imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

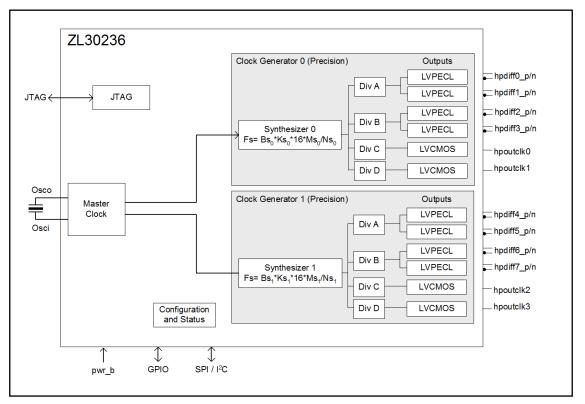
ZL30236 Dual Channel Universal Clock Generator

Data Sheet

March 2015

Features

- Generates clock signals at power-up per user defined custom OTP (One Time Programmable) configuration
- Dynamically configurable via SPI/I2C interface and volatile configuration registers
- Two independently programmable clock generators output any clock rate from 1 kHz to 750 MHz
- Precision clock generators output clocks with jitter below 0.7 ps RMS for 10 G PHYs
- Operates from a single crystal resonator, clock oscillator or voltage controlled oscillator
- Supports programmable frequency offsets for clock margining; or for use as a digitally controlled oscillator
- Eight LVPECL outputs; max rate 750 MHz
- Four LVCMOS outputs; max rate 177.5 MHz


Ordering Information

ZL30236GGG2 100 Pin LBGA^{*} 11mmx11mm Trays

*Pb Free Tin/Silver/Copper -40°C to +85°C

Applications

- Timing for NPUs, FPGAs, Ethernet switches and PCIe switches
- Timing for 10 Gigabit CDRs, Rapid-IO, PCIe, Serial MII, Star Fabric, Fibre Channel, XAUI
- Processor clock, Processor bus clock, SDRAM clock, DDR clock

Table of Contents

2.0 Pin Description.93.0 Application Example134.0 Functional Description144.1 Frequency Synthesis Engine.144.2 Dividers and Skew Management.144.3 Output Multiplexer154.4 Output Drivers16
4.0 Functional Description144.1 Frequency Synthesis Engine144.2 Dividers and Skew Management144.3 Output Multiplexer154.4 Output Drivers16
4.1 Frequency Synthesis Engine.144.2 Dividers and Skew Management.144.3 Output Multiplexer154.4 Output Drivers16
4.1 Frequency Synthesis Engine.144.2 Dividers and Skew Management.144.3 Output Multiplexer154.4 Output Drivers16
4.2 Dividers and Skew Management.144.3 Output Multiplexer154.4 Output Drivers16
4.4 Output Drivers
4.5 Master Clask Interfees
4.5 Master Clock Interface
4.6 Clock Oscillator and Crystal Circuit
4.7 Power Up/Down Sequence
4.8 Power Supply Filtering
4.9 Power on Reset and Initialization Circuit
4.10 Ultra Low Jitter Synthesizer Filter Components and Recommended Layout
5.0 Configuration and Control
5.1 Configuration Registers
5.1.1 Default Configuration
5.1.2 Custom OTP Configuration
5.1.3 SPI/I2C Configuration
5.2 Output Multiplexer Configuration and Programmability
5.3 Synthesizers Configuration and Programmability
5.4 Output Dividers and Skew Management Configuration and Programmability
5.5 Output Drivers configuration and Programmability
5.6 GPIO Configuration and Programmability
6.0 Host Interface
6.1 Serial Peripheral Interface
6.1.1 Least Significant Bit (LSB) First Transmission Mode
6.1.2 Most Significant Bit (MSB) First Transmission Mode
6.1.3 SPI Burst Mode Operation
6.1.4 I2C Interface
7.0 Register Map
8.0 Detailed Register Map
9.0 AC and DC Electrical Characteristics
10.0 Performance Characterization
10.1 Output Clocks RMS Jitter Generation
10.2 Output Clocks Cycle-to-Cycle Jitter Generation
11.0 Thermal Characteristics
12.0 Mechanical Drawing
13.0 Package Markings
13.1 100-pin BGA. Package Top Mark Format

List of Tables

Table 1 - Pin Description)
Table 2 - Master Clock Frequency Selection 19)
Table 3 - Serial Interface Selection 25	5
Table 4 - Register Map 3'	l
Table 5 - Serial Peripheral Interface Timing. 74	ŧ.
Table 6 - I2C Serial Microport Timing 76	3
Table 7 - Jitter Generation Specifications - HPDIFF Outputs 77	7
Table 8 - Jitter Generation Specifications - HPOUT Outputs. 77	7
Table 9 - Jitter Generation Specifications - HPDIFF Outputs 77	7
Table 10 - Thermal Data 78	3
Table 11 - Package Marking Legend 80)

