Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China Data Sheet Features April 2006 - 512 channel x 512 channel non-blocking switch at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s operation - Rate conversion between the ST-BUS inputs and ST-BUS outputs - Per-stream ST-BUS input with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s - Per-stream ST-BUS output with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s; the output data rate can be different than the input data rate - Per-stream high impedance control output for every ST-BUS output with fractional bit advancement - Per-stream input channel and input bit delay programming with fractional bit delay - Per-stream output channel and output bit delay programming with fractional bit advancement - Multiple frame pulse outputs and reference clock outputs - · Per-channel constant throughput delay | Ordering Information | | | | | | | |-----------------------------|-----------------|-----------------------|--|--|--|--| | ZL50012/QCC | | Trays | | | | | | | 144 Ball LBGA | | | | | | | | | Trays, Bake & Drypack | | | | | | ZL50012GDG2 | 144 Ball LBGA** | Trays, Bake & Drypack | | | | | | *Pb Free Matte Tin | | | | | | | | **Pb Free Tin/Silver/Copper | | | | | | | | -40°C to +85°C | | | | | | | - Per-channel high impedance output control - Per-channel message mode - Per-channel pseudo random bit sequence (PRBS) pattern generation and bit error detection - Control interface compatible to Motorola nonmultiplexed CPUs - Connection memory block programming capability - IEEE-1149.1 (JTAG) test port - 3.3V I/O with 5 V tolerant input Figure 1 - ZL50012 Functional Block Diagram # **Applications** - · Small and medium digital switching platforms - Access Servers - · Time Division Multiplexers - Computer Telephony Integration - Digital Loop Carriers ## **Description** The device has sixteen ST-BUS inputs (STi0-15) and sixteen ST-BUS outputs (STo0-15). It is a non-blocking digital switch with 512 64 kb/s channels and performs rate conversion between the ST-BUS inputs and ST-BUS outputs. The ST-BUS inputs accept serial input data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The ST-BUS outputs deliver serial output data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The device also provides sixteen high impedance control outputs (STOHZ 0-15) to support the use of external high impedance control buffers. The ZL50012 has features that are programmable on per-stream or per-channel basis including message mode, input bit delay, output bit advancement, constant throughput delay and high impedance output control. # ZL50012 # **Table of Contents** | Features | | |--|-----| | Applications | . 2 | | Description | . 2 | | Changes Summary | . 9 | | 1.0 Device Overview | 16 | | 2.0 Functional Description | 16 | | 2.1 ST-BUS Input Data Rate and Input Timing | 16 | | 2.1.1 ST-BUS Input Operation Mode | | | 2.1.2 Frame Pulse Input and Clock Input timing | | | 2.1.3 ST-BUS Input Timing | | | 2.1.4 Improved Input Jitter Tolerance with Frame Boundary Determinator | | | 2.2 ST-Bus Output Data Rate and Output Timing | | | 2.2.1 ST-Bus Output Operation Mode | | | 2.2.2 Frame Pulse Output and Clock Output Timing | | | 2.2.3 ST-BUS Output Timing | | | 2.3 Serial Data Input Delay and Serial Data Output Offset | | | 2.3.1 Input Channel Delay Programming | | | 2.3.3 Fractional Input Bit Delay Programming | | | 2.3.4 Output Channel Delay Programming | | | 2.3.5 Output Bit Delay Programming | | | 2.3.6 Fractional Output Bit Advancement Programming | | | 2.3.7 External High Impedance Control, STOHZ 0 to 15 | | | 2.4 Data Delay Through The Switching Paths. | | | 2.5.1 Connection Memory Block Programming | | | 2.6 Bit Error Rate (BER) Test | | | 2.7 Quadrant frame programming | 32 | | 2.8 Microprocessor Port | 33 | | 3.0 Device Reset and Initialization | 33 | | 4.0 JTAG Support | 33 | | 4.1 Test Access Port (TAP) | | | 4.2 Instruction Register | | | 4.3 Test Data Register | | | 4.4 BSDL | 34 | | 5.0 Register Address Mapping | 35 | | 6.0 Detail Register Description | | # ZL50012 # **List of Figures** | Figure 1 - ZL50012 Functional Block Diagram | 1 | |---|------| | Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram | 10 | | Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram | 11 | | Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register | 17 | | Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register | 17 | | Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register | 17 | | Figure 7 - ST-BUS Input Timing for Various Input Data Rates | 18 | | Figure 8 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 0 | 20 | | Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1 | 20 | | Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0 | | | Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1 | 21 | | Figure 12 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 0 | 21 | | Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1 | 21 | | Figure 14 - ST-BUS Output Timing for Various Output Data Rates | 22 | | Figure 15 - Input Channel Delay Timing Diagram | 23 | | Figure 16 - Input Bit Delay Timing