imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

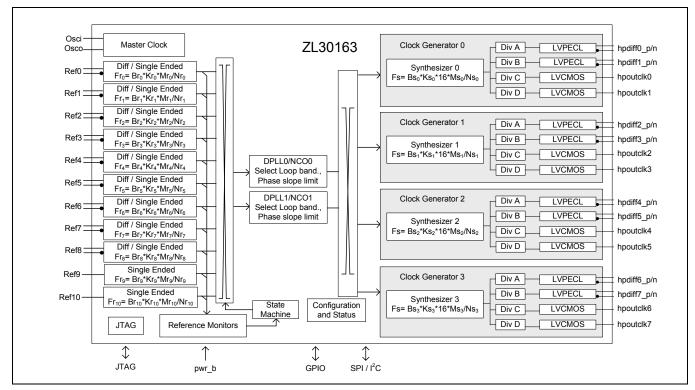
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Short Form Data Sheet

Features

- Fully compliant SEC (G.813) and EEC (G.8262) flexible rate conversion digital phase locked loop (DPLL)
- Two programmable DPLLs/Numerically Controlled Oscillators (NCOs) synchronize to any clock rate from 1 Hz to 750 MHz
- Four programmable synthesizers generate any clock rate from 1 Hz to 750 MHz with maximum jitter below 0.62 ps RMS
- Flexible two-stage architecture translates between arbitrary data rates, line coding rates and FEC rates
- DPLLs filter jitter from 0.1 mHz up to 1 kHz
- Automatic hitless reference switching and digital holdover on reference fail
- Nine input references configurable as single ended or differential and two single ended input references
- Any input reference can be fed with sync (frame pulse) or clock


ZL30163GDG2 144 Pin LBGA Trays

Pb Free Tin/Silver/Copper -40°C to +85°C Package Size: 13 x 13 mm

- Programmable DPLLs can synchronize to sync pulse and sync pulse/clock pair
- · Eight LVPECL outputs and eight LVCMOS outputs
- Operates from a single crystal resonator or clock
 oscillator
- Field programmable via the SPI/I²C interface

Applications

- SyncE/SONET/SDH Timing Cards
- Synchronous Ethernet, 10 GBASE-R and 10 GBASE-W
- SONET/SDH, Fibre Channel, XAUI

Figure 1 - Functional Block Diagram

ZL30163

1.0 Pin Diagram

TOP VIEW

Λ	1	2	3	4	5	6	7	8	9	10	11	12
A	 hpdiff0_p	O VDD0	O NC	O VDD1	Osco_1V8	O VDD2	Osco_3V3	Osci_3V3	O VDD3	O NC	O VDD4	hpdiff2_p
В	 hpdiff0_n	⊖ vss		⊖ vss	Osci_1V8	⊖ vss) XOin	O VCORE0	⊖ vss		O VSS	D hpdiff2_n
С	 hpdiff1_p	Dhpdiff1_n	VDD5	VSS	VSS	O VCORE1	VSS	O VSS	O VSS	O VDD6	O hpdiff3_n	hpdiff3_p
D	O VDD7	O vss	hpoutclk0	hpoutclk1	O vss	O vss	O VSS	O VSS	hpoutclk3	hpoutclk2	O VSS	O VDD8
E	NC	UDD9	O VDD10	VSS	⊖ vss	⊖ vss	O VSS	O vss	O VSS	O VDD11	O IC1	O NC
F	O NC	⊖ trst_b	hpoutclk4	hpoutclk5	O VSS	⊖ vss	⊖ vss	O vss	hpoutclk6	hpoutclk7	b	O NC
G	tdi	⊖ tdo) tms	O VSS	O VSS	⊖ vss	O VSS	O VSS	O VDD12	gpio1	 gpio0	O IC2
Н	 hpdiff4_p	O hpdiff4_n	C tck	O VSS	⊖ vss	⊖ vss	⊖ vss	O VSS	O VCORE2	O gpio2	hpdiff6_n	hpdiff6_p
J	O VDD13	⊖ vss	O gpio4	⊖ vss	O VSS	⊖ vss	⊖ vss	⊖ vss	O VCORE3	O gpio3	O VSS	O VDD14
к	 hpdiff5_p	Dhpdiff5_n	O gpio5	O gpio6	⊖ vss	O VCORE4	Cs_b_asel0	Sck_scl	⊖ si_sda	So_asel1	hpdiff7_n	hpdiff7_p
L	O VDD15	O VSS	Cref1_p	O ref1_n	C ref3_p	C ref3_n	Cref5_p	Cref5_n	Cref6_n	Cref8_p	Cref8_n	Cref10
м		O vss	Cref0_p	Cref0_n	C ref2_p	C ref2_n	C ref4_p	O ref4_n	C ref6_p	Cref7_p	oref7_n	ref9