List of Figures

Figure 1 - Functional Block Diagram	. 1
Figure 2 - Package Description	. 8
Figure 3 - Application Diagram.	13
Figure 4 - Output Clock Muxing Configuration.	15
Figure 5 - Terminating LVPECL Outputs	16
Figure 6 - Terminating AC coupled LVPECL Outputs	17
Figure 7 - Terminating LVCMOS Outputs	17
Figure 8 - Clock Oscillator Circuit.	18
Figure 9 - Typical Power-Up Reset and Configuration Circuit	20
Figure 10 - APLL Filter Component Values	
Figure 11 - Recommended Layout for Loop Filters	21
Figure 12 - Serial Interface Configuration	25
Figure 13 - Serial Peripheral Interface Functional Waveforms - LSB First Mode	26
Figure 14 - Serial Peripheral Interface Functional Waveforms - MSB First Mode	26
Figure 15 - Example of a Burst Mode Operation	27
Figure 16 - I2C Data Write Protocol.	27
Figure 17 - I2C Data Read Protocol.	
Figure 18 - I2C 7-bit Slave Address	28
Figure 19 - I2C Data Write Burst Mode	28
Figure 20 - I2C Data Read Burst Mode	
Figure 21 - Accessing Multi-byte Register Values	29
Figure 22 - Timing Parameter Measurement Voltage Levels.	72
Figure 23 - Output Timing Referenced To hpclkout0/clkout0	73
Figure 24 - Serial Peripheral Interface Timing - LSB First Mode	74
Figure 25 - Serial Peripheral Interface Timing - MSB First Mode	75
Figure 26 - I2C Serial Microport Timing	76
Figure 27 - Non-customized Device Top Mark.	80
Figure 28 - Custom Factory Programmed Device Top Mark	80

Change Summary

Below are the changes from the June 2012 issue to the March 2015 issue

Page	Item	Change				
1	Ordering information	Removed ZL30236GGG (Leaded version) from the ordering information				
22	Custom OTP Configuration	Removed reference to ZLAN-301				
80	13.0, "Package Markings"	Added section 13 for package markings				

Below are the changes from the January 2012 issue to the June 2012 issue

Page	Item	Change					
73	Output to Output Alignment	Added min/max values for t _{OUT2OUTD}					
33	Register 0xC6 - Chip_Revision_2	Updated chip_revision_2 register 0xC6 = 0x03					
and							
59							

Below are the changes from the December 2011 issue to the January 2012 issue.

Page	Item	Change					
29	Procedure for writing registers	Added a new procedure for updating registers					
30	Time between two write accesses to the same register	Changed 200ms to 8ms and added 0x0D to registers not requiring wait time.					
30	Reading from Sticky read Registers	Updated Sticky read procedure					
34	Register 0x00 - id_reg	Updated Chip revision bits					
31	Register 0x0D - Sticky_r_lock	Updated bit description					
33, 59	Register 0xC6	Added chip_revision_2 register					

Below are the changes from the July 2011 issue to the December 2011 issue.

Page	Item	Change					
30	Reading from Sticky read Registers	Updated Sticky read procedure					
34	Register 0x00 - id_reg	updated ready indication bit description					
31,	Register 0x0D	Added register 0x0D					
35							
67	Register 0xF7	Updated spurs_suppression register description					

Below are the changes from the June 2011 issue to the July 2011 issue.

Page	ltem Change						
1	Feature	OTP feature is added					
1, 9, 14, 16, 73	All items related the maximum rate of differential output clocks	The maximum rate is updated from 720 MHz to 750MHz					
9, 10, 19, 20, 25, 34	All items related waiting time after pwr_b pin goes high during reset procedure	Waiting time after pwr_b pin goes high is changed from 30 ms to 50 ms					
8,9	Pin diagram Figure-2 and Pin description Table-1	Names for pin J1, J2, J9, J10,K1, K2, K9, and K10 are changed from 'IC' to 'NC'					
14	Section 4.0	Updated for OTP feature					
22	Section 5.0	• Section 5.1, 5.1.1, 5.1.2, 5.1.3 and 5.1.4 are updated for three configuration methods:Default configuration, OTP configuration, and SPI/I2C configuration					
		• Original section 5.1.1, 5.1.2, 5.1.3, and 5.1.4 are changed to section 5.2, 5.3, 5.4, and 5.5					
29	Section 7.0 For page_register at address 0x7F, there is n time required between two write accesses.						
31	Table-4	Table description is updated for OTP feature					
		Register 0x01, 0x0E and 0x0F are added					
		 Heading of first column is changed from "Page_Addr" to "Reg_Addr" 					
34	Section 8.0	Detailed description for new register 0x01, 0x0E, and 0x0F are added					
45	Detailed Register Map	"Page_Address" is changed to "Register_Address" for registers which addresses are from 0x80 to 0x91					
46	Register synth0_post_div_C	Bit[15:0]: note added for odd post divider					
48	Register synth0_post_div_D	Bit[15:0]: note added for odd post divider					
51	Register synth1_post_div_C	Bit[15:0]: note added for odd post divider					
53	Register synth1_post_div_D Bit[15:0]: note added for odd post divider						
69	DC Electrical Characteristics -Power Core	 "Power for Each Synthesis Engine" is changed to "Current for Each Synthesis Engine" "PSYN" is changed to "ISYN" 					
71	DC Electrical Characteristics - High Performance Outputs	Note added for differential output voltage when differential frequency is higher than 720MHz					
69	DC Electrical Characteristics	All "AV _{DD-IO} " symbols are replaced with "AV _{DD} "					
77	Output Clocks Jitter Generation Jitter measurement filter for 77.76MHz is changed from "12kHz-5MHz" to "12kHz-20MHz"						

Page	Item	Change			
78	Section 11.0	Note added for Tjmax			

Below are the changes from the January 2011 issue to the June 2011 issue.