Diagram | 24 | | Figure 17 - Output Channel Delay Timing Diagram | 24 | | Figure 18 - Output Bit Delay Timing Diagram | 25 | | Figure 19 - Fractional Output Bit Advancement Timing Diagram | 25 | | Figure 20 - Example: External High Impedance Control Timing | 26 | | Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switche | d to | | | 28 | | Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disable | | | Input Ch0 switched to Output Ch0 | | | Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enable | | | Input Ch0 switch to Output Ch0 | | | Figure 24 - Data Throughput Delay when input and output channel delay are enabled for Input Ch0 switched Output Ch0 | | | · · · · · · · · · · · · · · · · · · · | | | Figure 25 - Frame Poundary Timing with Input Clock (evole to evole) Variation | | | Figure 26 - Frame Boundary Timing with Input Clock (cycle-to-cycle) Variation | | | Figure 28 - Input and Output Frame Boundary Offset | | | Figure 29 - FPo0 and CKo0 Timing Diagram | | | Figure 30 - FPo1 and CKo1 Timing Diagram | | | Figure 31 - FPo2 and CKo2 Timing Diagram | | | Figure 32 - ST-BUS Inputs (STi0 - 15) Timing Diagram | 62 | | Figure 33 - ST-BUS Outputs (STo0 - 15) Timing Diagram | | | Figure 34 - Serial Output and External Control | | | Figure 35 - Output Driver Enable (ODE) | | | Figure 36 - Motorola Non-Multiplexed Bus Timing. | | | Figure 37 - JTAG Test Port Timing Diagram | | | Figure 38 - Reset Pin Timing Diagram | | | | | # ZL50012 # **List of Tables** | Table 2 - FP00 and CK00 Output Programming 19 Table 3 - FP01 and CK01 Output Programming 19 Table 4 - FP02 and CK02 Output Programming 19 Table 5 - Variable Range for Input Streams 27 Table 6 - Variable Range for Output Streams 27 Table 7 - Data Throughput Delay 27 Table 8 - Connection Memory in Block Programming Mode 30 Table 9 - Definition of the Four Quadrant Frames 32 Table 10 - Quadrant Frame 0 LSB Replacement 32 Table 11 - Quadrant Frame 1 LSB Replacement 32 Table 12 - Quadrant Frame 2 LSB Replacement 32 Table 13 - Quadrant Frame 3 LSB Replacement 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 44 Table 23 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 46 Table 24 - S | Table 1 - FPi and CKi Input Programming | |
---|---|------| | Table 4 - FPo2 and CKo2 Output Programming | Table 2 - FPo0 and CKo0 Output Programming | . 19 | | Table 5 - Variable Range for Input Streams 27 Table 6 - Variable Range for Output Streams 27 Table 7 - Data Throughput Delay 27 Table 8 - Connection Memory in Block Programming Mode 30 Table 9 - Definition of the Four Quadrant Frames 32 Table 10 - Quadrant Frame 0 LSB Replacement 32 Table 11 - Quadrant Frame 1 LSB Replacement 32 Table 12 - Quadrant Frame 2 LSB Replacement 32 Table 13 - Quadrant Frame 3 LSB Replacement 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BCR) Bits 41 Table 20 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 42 Table 21 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 42 Table 22 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 46 Table 23 - Stream Output Control Register 8 to 15 (SICR8 to SICR15) 47 Table 24 - Stream Output Control Register 8 to 15 (SICR8 to SICR15) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 | Table 3 - FPo1 and CKo1 Output Programming | . 19 | | Table 6 - Variable Range for Output Streams. 27 Table 7 - Data Throughput Delay. 27 Table 8 - Connection Memory in Block Programming Mode. 30 Table 9 - Definition of the Four Quadrant Frames. 32 Table 10 - Quadrant Frame 0 LSB Replacement. 32 Table 11 - Quadrant Frame 1 LSB Replacement. 32 Table 12 - Quadrant Frame 2 LSB Replacement. 32 Table 13 - Quadrant Frame 3 LSB Replacement. 32 Table 14 - Address Map for Device Specific Registers. 35 Table 15 - Control Register (CR) Bits. 37 Table 16 - Internal Mode Selection (IMS) Register Bits. 39 Table 17 - BER Start Receiving Register (BSRR) Bits. 40 Table 18 - BER Length Register (BLR) Bits. 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 47 Table 23 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR7) 48 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Offset Register 0 to 7 (SOCR8 to SOCR15) 49 Table 26 - Stream Outpu | Table 4 - FPo2 and CKo2 Output Programming | . 19 | | Table 7 - Data Throughput Delay 27 Table 8 - Connection Memory in Block Programming Mode 30 Table 9 - Definition of the Four Quadrant Frames 32 Table 10 - Quadrant Frame 0 LSB Replacement 32 Table 11 - Quadrant Frame 1 LSB Replacement 32 Table 12 - Quadrant Frame 2 LSB Replacement 32 Table 13 - Quadrant Frame 3 LSB Replacement 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SICR8 to SICR15) 47 Table 23 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 28 | Table 5 - Variable Range for Input Streams | . 27 | | Table 8 - Connection Memory in Block Programming Mode 30 Table 9 - Definition of the Four Quadrant Frames 32 Table 10 - Quadrant Frame 0 LSB Replacement 32 Table 11 - Quadrant Frame 1 LSB Replacement 32 Table 12 - Quadrant Frame 2 LSB Replacement 32 Table 13 - Quadrant Frame 3 LSB Replacement 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 44 Table 23 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 47 Table 24 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 48 Table 25 - Stream Output Offset Register 0 to 7 (SOCR0 to SOCR7) 48 Table 26 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 51 < | Table 6 - Variable Range for Output Streams | . 