that the parts containing lead might be shipped. To ensure that you receive lead-free devices, please use part number ZHX1810MV115TH2090TR. These devices meet or exceed RoHS Directive 2002/95/EC. For additional information, please see the Zilog Quality and Reliability web page at http://www.zilog.com/quality/index.asp.

PS009320-0910 Ordering Information

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at http://support.zilog.com.

PS009320-0910 Customer Support