Page	e Item Change						
1	Ordering Information	Corrected package description in ordering information to LBGA.					
77	Section 10.1	The section was renamed to "Output Clocks RMS Jitter Generation"					
77	Section 10.2 Table 9 was created for cycle-to-cycle jitt						
77	77 Section 12.0 Replaced drawing to reflect correct pa description.						

Below are the changes from the November 2010 issue to the January 2011 issue.

Page	Item	Change					
6	Figure 2	Names of pin B5, B6, H5, and H6 are changed from AVcore to Vcore					
10	Table 1	Names of pin B5, B6, H5, and H6 are changed from AVcore to Vcore, and they are merged to the same entry with pin D5, G5, and G6. Layout application note is referred					
23	6.1 Serial Peripheral Interface	SPI burst mode operation description is added					
25	Figure 15	Example of a Burst Mode Operation is added					
62	Table - Recommended Operating Conditions	Row 2, AVcore is removed from the "Sym" column					
66	Table - AC Electrical Characteristics* - Outputs	Correct wrong row numbers					
66	Table - AC Electrical Characteristics* - Outputs	Row 2, clock duty cycle is changed from "43%-57%" to "45%-55%"					
66	Table - AC Electrical Characteristics* - Outputs	* Row 3, note "From 0.2AVDD-IO to 0.8AVDD-IO" is removed					

1.0 Pin Diagram

	1	2	3	4	5	6	7	8	9	10
A	hpdiff3_p	avss	filter1	avss	Osco	osci	avss	filter2	avss	hpdiff7_p
В	 hpdiff3_n	avss	filter1_ref	avdd	vcore	vcore	O pwr_b	filter2_ref	avss	hpdiff7_n
С	hpdiff2_p	hpdiff2_n	avss	O gpio5) at	VSS	O gpio0	avss	hpdiff6_n	hpdiff6_p
D	 hpdiff1_p	 hpdiff1_n	O avdd	C test_en	Vcore	Ovdd_io	O gpio11	avdd	hpdiff5_n	 hpdiff5_p
E	hpdiff0_p	hpdiff0_n	avdd	O gpio7	Vss	VSS	O gpio8	avdd	hpdiff4_n	hpdiff4_p
F) gpio6	avdd	O gpio4	So_asel1	VSS	VSS	O gpio1	O gpio3	avdd	Sck_scl
G	hpoutclk1	hpoutclk0	gpio9	⊖ si_sda	vcore	vcore	O gpio2	Cs_b_asel0	hpoutclk2	hpoutclk3
н	Vdd_io	avss	avss	⊖ tck	vcore	vcore	O gpio10	avss	avss	O vdd_io
J	O NC	NC	C tdo) IC) tms	O NC	O NC
к	NC	NC	C trst_b					tdi	O NC	O NC
Λ	A 1 corpor io	identified b	v metallized	morkingo						

1 - A1 corner is identified by metallized markings.

2.0 Pin Description

All device inputs and output are LVCMOS unless it was specifically stated to be differential.

Ball #	Name	I/O	Description
Output Cl	ocks	I	
G2 G1 G9 G10	hpoutclk0 hpoutclk1 hpoutclk2 hpoutclk3	0	High Performance Output Clock 0 to 3. This output can be configured to provide any one of the single ended high performance clock outputs. Maximum frequency limit on single ended LVCMOS outputs is 177.5 MHz
E1 E2 D1 D2 C1 C2 A1 E10 E9 D10 E9 D10 D9 C10 C9 A10 B10	hpdiff0_p hpdiff0_n hpdiff1_p hpdiff1_n hpdiff2_p hpdiff3_p hpdiff3_n hpdiff4_p hpdiff4_n hpdiff5_p hpdiff5_n hpdiff5_n hpdiff6_p hpdiff6_n hpdiff7_p hpdiff7_n	0	High Performance Differential Output Clock 0 to 7 (LVPECL). This output can be configured to provide any one of the available high performance differential output clocks. Maximum frequency limit on differential outputs is 750 MHz
Control a	nd Status		
Β7	pwr_b	I	Power-on Reset. A logic low at this input resets the device. To ensure proper operation, the device must be reset after power-up. The pwr_b pin should be held low for 2 ms. Following a reset, the input reference source and output clocks are phase aligned. This pin is internally pulled-up to V_{DD} . User can access device registers either 50 ms after pwr_b goes high, or after bit 7 in register at address 0x00 goes high which can be determined by polling the register at address 0x00.