27 | | Table 9 - Definition of the Four Quadrant Frames32Table 10 - Quadrant Frame 0 LSB Replacement32Table 11 - Quadrant Frame 1 LSB Replacement32Table 12 - Quadrant Frame 2 LSB Replacement32Table 13 - Quadrant Frame 3 LSB Replacement32Table 14 - Address Map for Device Specific Registers35Table 15 - Control Register (CR) Bits37Table 16 - Internal Mode Selection (IMS) Register Bits39Table 17 - BER Start Receiving Register (BSRR) Bits40Table 18 - BER Length Register (BLR) Bits41Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7)42Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15)44Table 22 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 8 to 15 (SIDR8 to SIDR15)47Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR7)48Table 26 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 27 - Stream Output Offset Register 0 to 7 (SOCR0 to SOCR7)50Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | Table 7 - Data Throughput Delay | . 27 | | Table 10 - Quadrant Frame 0 LSB Replacement. 32 Table 11 - Quadrant Frame 1 LSB Replacement. 32 Table 12 - Quadrant Frame 2 LSB Replacement. 32 Table 13 - Quadrant Frame 3 LSB Replacement. 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits. 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BCR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SICR8 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR7) 46 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR7) 49 Table 26 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) | Table 8 - Connection Memory in Block Programming Mode | . 30 | | Table 11 - Quadrant Frame 1 LSB Replacement 32 Table 12 - Quadrant Frame 2 LSB Replacement 32 Table 13 - Quadrant Frame 3 LSB Replacement 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 27 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | | | | Table 12 - Quadrant Frame 2 LSB Replacement. 32 Table 13 - Quadrant Frame 3 LSB Replacement. 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits. 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits. 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count
Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 27 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | Table 10 - Quadrant Frame 0 LSB Replacement | . 32 | | Table 13 - Quadrant Frame 3 LSB Replacement. 32 Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits. 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits. 40 Table 18 - BER Length Register (BLR) Bits. 41 Table 19 - BER Count Register (BCR) Bits. 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR7) 50 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | Table 11 - Quadrant Frame 1 LSB Replacement | . 32 | | Table 14 - Address Map for Device Specific Registers 35 Table 15 - Control Register (CR) Bits 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 8 to 15 (SOCR8 to SOCR15) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15) 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | | | | Table 15 - Control Register (CR) Bits. 37 Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits. 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 8 to 15 (SIDR8 to SIDR15) 47 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR7) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15) 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | Table 13 - Quadrant Frame 3 LSB Replacement | . 32 | | Table 16 - Internal Mode Selection (IMS) Register Bits 39 Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15) 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | Table 14 - Address Map for Device Specific Registers | . 35 | | Table 17 - BER Start Receiving Register (BSRR) Bits 40 Table 18 - BER Length Register (BLR) Bits 41 Table 19 - BER Count Register (BCR) Bits 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) 47 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) 49 Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7) 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15) 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 53 | | | | Table 18 - BER Length Register (BLR) Bits | | | | Table 19 - BER Count Register (BCR) Bits41Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7)42Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15)44Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7)46Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | Table 17 - BER Start Receiving Register (BSRR) Bits | . 