- A1 corner is identified by metallized markings.

Figure 2 - Package Description

2.0 Pin Description

All device inputs and outputs are LVCMOS unless it is specifically stated to be differential. For the I/O column, there are digital inputs (I), digital outputs (O), analog inputs (A-I) and analog outputs (A-O).

Ball #	Name	I/O	Description					
Input Ref	Input Reference							
M3 M4 L3 L4 M5 M6 L5 L6 M7 M8 L7 L8 M9 L9 M10 M11 L10 L11	ref0_p ref0_n ref1_p ref1_n ref2_p ref2_n ref3_p ref3_n ref4_p ref4_n ref5_p ref5_n ref5_n ref6_n ref6_n ref7_p ref7_n ref8_p ref8_n	Ι	Input References 0 to 8. Input reference sources used for synchronization. The positive and negative pair of these inputs accepts a differential input signal. The refx_p input terminal accepts a CMOS input reference. These inputs can be used as an external feedback input. Maximum frequency limit on single ended inputs is 177.5 MHz, and 750 MHz on differential inputs.					
M12 L12	ref9 ref10	I	Input References 9 and 10. Input reference sources used for synchronization. These inputs are the same as inputs 0 to 8, but only single ended. These inputs can be used as an external feedback input. Maximum frequency limit is 177.5 MHz.					
Output C	locks							
D3 D4 D10 D9 F3 F4 F9 F10	hpoutclk0 hpoutclk1 hpoutclk2 hpoutclk3 hpoutclk4 hpoutclk5 hpoutclk6 hpoutclk7	0	High Performance Output Clocks 0 to 7. These outputs can be configured to provide any one of the single ended high performance clock outputs.Maximum frequency limit on single ended LVCMOS outputs is 177.5 MHz.					

Table 1 - Pin Description

Ball #	Name	I/O	Description
A1 B1 C1 C2 A12 B12 C12 C11 H1 H2 K1 K2 H12 H11 K12 K11	hpdiff0_p hpdiff0_n hpdiff1_p hpdiff1_n hpdiff2_p hpdiff2_n hpdiff3_n hpdiff3_n hpdiff4_p hpdiff4_n hpdiff5_p hpdiff5_n hpdiff6_p hpdiff6_n hpdiff7_p hpdiff7_n	0	 High Performance Differential Output Clocks 0 to 7 (LVPECL). These outputs can be configured to provide any one of the available high performance differential output clocks. Maximum frequency limit on differential outputs is 750 MHz.
Control a	nd Status		
F11	pwr_b	Ι	Power-on Reset. A logic low at this input resets the device. To ensure proper operation, the device must be reset after power-up. The pwr_b pin should be held low for 2 ms after all power supplies are stabilized. This pin is internally pulled-up to V_{DD} . User can access device registers either 125 ms after pwr_b goes high, or after bit 7 in register at address 0x000 goes high (which can be determined by polling).