Table 1 - Pin Description

Ball #	Name	I/O	Description
C7 F7 G7 F8 F3 C4 F1 E4 E7 G3 H7 D7	gpio0 gpio1 gpio2 gpio3 gpio4 gpio5 gpio6 gpio7 gpio8 gpio9 gpio10 gpio11	I/O	General Purpose Input and Output pins. These are general purpose pins managed by the internal processor based on device configuration. Other status and control pins could be muxed to become part of the available GPIO pins. Recommended usage of GPIO include: Differential output clock enable (per output or as a bank of 2 or 4 outputs)High performance LVCMOS outputs enable Microport interface protocol I2C or SPIMaster Clock frequency ratePins 5:0 are internally pulled down to GND and pins 11:6 are internally pulled up to V_{DD}.If not used GPIO can be kept unconnected.After power on reset, device GPIOs configure some of device basic functions, GPIO[3] set I2C or SPI control mode, GPIO[1,0] set master clock rate selection. The GPIO[0,1,3] pins must be either pulled low or high with an external 1 KΩ resistor as needed for their assigned functions at reset; or they must be driven low or high for 50 ms after reset, and released and used for normal GPIO functions.The GPIO[4,5] pins must be either pulled low with external 1 KΩ resistors; or they must be driven low for 50 ms after reset, and then released and used for normal GPIO functions.
Host Inte	rface		
F10	sck_scl	I/O	Clock for Serial Interface. Provides clock for serial micro-port interface. This pin is also the serial clock line (SCL) when the host interface is configured for I2C mode. As an input this pin is internally pulled up to V_{DD} .
G4	si_sda	I/O	Serial Interface Input. Serial interface input stream. The serial data stream holds the access command, the address and the write data bits. This pin is also the serial data line (SDA) when host interface is configured for I2C mode. This pin is internally pulled up to V_{DD} .
F4	so_asel1	I/O	Serial Interface Output. Serial interface output stream. As an output the serial stream holds the read data bits. This pin is also the I2C address select when host interface is configured for I2C mode.
G8	cs_b_asel0	Ι	Chip Select for Serial Interface. Serial interface chip select, this is an active low signal. This pin is also the I2C address select when host interface is configured for I2C mode. This pin is internally pulled up to V_{DD} .

Table 1 - Pin Description (continued)

Ball #	Name	I/O	Description
APLL Loo	p Filter		·
A3	filter1	A	External Analog PLL1 Loop Filter terminal.
B3	filter1_ref	Α	Analog PLL1 External Loop Filter Reference.
A8	filter2	Α	External Analog PLL2 Loop Filter terminal.
B8	filter2_ref	Α	Analog PLL2 External Loop Filter Reference.
JTAG (IEE	E 1149.1) and Test	•	
D4	test_en	Ι	Test Mode Enable. A logic high at this pin enables device test modes. This pin is internally pulled down to GND. Connect this pin to GND.
C5	at	A-I/O	Analog PLL Test. Test pin for analog PLL.
J3	tdo	0	Test Serial Data Out. JTAG serial data is output on this pin on the falling edge of tck. This pin is held in high impedance state when JTAG scan is not enabled.
K8	tdi	I	Test Serial Data In. JTAG serial test instructions and data are shifted in on this pin. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be left unconnected.
K3	trst_b	I	Test Reset. Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up to ensure that the device is in the normal functional state. This pin is internally pulled up to VDD. If this pin is not used then it should be connected to GND.
H4	tck	I	Test Clock. Provides the clock to the JTAG test logic. This pin is internally pulled up to V_{DD} . This pin is internally pulled up to VDD. If this pin is not used then it should be connected to GND.
J8	tms	I	Test Mode Select. JTAG signal that controls the state transitions of the TAP controller. This pin is internally pulled up to V_{DD} . If this pin is not used then it should be left unconnected.
Master Cl	ock		
A5	OSCO	A-0	Oscillator Master Clock. For crystal operation, a crystal is connected from this pin to osci. Not suitable for driving other devices. For clock oscillator operation, this pin is left unconnected.
A6	osci	I	Oscillator Master Clock. For crystal operation, a crystal is connected from this pin to osco. For clock oscillator operation, this pin is connected to a clock source.
Miscellan	eous		•
J4 K4 J5 K5 K6 J6 K7 J7	IC		Internal Connect. Connect to GND.

Table 1 - Pin Description (continued)

Ball #	Name	I/O	Description
J1 J2 K1 K2 K9 K10 J10 J9	NC		Internal Connect. Leave unconnected.
Power an	d Ground		
D6 H1 H10	V _{DD-IO}		Positive Supply Voltage IO. 3.3V _{DC} nominal.
85 86 D5 G5 G6 H5 H6	V _{CORE}		Positive Supply Voltage. +1.8V _{DC} nominal. These pins should not be connected together on the board. Please refer to ZLAN-269 for recommendations
B4 D3 D8 E3 E8 F2 F9	AV _{DD}		Positive Analog Supply Voltage. +3.3V _{DC} nominal.
C6 E5 E6 F5 F6	V _{SS}		Ground. 0 Volts.
A2 A4 A7 A9 B2 B9 C3 C8 H2 H3 H8 H9	AV _{SS}		Analog Ground. 0 Volts.

Table 1 - Pin Description (continued)

3.0 Application Example

The device has two independent clock synthesizers, all locked to the external xtal or oscillator. The device will generate all the clocks that drive the different components on the PCB.

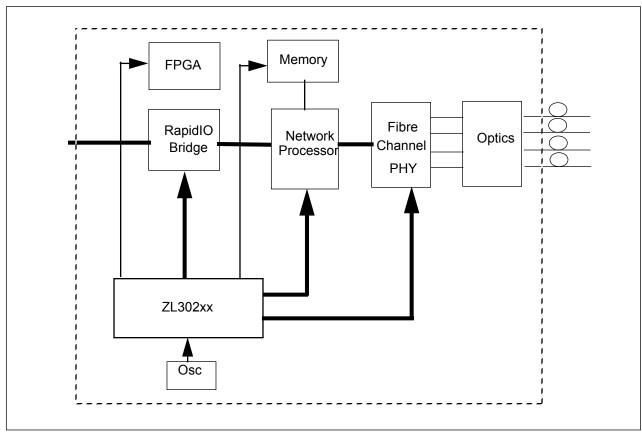


Figure 3 - Application Diagram

4.0 Functional Description

The functional block diagram of the ZL30236 is shown in Figure 1.