40 | | Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7)42Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15)44Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7)46Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | | | | Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15)44Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7)46Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | | | | Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7)46Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | | | | Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)47Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | | | | Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7).48Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15).49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7).50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15).51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1).52Table 29 - Connection Memory Bit Assignment when the CMM bit = 0.53 | | | | Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)49Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)52Table 29 - Connection Memory Bit Assignment when the CMM bit = 053 | | | | Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7).50Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15).51Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1).52Table 29 - Connection Memory Bit Assignment when the CMM bit = 0.53 | | | | Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to
SOOR15) | | | | Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1) | | | | Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 | | | | | | | | Table 30 - Connection Memory Bits Assignment when the CMM bit = 1 | | | | | Table 30 - Connection Memory Bits Assignment when the CMM bit = 1 | . 53 | # **Changes Summary** The following table captures the changes from the July 2004 issue. | Page | Item | Change | |------|---|---| | 18 | 2.1.4, "Improved Input Jitter Tolerance with Frame Boundary Determinator" | Added a new section to describe the improved input jitter tolerance with the frame boundary determinator. | | 37 | Table 15 -, "Control Register (CR) Bits" - bits , "FBDMODE" and , "FBDEN" | Renamed bit 15 from Unused to FBDMODE and
added description to clarify the frame boundary
determinator operation. | | | | Clarified FBDEN description. | Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram # PINOUT DIAGRAM: (as viewed through top of package) A1 corner identified by metallized marking, mould indent, ink dot or right-angled corner | \ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|-------------|-------------|-------------|-------------------|-----|-----|-------------|--------------|------|------|-------|-------| | Α | ODE | FPo2 | FPo0 | ICONN
3 | IC1 | IC0 | ICONN
1 | NC3 | TM1 | CKi | TDi | TCK | | В | CKo2 | CKo1 | FPo1 | CK ₀ 0 | IC3 | IC2 | CLK
BYPS | VDD_
APLL | SG1 | FPi | TRST | TMS | | С | STo2 | STo1 | STOHZ
0 | ICONN
2 | NC | NC | IC4 | NC2 | NC1 | TM2 | TDo | STi15 | | D | STo3 | STo0 | STOHZ
1 | VSS | VDD | VDD | VDD | VSS_
APLL | VSS | STi8 | RESET | STi14 | | E | STo5 | STo4 | STOHZ
3 | STOHZ
2 | VSS | VSS | VSS | VSS | VDD | STi9 | STi13 | STi12 | | F | STo6 | STo7 | STOHZ
4 | VDD | VSS | VSS | VSS | VSS | VDD | STi7 | STi10 | STi11 | | G | STOHZ
6 | STOHZ
7 | STOHZ
5 | VDD | VSS | VSS | VSS | VSS | STi1 | STi6 | STi5 | STi4 | | Н | STo9 | STo10 | STo8 | VDD | VSS | VSS | VSS | VSS | STi0 | DS | STi2 | STi3 | | J | STo11 | STOHZ
11 | STOHZ
8 | VSS | D2 | VDD | VDD | VDD | A10 | A9 | A8 | A11 | | К | STOHZ
9 | STOHZ
15 | STo15 | STOHZ
13 | D1 | D5 | CS | D10 | D11 | A5 | A4 | A7 | | L | STOHZ
10 | STo12 | STo13 | D3 | D15 | D4 | D7 | D12 | D14 | A2 | A3 | A6 | | М | STo14 | STOHZ
12 | STOHZ
14 | D0 | DTA | D6 | D8 | D9 | D13 | A0 | A1 | R/W | Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram # **Pin Description** | LQFP Pin
Number | LBGA Ball
Number | Name | Description | |---|---|-----------------------|---| | 10, 23, 33,
43, 48, 58,
68, 78, 92,
102, 113,
127, 136,
146, 156 | D5, D6, D7
E9
F4, F9
G4
H4
J6, J7, J8 | V _{DD} | Power Supply for the device: +3.3 V | | 9, 18, 21,
32, 38, 47,
57, 67, 77,
91, 101,
112, 126,
135, 145,
155 | D4, D9 E5, E6, E7, E8 F5, F6, F7, F8 G5, G6, G7, G8 H5, H6, H7, H8 J4 | V _{ss} (GND) | Ground. | | 3 | B12 | TMS | Test Mode Select (3.3 V Tolerant Input with internal pull-up): JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up resistor when it is not driven. | | 4 | A12 | TCK | Test Clock (5 V Tolerant Input): Provides the clock to the JTAG test logic. | | 5 | B11 | TRST | Test Reset (3.3 V Tolerant Input with internal pull-up): Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low during power-up to ensure that the device is in the normal functional mode. When JTAG is not being used, this pin should be pulled low during normal operation. | | 6 | A11 | TDi | Test Serial Data In (3.3 V Tolerant Input with internal pull-up): JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up resistor when it is not driven. | | 7 | B10 | FPi | ST-BUS Frame Pulse Input (5 V Tolerant Input): This pin accepts the frame pulse which stays low for 61 ns, 122 ns or 244 ns at the frame boundary. The frame pulse associating with the highest input data rate has to be applied to this pin. The frame pulse frequency is 8 kHz. The device also accepts positive frame pulse if the FPINP bit is high in the Internal Mode Selection register. | | 8 | A10 | СКі | ST-BUS Clock Input (5 V Tolerant Input): This pin accepts a 4.096 MHz, 8.192 MHz or 16.384 MHz clock. The input clock frequency has to be equal to or greater than twice of the highest input data rate. The clock falling edge defines the input frame boundary. The device also allows the clock rising edge to define the frame boundary by programming the CKINP bit in the Internal Mode Selection register. | # Pin Description (continued) | LQFP Pin