Ball #	Name	I/O	Description	
G11 G10 H10 J10 J3 K3 K4	gpio0 gpio1 gpio2 gpio3 gpio4 gpio5 gpio6	1/0	General Purpose Input and Output pins. These are general purpose I/O pins. Example GPIO functions include: • DPLL lock indicators • DPLL holdover indicators • Reference fail indicators • Reference select control or monitor • Differential output clock enable • High performance LVCMOS outputs enable • Host Interrupt Output to flag status changes All GPIO functions are listed in 5.2, "GPIO Configuration". Pins 5:0 are internally pulled down to GND and pin 6 is internally pulled up to V _{DD} . Unused GPIO pins can be left unconnected. After power on reset, device GPIO[0,1,3] configure basic device function. GPIO3 sets I ² C or SPI control mode, GPIO[1,0] sets master clock rate selection. The GPIO[0,1,3] pins must be either pulled low or high with an external 1 k Ω resistor for their assigned functions at reset; or they must be driven low or high for 125 ms after reset, and released and then used for normal GPIO functions. The GPIO4 pin must be either pulled low with an external 1 k Ω resistor; or it must be driven low for 125 ms after reset, and then released and used for normal GPIO functions.	
Host Inter K8	face sck_scl	I/O	GPIO[5,6] are not used during power up. Clock for Serial Interface. Provides clock for serial micro-port interface. This pin is also the serial clock line (SCL) when the host interface is configured for I^2C mode. As an input this pin is internally pulled up to V _{DD} .	
K9	si_sda	I/O	Serial Interface Input. The input serial data stream holds the access command, the address and the write data bits. This pin is also the serial data line (SDA) when the host interface is configured for I^2C mode. This pin is internally pulled up to V_{DD} .	
K10	so_asel1	I/O	Serial Interface Output. As an output, the serial stream holds the read data bits. This pin is also a part of the I^2C address select when the host interface is configured for I^2C mode.	
K7	cs_b_asel0	Ι	Chip Select for Serial Interface. As serial interface chip select, this is an active low signal. This pin is also a part of the I^2C address select when the host interface is configured for I^2C mode. This pin is internally pulled up to V_{DD} .	
JTAG (IEE	E 1149.1) and Test			
G12	IC2	I	Internal Connection. Connect this pin to GND.	
E11	IC1	A-I/O	Internal Connection. Leave unconnected.	

Ball #	Name	I/O	Description
G2	tdo	0	Test Serial Data Out. JTAG serial data is output on this pin on the falling edge of tck. This pin is held in high impedance state when JTAG scan is not enabled.
G1	tdi	I	Test Serial Data In. JTAG serial test instructions and data are shifted in on this pin. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be left unconnected.
F2	trst_b	I	Test Reset. Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be held low or pulsed low on power-up to ensure that the device is in the normal functional state. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be connected to GND.
H3	tck	I	Test Clock. Provides the clock for the JTAG test logic. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be connected to GND.
G3	tms	I	Test Mode Select. JTAG signal that controls the state transitions of the TAP controller. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be left unconnected.
Master Cl Note: The o oscilla		re preferre	ed to connect a crystal to the device. The XOin pin is preferred to connect a crystal

A7	osco_3V3	A-0	3.3V Crystal Master Clock Output. For the alternative connection method for a crystal, the crystal is connected from this pin to osci_3V3 . Not suitable for driving other devices. For clock oscillator operation or the use of a crystal between osci_1V8 and osco_1V8 , this pin should be left unconnected.
A8	osci_3V3	Ι	3.3V Crystal Master Clock Input. For the alternative connection method for a crystal, the crystal is connected from this pin to osco_3V3 . For clock oscillator operation or the use of a crystal between osci_1V8 and osco_1V8 , this pin should be grounded.
A5	osco_1V8	A-0	1.8V Crystal Master Clock Output. For the primary connection method for a crystal, the crystal is connected from this pin to osci_1V8 . Not suitable for driving other devices. For clock oscillator operation or the use of a crystal between osci_3V3 and osco_3V3 , this pin should be left unconnected.
B5	osci_1V8	I	1.8V Crystal Master Clock Input. For the primary connection method for a crystal, the crystal is connected from this pin to osco_1V8 . For clock oscillator operation or the use of a crystal between osci_3V3 and osco_3V3 , this pin should be grounded.
В7	XOin	I	XO Master Clock Output. For clock oscillator operation, this pin is connected to the output of the oscillator. For crystal operation using either method, this pin should be grounded.