The ZL30236 is a programmable clock generator that can be configured by any of the following methods: power-up with its default configuration; power-up with a custom OTP (One Time Programmable) configuration; after power-up it can be dynamically configured via the SPI/I2C port. Configurations set via the SPI/I2C port are volatile and will need to rewritten if the device is reset or powered-down. The SPI/I2C port is also used to access the status registers.

The ZL30236 has two independently programmable clock generators that output clocks of up to 750MHz with jitter below 0.7ps RMS. The ZL30236 uses a single master clock based on a crystal resonator, a clock oscillator or a voltage controlled oscillator. All of the clocks output by the ZL30236 will have the same PPM (Parts Per Million) frequency accuracy as the master clock source.

The ZL30236 precision synthesizers can be programmed to generate any frequency between 1,000MHz and 1,500MHz. The frequency resolution of the synthesizers is much less than 1 PPB (Parts Per Billion).

Each synthesizer is followed by four independently programmable 23 bit even/odd post dividers. For skew management purposes, the post dividers feeding the single ended outputs can impose a phase shift on their output clock signals with resolution equal to a single period of their respective synthesizers' clocks.

All of the ZL30236 clock generators have the same PPM frequency accuracy as the master clock source and therefore the frequency relationships between the clock generators can be programmed exactly. It is possible, for example, to have one generator output 625MHz for 10GBASE-T while another generator outputs 625MHz * 66/64 * 255/237 for 10GBASE-T over OTN (Optical Transport Network). The clock generators will not drift or slip with respect to each other.

Clocks from the two precision clock generators can be output on LVPECL or LVCMOS outputs.

The ZL30236 provides ten GPIO pins that can be used as enable pins for the hpout and hpdiff outputs; they can also be used enable or stop the output clocks from the post dividers on a falling or rising edge.

The detailed operation of the ZL30236 is described in the following sections.

4.1 Frequency Synthesis Engine

The device frequency synthesis engine is comprised of a hardware DCO and an analog jitter filtering APLL with built-in digital jitter attenuation scheme. It has two ultra low jitter frequency synthesis engines that can generate output clocks which meet the jitter generation requirements detailed in section 10.0, "Performance Characterization".

The frequency synthesis engines can generate any clock which is (M/N X 1 kHz) multiple (FEC rate converted clock). The M and N are 16 bits wide.

4.2 Dividers and Skew Management

The device has 4 independent dividers associated with each frequency synthesis engine.

The divider engines associated with the high performance differential outputs generate output clocks between 1 kHz and 750 MHz with 50% duty cycle. The other divider engines generate output clocks between 1 kHz and 177.5 MHz with 50% duty cycle.

The divider modules generating the single ended output clocks provides the ability to manage the phase skew of the output clock by a coarse step equal to the internal high speed clock period.

The single ended generated output clocks can be stopped either on rising or falling edge (programmed through serial interface or GPIO). The device can be configured to adjust the phase skew of single ended clocks in steps of sub high speed synthesizer clock cycle.

4.3 Output Multiplexer

Figure 4 shows the multiplexing configuration supported.

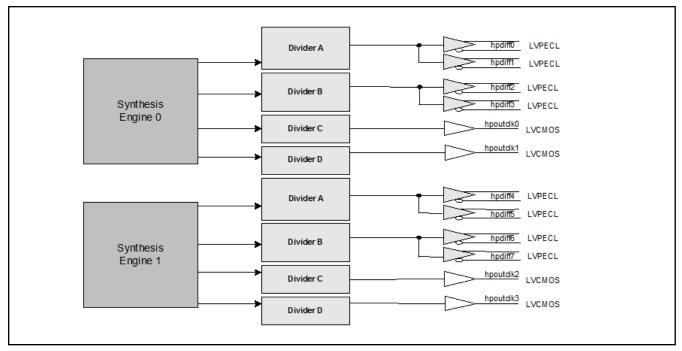


Figure 4 - Output Clock Muxing Configuration

4.4 Output Drivers

The device has 8 high performance (HP) differential (LVPECL) outputs.

The device has 4 high performance (HP) single ended (LVCMOS) outputs.

High Performance (HP) single ended driver (LVCMOS) supports the jitter specification detailed in section 10.0, "Performance Characterization" and a maximum speed of 177.5 MHz.

The high performance (HP) differential driver (LVPECL) supports the jitter specification detailed in section 10.0, "Performance Characterization" and a maximum speed of 750 MHz.

LVPECL outputs should be terminated as shown in Figure 5. Terminating resistors provide 50 Ω equivalent Thevenin termination as well as biasing for the output LVPECL driver. Terminating resistors should be placed as close as possible to input pins of the LVPECL receiver. If the LVPECL receiver has internal biasing then AC coupling capacitors should be added.