Number | LBGA Ball
Number | Name | Description | |--------------------|-----------------------|----------------------|---| | 11 | В9 | SG1 | APLL Test Control (3.3 V Input with internal pull-down): For normal operation, this input MUST be low. | | 12 | A9 | TM1 | APLL Test Pin 1: For normal operation, this input MUST be low. | | 13 | C10 | TM2 | APLL Test Pin 2: For normal operation, this input MUST be low. | | 14, 15, 19 | C9, C8, A8 | NC1, NC2,
NC3 | No Connection: These pins MUST be left unconnected. | | 16 | D8 | V _{ss_APLL} | Ground for the APLL Circuit. | | 17 | B8 | V _{DD_APLL} | Power Supply for the on-chip Analog Phase Lock Loop (APLL) Circuit: +3.3 V | | 20 | A7 | ICONN1 | Internal Connection: In normal mode, this pin must be low. | | 22 | В7 | CLKBYPS | Test Clock Input: For device testing only, in normal operation, this input MUST be low. | | 24 - 28 | A6, A5, B6,
B5, C7 | IC0 - 4 | Internal connection (3.3 V Tolerant Inputs with internal pull-down): In normal mode, these pins must be low. | | 30, 31 | C4, A4 | ICONN2 - 3 | Internal Connection: In normal mode, these pins must be low. | | 34 | A3 | FPo0 | ST-BUS Frame Pulse Output 0 (5 V Tolerance Three-state Output): ST-BUS frame pulse output which stays low for 244 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. | | 35 | B4 | CK ₀ 0 | ST-BUS Clock Output 0 (5 V Tolerant Three-state Output): A 4.094 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. | | 36 | В3 | FPo1 | ST-BUS Frame Pulse Output 1 (5 V Tolerant Three-state Output): ST-BUS frame pulse output which stays low for 61 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. | | 37 | B2 | CKo1 | ST-BUS Clock Output 1 (5 V Tolerant Three-state Output): A 16.384 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. | # Pin Description (continued) | LQFP Pin
Number | LBGA Ball
Number | Name | Description | |---|--|---|--| | 44 | A2 | FPo2 | ST-BUS Frame Pulse Output 2 (5V Tolerant High Speed Three-state Output): ST-BUS frame pulse output which stays low for 30 ns or 61 ns at the frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. | | 45 | B1 | CKo2 | ST-BUS Clock Output 2 (5 V Tolerant High Speed Three-state Output): A 32.768 MHz or 16.384 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. | | 46 | A1 | ODE | Output Drive Enable (5 V Tolerant Input): This is the asynchronously output enable control for the STo0 - 15 and the output driven high control for the STOHZ 0 - 15 serial outputs. When it is high, the STo0 - 15 and STOHZ 0 - 15 are enabled. When it is low, the STo0 - 15 are in the high impedance state and the STOHZ 0 - 15 are driven high. | | 49 - 52
59 - 62
69 - 72
83 - 86 | D2, C2, C1, D1
E2, E1, F1, F2
H3, H1, H2, J1
L2, L3, M1, K3 | STo0 - 3
STo4 - 7
STo8 - 11
STo12 - 15 | Serial Output Streams 0 to 15 (5 V Tolerant Three-state Outputs): The
data rate of these output streams can be selected independently using the stream control output registers. In the 2.048 Mb/s mode, these pins have serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins have serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins have serial TDM data streams at 8.192 Mb/s with 128 channels per stream. | | 53 - 56
63 - 66
73 - 76
87 - 90 | C3, D3, E4, E3
F3, G3, G1,
G2
J3, K1, L1, J2
M2, K4, M3,
K2 | STOHZ 0 - 3
STOHZ 4 - 7
STOHZ 8 -
11
STOHZ 12 -
15 | Serial Output Streams High Impedance Control 0 to 15 (5 V Tolerant Three-state Outputs): These pins are used to enable (or disable) external three-state buffers. When a output channel is in the high impedance state, the STOHZ drives high for the duration of the corresponding output channel. When the STo channel is active, the STOHZ drives low for the duration of the corresponding output channel. | | 93 - 96
97 - 100
103 - 106
107 - 110 | M4, K5, J5, L4
L6, K6, M6, L7
M7, M8, K8,
K9
L8, M9, L9, L5 | D0 - D3
D4 - D7
D8 - D11
D12 - D15 | Data Bus 0 - 15 (5 V Tolerant I/Os): These pins form the 16-bit data bus of the microprocessor port. | | 111 | M5 | DTA | Data Transfer Acknowledgment (5 V Tolerant Three-state Output): This active low output indicates that a data bus transfer is complete. A pull-up resistor is required to hold this pin at HIGH level. | | 114 | K7 | CS | Chip Select (5 V Tolerant Input): Active low input used by the microprocessor to enable the microprocessor port access. | # Pin Description (continued) | LQFP Pin
Number | LBGA Ball
Number | Name | Description | |--|--|--|---| | 115 | M12 | R/W | Read/Write (5 V Tolerant Input): This input controls the direction of the data bus lines (D0-D15) during a microprocessor access. | | 116 | H10 | DS | Data Strobe (5 V Tolerant Input): This active low input works in conjunction with CS to enable the microprocessor port read and write operations. | | 117, 118
123 - 125
128 - 130