Power and Ground

Ball #	Name	I/O	Description
B8 C6 H9 J9 K6 M1	V _{CORE0} V _{CORE1} V _{CORE2} V _{CORE3} V _{CORE4} V _{CORE5}		Positive Supply Voltage. +1.8V _{DC} nominal. These pins should not be connected together on the board. Please refer to ZLAN-327 for recommendations
A2 A4 A6 A9 A11 C3 C10 D1 D12 E2 E3 E10 G9 J1 J12 L1	$\begin{array}{c} V_{DD0} \\ V_{DD1} \\ V_{DD2} \\ V_{DD3} \\ V_{DD4} \\ V_{DD5} \\ V_{DD6} \\ V_{DD7} \\ V_{DD8} \\ V_{DD9} \\ V_{DD10} \\ V_{DD11} \\ V_{DD12} \\ V_{DD13} \\ V_{DD14} \\ V_{DD15} \end{array}$		Positive Supply Voltage. +3.3V _{DC} nominal. These pins should not be connected together on the board. Please refer to ZLAN-327 for recommendations

Table 1 - Pin I	Description	(continued)
-----------------	-------------	-------------

Ball #	Name	I/O	Description
B2	V _{SS}		Ground. 0 Volts.
B4			
B6			
B9			
B11			
C4			
C5			
C7			
C8			
C9			
D2			
D11			
E4			
E9 G4			
H4			
H5			
H6			
H7			
H8			
J2			
J4			
J5			
J6			
J7			
J8			
J11			
K5			
L2			
M2			
D5			
D6			
D7			
D8 E5			
E6			
E7			
E8			
E8 F5			
F6			
F7			
F8			
G5			
G6			
F8 G5 G6 G7			
G8			

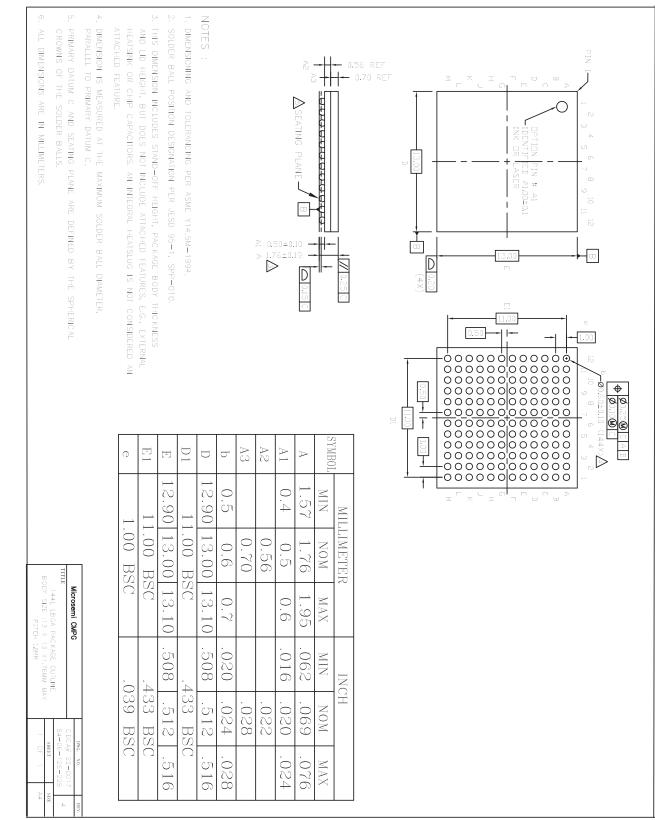

Ball #	Name	I/O	Description
A3 A10 B3 B10 E1 E12 F1 F12	NC		No Connect. These pins should be left open.

Table 1 - Pin	Description	(continued)
---------------	-------------	-------------

ZL30163

3.0 Mechanical Drawing

Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively "Microsemi") is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi.

This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi's conditions of sale which are available on request.

For more information about all Microsemi products visit our website at www.microsemi.com/timing-and-synchronization

TECHNICAL DOCUMENTATION - NOT FOR RESALE

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.