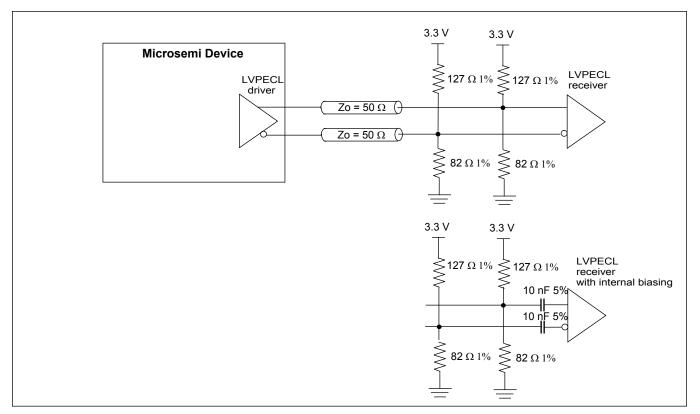


Figure 5 - Terminating LVPECL Outputs

If the transmission line is required to be AC coupled then the termination shown in Figure 6 should be implemented. 200 Ω resistors are used to provide DC biasing for LVPECL driver. Both AC coupling capacitor and biasing resistors should be placed as close as possible to output pins.

Thevenin termination (127 Ω and 82 Ω resistors) provide 50 Ω termination as well as biasing of the input LVPECL receiver. If the LVPECL receiver has internal DC biasing then the line should be terminated with 100 Ω termination resistor between positive and negative input. In both cases termination resistors should be places as close as possible to the LVPECL receiver pins. Some LVPECL receivers have internal biasing and termination. In this case no external termination should be present.

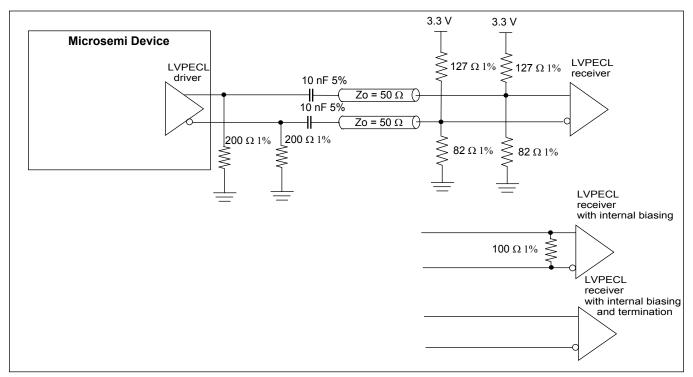


Figure 6 - Terminating AC coupled LVPECL Outputs

High performance LVCMOS outputs (hpoutclkx) should be terminated at the source with 22 Ω resistor as shown in Figure 7.

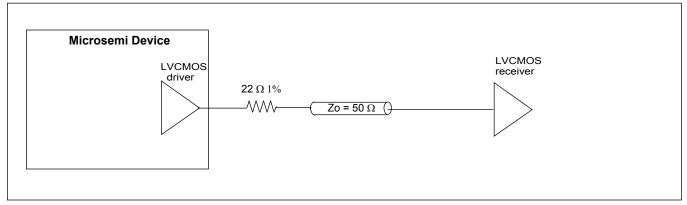


Figure 7 - Terminating LVCMOS Outputs

4.5 Master Clock Interface

The master oscillator determines the device free-run frequency accuracy and holdover stability. The reference monitor circuitry also uses this frequency as its point of reference (0 ppm) when making frequency measurements. The master clock interface was designed to accept either a free-running clock oscillator (XO) or a crystal (XTAL). Refer to application note ZLAN-68 for a list of recommended clock oscillators and crystals.

4.6 Clock Oscillator and Crystal Circuit

When using a clock oscillator as the master timing source, connect the oscillator's output clock to the **osci** pin as shown in Figure 8. The connection to osci should be direct and not AC coupled. The **osco** pin must be left unconnected.

When using crystal resonator as the master timing source, connect crystal between **osci** and **osco** pins as shown in Figure 8. Crystal should have bias resistor of $1M\Omega$ and load capacitances C1 and C2. Value of load capacitances is dependent on crystal and should be as per crystal datasheet. Crystal should be a fundamental mode type -- not an overtone. See ZLAN-68 for crystal recommendation.

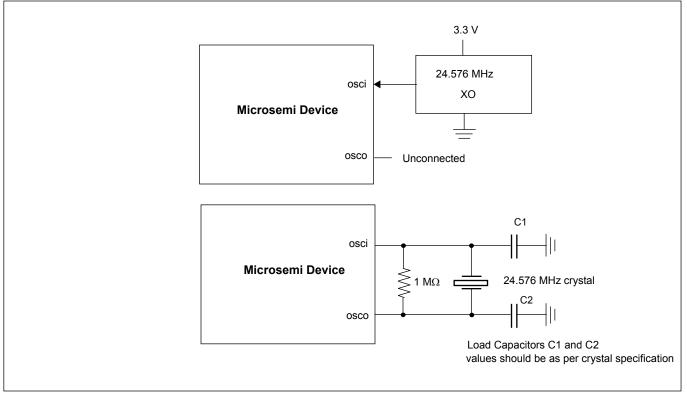


Figure 8 - Clock Oscillator Circuit

The device internal system clocks are generated off the device master clock input (Oscillator or a crystal employing an on-chip buffer/driver). The master clock selection is done at start-up using the available GPIO pins, right after pwr_b get de-asserted. To select 24.576 MHz oscillator, GPIO[1:0] pins need to be held high for 50 ms after the de-assertion of pwr_b, after which time they can be released and used as any other GPIO. Alternatively, these pins can be pulled high with 1 K Ω resistors.