131 - 134 | M10, M11
L10, L11, K11
K10, L12, K12
J11, J10, J9,
J12 | A0 - A1
A2 - A4
A5 - A7
A8 - A11 | Address 0 - 11 (5 V Tolerant Inputs): These pins form the 12-bit address bus to the internal memories and registers. | | 137 - 139
140 - 142
143, 144
147 - 149
150 - 152
153, 154 | H9, G9, H11
H12, G12, G11
G10, F10
D10, E10, F11
F12, E12, E11
D12, C12 | STi0 - 2
STi3 - 5
STi6 - 7
STi8 - 10
STi11- 13
STi14 - 15 | Serial Input Streams 0 to 15 (5 V Tolerant Inputs): The data rate of these input streams can be selected independently using the stream input control registers. In the 2.048 Mb/s mode, these pins accept serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins accept serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins accept serial TDM data streams at 8.192 Mb/s with 128 channels per stream. Unused serial input pins are required to connect to either Vdd or ground, through an external pull-up resistors or external pull-down resistor. | | 157 | D11 | RESET | Device Reset (5 V Tolerant Input): This input (active LOW) puts the device in its reset state that disables the STo0 - 15 drivers and drives the STOHZ 0 - 15 outputs to high. It also clears the device registers and internal counters. To ensure proper reset action, the reset pin must be low for longer than 1 ms. Upon releasing the reset signal to the device, the first microprocessor access can take place after 600 μs due to the time required to stabilize the APLL block from the power down state. | | 158 | C11 | TDo | Test Serial Data Out (3 V Tolerant Three-state Output): JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG is not enabled. | | 1, 2, 29,
39 - 42,
79 - 82,
119 - 122,
159, 160 | C5, C6 | NC | No Connection Pins. These pins are not connected to the device internally. | ### 1.0 Device Overview The device uses the ST-BUS input frame pulse and the ST-BUS input clock to define the input frame boundary and timing for the ST-BUS input streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). The output frame boundary is defined by the output frame pulses and the output clock timing for the ST-BUS output streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). By using Zarlink's message mode capability, microprocessor data can be broadcast to the data output streams on a per channel basis. This feature is useful for transferring control and status information for external circuits or other ST-BUS devices. A non-multiplexed microprocessor port allows users to program the device with various operating modes and switching configurations. Users can use the microprocessor port to perform register read/write, connection memory read/write and data memory read operations. The microprocessor port has a 12-bit address bus, a 16-bit data bus and four control signals. The device also supports the mandatory requirements of the IEEE-1149.1 (JTAG) standard via the test port. # 2.0 Functional Description A functional block diagram of the ZL50012 is shown in Figure 1 on page 1. ### 2.1 ST-BUS Input Data Rate and Input Timing The device has sixteen ST-BUS serial data inputs. Any of the sixteen inputs can be programmed to accept different data rates, 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s. ## 2.1.1 ST-BUS Input Operation Mode Any ST-BUS input can be programmed to accept the 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s data using Bit 0 to 2 in the stream input control registers, SICR0 to SICR15 as shown in Table 20 on page 42 and Table 21 on page 44. The maximum number of input channels is 512 channels. External pull-up or pull-down resistors are required for any unused ST-BUS inputs. ## 2.1.2 Frame Pulse Input and Clock Input timing The frame pulse input \overline{FPi} accepts the frame pulse used for the **highest** input data rate. The frame pulse is an 8 kHz input signal which stays low for 244 ns, 122 ns or 61 ns for the input data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s respectively. The frequency of \overline{CKi} must be twice the highest data rate. For example, if users present the ZL50012 with 2.048 Mb/s and 8.192 Mb/s input data, the device should be programmed to accept the input clock of 16.384 MHz and the frame pulse which stays low for 61 ns. Users have to program the CKIN2 - 0 bits in the Control Register (CR), for the width of the frame pulse low cycle and the frequency of the input clock. See Table 1 for the programming of the CKIN0, CKIN1 and CKIN2 bits in the Control Register. | CKIN2 - 0 bits | FPi Low Cycle | CKi | Highest Input Data Rate | |----------------|---------------|------------|-------------------------| | 000 | 61 ns | 16.384 MHz | 8.192 Mb/s | | 001 | 122 ns | 8.192 MHz | 4.096 Mb/s | | 010 | 244 ns | 4.096 MHz | 2.048 Mb/s | | 011 - 111 | Reser | | | Table 1 - FPi and CKi Input Programming The device also accepts positive or negative input frame pulse and ST-BUS input clock formats via the programming of the FPINP and CKINP bits in the Internal Mode Selection (IMS) register. By default, the device accepts the negative input clock format. Figure 4, Figure 5 and Figure 6 describe the usage of CKIN2 - 0, FPINP and CKINP in the Internal Mode Selection (IMS) register: Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register ### 2.1.3 ST-BUS Input Timing When the negative input frame pulse and negative input clock formats are used, the input frame boundary is defined by the falling edge of the CKi input clock while the FPi is low. When the input data rate is 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s, there are 32, 64 or 128 channels per every ST-BUS frame respectively. Figure 7 shows the details: Figure 7 - ST-BUS Input Timing for Various Input Data Rates #### 2.1.4 Improved Input Jitter Tolerance with Frame Boundary Determinator The ZL50012 has a Frame Boundary Determinator (FBD) allowing substantial increase of the CKi input clock jitter tolerance. The FBD circuit is enabled by setting the Control Register bits FBDEN and FBDMODE to HIGH. By default the FBD is disabled. Both the FBDEN and FBDMODE bits should be set HIGH during normal operation. The device can have 20 ns of input clock jitter tolerance (on CKi and FPi) when the FBD is fully enabled. ### 2.2 ST-Bus Output Data Rate and Output Timing The device has sixteen ST-BUS serial data outputs. Any of the sixteen outputs can be programmed to deliver different data rates at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s. ### 2.2.1 ST-Bus Output Operation Mode Any ST-Bus output can be programmed to deliver the data at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s mode using Bit 0 to 2 in the Stream Output Control
Register, SOCR0 to SOCR15 as shown in Table 24 on page 48 and Table 25 on page 49. ### 2.2.2 Frame Pulse Output and Clock Output Timing The device offers three frame pulse outputs, FPo1, FPo1 and FPo2. All output frame pulses are 8kHz output signals. By default, output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clocks while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. In addition to the default settings, users can also select different output frame pulse low cycles and output clock frequencies by programming the CKFP0, CKFP1 and CKFP2 bits in the Control Register. See Table 2, Table 3 and Table 4 for the bit usage in the Control Register: | CKFP0 | FPo0
Low Cycle | CK ₀ 0 | | |-------|-------------------|-------------------|--| | 0 | 244 ns | 4.096 MHz | | | 1 | 122 ns | 8.192 MHz | | Table 2 - FPo0 and CKo0 Output Programming | CKFP1 | FPo1 | CKo1 | | |-------|--------|------------|--| | 0 | 61 ns | 16.384 MHz | | | 1 | 122 ns | 8.192 MHz | | Table 3 - FPo1 and CKo1 Output Programming | CKFP2 | FPo2 | CKo2 | | |-------|-------|------------|--| | 0 | 30 ns | 32.768 MHz | | | 1 | 61 ns | 16.384 MHz | | Table 4 - FPo2 and CKo2 Output Programming The device also delivers positive or negative output frame pulse and ST-BUS output clock formats via the programming of the FP0P, FP1P, FP2P, CK0P, CK1P and CK2P bits in the Internal Mode Selection (IMS) register. By default, the device delivers the negative output frame pulse and negative output clock formats. Figure 8 to Figure 13 describe the usage of the CKFP0, CKFP1, CKFP2, FP0P, FP1P, FP2P, CK0P, CK1P and CK2P in the Control Register and Internal Mode Selection Register: Figure 8 - $\overline{FPo0}$ and $\overline{CKo0}$ Output Timing when the CKFP0 bit = 0 Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1 Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0 Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1 Figure 12 - $\overline{\text{FPo2}}$ and $\overline{\text{CKo2}}$ Output Timing when the CKFP2 bit = 0 Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1 ### 2.2.3 ST-BUS Output Timing By default, the output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clock while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. When the output data rates are 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s, there are 32, 64 or 128 output channels per every ST-BUS frame respectively. Figure 14 describes the details. Figure 14 - ST-BUS Output Timing for Various Output Data Rates ### 2.3 Serial Data Input Delay and Serial Data Output Offset Various registers are provided to adjust the input and output delays for every input and every output data stream. The input and output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 channel(s) for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. The input and output bit delay can vary from 0 to 7 bits. The fractional input bit delay can vary from 1/4, 1/2, 3/4 to 4/4 bit. The fractional output bit advancement can vary from 0, 1/4, 1/2 to 3/4 bit. ### 2.3.1 Input Channel Delay Programming This feature allows each input stream to have a different input frame boundary with respect to the input frame boundary defined by the FPi and CKi. By default, all input streams have channel delay of zero such that Ch0 is the first channel that appears after the input frame boundary (see Figure 15). The input channel delay programming is enabled by setting Bit 3 to 9 in the Stream Input Delay Register (SIDR). The input channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. Figure 15 - Input Channel Delay Timing Diagram #### 2.3.2 Input Bit Delay Programming