GPIO [1:0]	Master Clock Frequency
0	reserved
1	reserved
2	reserved
3	24.576 MHz

 Table 2 - Master Clock Frequency Selection

4.7 Power Up/Down Sequence

The 3.3 V supply should be powered before or simultaneously with the 1.8 V supply. The 1.8 V supply must never be greater than the 3.3 V supply by more than 0.3 V.

The power-down sequence is less critical, however it should be performed in the reverse order to reduce transient currents that consume power.

4.8 **Power Supply Filtering**

Jitter levels on the output clocks may increase if the device is exposed to excessive noise on its power pins. For optimal jitter performance, the device should be isolated from noise on power planes connected to its 3.3 V and 1.8 V supply pins. For recommended common layout practices, refer to Application Note ZLAN-269.

4.9 Power on Reset and Initialization Circuit

To ensure proper operation, the device must be reset by holding the pwr_b pin low for at least 2 ms after power-up when 3.3 V and 1.8 V supplies are stable. Following reset, the device will operate under specified default settings.

The reset pin can be controlled with on-board system reset circuitry or by using a stand-alone power-up reset circuit as shown in Figure 9. This circuit provides approximately 2 ms of reset low time. The pwr_b input has Schmidt trigger properties to prevent level bouncing.

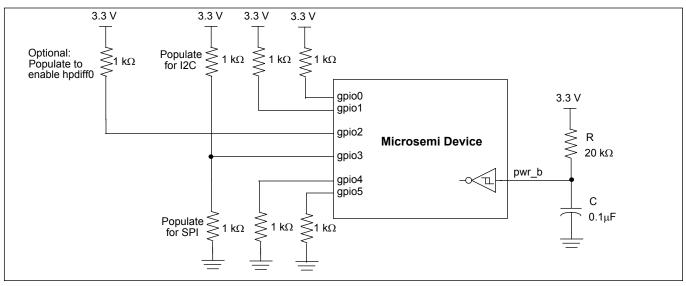


Figure 9 - Typical Power-Up Reset and Configuration Circuit

General purpose pins gpio[0,1,3,4,5] are used to configure device on the power up. They have to be pulled up/down with 1 K Ω resistors as shown in Figure 9 or they can be pulsed low/high during the pwr_b low pulse and kept at the same level for at least 50 ms after pwr_b goes high. After 50 ms they can be released and used as general purpose I/O as described in section 5.0.

By default all outputs are disabled to allow user first to program required frequencies for different outputs and then to enable corresponding outputs. During the prototype phase, hardware designer can verity if the device is working properly even before software driver is implemented just by pulling up gpio2 pin which enables hpdiff0 output (generates 622.08 MHz by default).

4.10 Ultra Low Jitter Synthesizer Filter Components and Recommended Layout

The low jitter APLL has an on-chip loop filter, but for optimal APLL jitter performance external loop filter is recommended, the following component values are recommended:

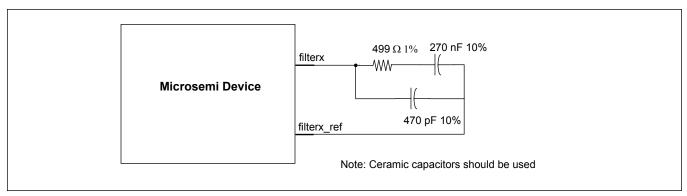
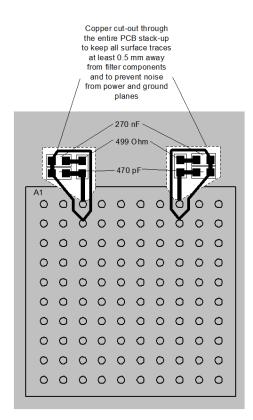



Figure 10 - APLL Filter Component Values

Recommended layout for loop filters is shown in Figure 11:

5.0 Configuration and Control

5.1 Configuration Registers

The ZL30236 configuration is composed of 253 x 8 bits. The configuration registers are assigned their values by any of the following three methods:

- 1) Default configuration
- 2) Custom OTP (One Time Programmable) configuration
- 3) SPI/I2C configuration

5.1.1 Default Configuration

At power-up the device sets its configuration registers to the default reset values.

5.1.2 Custom OTP Configuration

At power-up the device sets it configuration registers to the user defined custom configuration values stored in its one time programmable memory. Custom configurations can be generated using Microsemi's Clockcenter GUI software (ZLS30CLKCTR). For custom configured devices, contact your local Microsemi Field Applications Engineer or Sales manager.

5.1.3 SPI/I2C Configuration

After power-up the values of R/W type configuration registers can be dynamically written via the SPI/I2C port. Configurations set via the SPI/I2C port are volatile and will need to rewritten if the device is reset or powered-down.

5.2 Output Multiplexer Configuration and Programmability

The following is the set of parameters that are configurable:

- Output multiplexer configuration
- Start or Stop clock

5.3 Synthesizers Configuration and Programmability

The following is the set of parameters that are configurable:

- Synthesizer 0 and 1 output frequency between 1.0 GHz and 1.5 GHz
- Synthesizers 0 and 1 high speed output clock, defined as a 1 kHz multiple and 1 kHz multiple with M/N
 ratio

5.4 Output Dividers and Skew Management Configuration and Programmability

The following is the set of parameters that are configurable:

- Post divider enable/disable
- Divider ratio (2 different setting, independent for each one of the divider outputs)
- Output phase shift value (skew)

5.5 Output Drivers configuration and Programmability

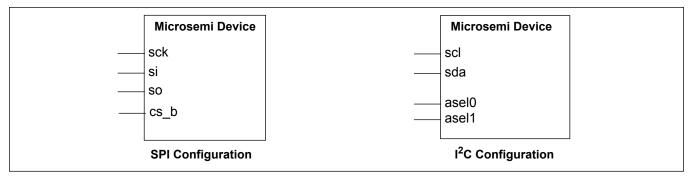
The following is the set of parameters that are configurable:

• Output driver Enable/Disable

5.6 **GPIO Configuration and Programmability**

The device GPIO is mapped by the SPI/I2C programmability. The following is an example of control signals that can be supported:

- Differential output clock enable (per output or as a bank of 2 or 4 outputs)
- Host Interrupt Output: flags changes of device status prompting the processor to read the enabled interrupt service registers (ISR). Output clock stop/start •
- ٠
- Microport Interface Protocol I2C or SPI •


The following table defines the function of the GPIO pin when configured as a control pin. Configuring the value in bit 6:0 in GPIO configuration registers enables the stated function.

Value	Name	Description
Default		
0x00	default	GPIO pin defined as an input and no function assigned to it.
Synthes	izer Post Divider	· ·
0x44	Stop output clock from Synthesizer0 Post Divider C bit1	This signal is OR-ed with the 'Syntheizer0 Post Divider C stop clock' bit1 in the 'Synthesizer0 and Synthesizer1 Post Dividers stop clock' register.
0x45	Stop output clock from Synthesizer0 Post Divider C bit0	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x46	Stop output clock from Synthesizer0 Post Divider D bit1	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x47	Stop output clock from Synthesizer0 Post Divider D bit0	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x4C	Stop output clock from Synthesizer1 Post Divider C bit1	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x4D	Stop output clock from Synthesizer1 Post Divider C bit0	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x4E	Stop output clock from Synthesizer1 Post Divider D bit1	Same description as Stop output clock Synthesizer0 Post Divider C bit1
0x4F	Stop output clock from Synthesizer1 Post Divider D bit0	Same description as Stop output clock Synthesizer0 Post Divider C bit1

Value	Name	Description
0x60	Enable Differential output HPDIFF0	This signal is OR-ed with the 'Enable HPDIFF0' bit in the 'High performance differential output enable' register. Functionality of this signal is explained in hpdiff_en register.
0x64	Enable Differential output HPDIFF1	Same description as Enable Differential output HPDIFF0
0x68	Enable Differential output HPDIFF2	Same description as Enable Differential output HPDIFF0
0x6C	Enable Differential output HPDIFF3	Same description as Enable Differential output HPDIFF0
High Pe	formance CMOS Outputs	
0x70	Enable HPOUTCLK0	This signal is OR-ed with the 'Enable HPOUTCLK0' bit in the 'High performance CMOS output enable' register.
0x72	Enable HPOUTCLK1	Same description as Enable HPOUTCLK0
0x74	Enable HPOUTCLK2	Same description as Enable HPOUTCLK0
0x76	Enable HPOUTCLK3	Same description as Enable HPOUTCLK0

6.0 Host Interface

A host processor controls and receives status from the Microsemi device using either a SPI or an I²C interface. The type of interface is selected using the startup state of the GPIO pins.

Figure 12 - Serial Interface Configuration

The selection between I2C and SPI interfaces is performed at start-up using GPIO[3] pin, right after pwr_b gets de-asserted. The GPIO pin need to be held at their appropriate value for 50 ms after the de-assertion of pwr_b, after which time they can be released and used as any other GPIO.

Both interfaces use seven bit address field and the device has eight bit address space. Hence, memory is divided in two pages. Page 0 with addresses 0x00 to 0x7E and Page 1 with addresses 0x80 to 0xFF. Writing 0x01 to Page Register at address 0x7F, toggles SPI/I2C accesses between Page 0 and Page 1.

GPIO[3]	Serial Interface
0	SPI
1	I2C

 Table 3 - Serial Interface Selection

6.1 Serial Peripheral Interface

The serial peripheral interface (SPI) allows read/write access to the registers that are used to configure, read status, and allow manual control of the device.

This interface supports two modes of access: Most Significant Bit (MSB) first transmission or Least Significant Bit (LSB) first transmission. The mode is automatically selected based on the state of **sck_scl** pin when the **cs_b_**asel0 pin is active. If the **sck_scl** pin is low during **cs_b_**asel0 activation, then MSB first timing is selected. If the **sck_scl** pin is high during **cs_b_**asel0 activation, then LSB first timing is assumed.

The SPI port expects 7-bit addressing and 8-bit data transmission, and is reset when the chip select pin **cs_b**_asel0 is high. During SPI access, the **cs_b**_asel0 pin must be held low until the operation is complete. The first bit transmitted during the address phase of a transfer indicates whether a read (1) or a write (0) is being performed. Burst read/write mode is also supported by leaving the chip select signal **cs_b**_asel0 is low after a read or a write. The address will be automatically incremented after each data byte is read or written.

The serial peripheral interface supports half-duplex processor mode which means that during a write cycle to the device, output data from the **so**_asel1 pin must be ignored. Similarly, the input data on the **si**_sda pin is ignored by the device during a read cycle.

Functional waveforms for the LSB and MSB first mode, and burst mode are shown in Figure 13, Figure 14 and Figure 15. Timing characteristics are shown in Table 5, Figure 24, and Figure 25.