In addition to the input channel delay programming, the input bit delay programming feature provides users with more flexibility when designing the switch matrices at high speed, in which the delay lines are easily created on PCM highways which are connected to the switch matrix cards. By default, all input streams have zero bit delay such that Bit 7 is the first bit that appears after the input frame boundary, see Figure 16. The input delay is enabled by Bit 0 to 2 in the Stream Input Delay Registers (SIDR). The input bit delay can vary from 0 to 7 bits. ## 2.3.3 Fractional Input Bit Delay Programming In addition to the input bit delay feature, the device allows users to change the sampling point of the input bit. By default, the sampling point is at 3/4 bit. Users can change the sampling point to 1/4, 1/2, 3/4 or 4/4 bit position by programming Bit 3 and 4 of the Stream Input Control Registers (SICR). Figure 16 - Input Bit Delay Timing Diagram ### 2.3.4 Output Channel Delay Programming This feature allows each output stream to have a different output frame boundary with respect to the output frame boundary defined by the output frame pulse (FPo0, FPo1 and FPo2) and the output clock (CKo0, CKo1 or CKo2). By default, all output streams have zero channel delay such that Ch 0 is the first channel that appears after the output frame boundary as shown in Figure 17. Different output channel delay can be set by programming Bit 5 to 11 in the Stream Output Offset Registers (SOOR). The output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. Figure 17 - Output Channel Delay Timing Diagram ### 2.3.5 Output Bit Delay Programming This feature is used to delay the output data bit of individual output streams with respect to the output frame boundary. Each output stream can have its own bit delay value. By default, all output streams have zero bit delay such that Bit 7 is the first bit that appears after the output frame boundary (see Figure 18 on page 25). Different output bit delay can be set by programming Bit 2 to 4 in the Stream Output Offset Registers. The output bit delay can vary from 0 to 7 bits. Figure 18 - Output Bit Delay Timing Diagram ### 2.3.6 Fractional Output Bit Advancement Programming In addition to the output bit delay, the device is also capable of performing fractional output bit advancement. This feature offers a better resolution for the output bit delay adjustment. The fractional output bit advancement is useful in compensating for various parasitic loadings on the serial data output pins. By default, all output streams have zero fractional bit advancement such that Bit 7 is the first bit that appears after the output frame boundary as shown in Figure 19. The fractional output bit advancement is enabled by Bit 0 to 1 in the Stream Output Offset Registers. The fractional bit advancement can vary from 0, 1/4, 1/2 or 3/4 bit. Figure 19 - Fractional Output Bit Advancement Timing Diagram ### 2.3.7 External High Impedance Control, STOHZ 0 to 15 The STOHZ 0 to 15 outputs are provided to control the external tristate ST-BUS drivers for per-channel high impedance operations. The STOHZ outputs are sent out in 32, 64 or 128 timeslots corresponding to the output channels for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s output streams respectively. Each control timeslot lasts for one channel time. When the ODE pin is high, the STOHZ 0 - 15 are enabled. When the ODE pin or the RESET pin is low, the STOHZ 0 - 15 are driven high. STOHZ outputs are also driven high if their corresponding ST-BUS outputs are not in use. Figure 20 gives an example when channel 2 of a given ST-BUS output is programmed in the high impedance state, the corresponding STOHZ pin drives high for one channel time at the channel 2 timeslot. By default, the output timing of the STOHZ signals follow the same timing as their corresponding STo signals including any user-programmed output channel and bit delay and fractional bit advancement. In addition, the device allows users to advance the STOHZ signals from their default positions to a maximum of four 15.2 ns steps (or four 1/4 bit steps) using Bit 3 to 5 of the Stream Output Control Register (SOCR). Bit 6 in the Stream Output Control Register selects the step resolution as 15.2 ns or 1/4 data bit. The additional advancement feature allows the STOHZ signals to better match the high impedance timing required by the external ST-BUS drivers. Figure 20 - Example: External High Impedance Control Timing ## 2.4 Data Delay Through The Switching Paths To maintain the channel integrity in the constant delay mode, the usage of the input channel delay and output channel delay modes affect the data delay through various switching paths due to additional data buffers. The usage of these data buffers is enabled by the input and output channel delay bits (STIN#CD6-0 and STO#CD6-0) in the Stream Input Delay and Stream Output Offset Registers. However, the input and output bit delay or the input and output fractional bit offset have no impact on the overall data throughput delay. In the following paragraphs, the data throughput delay (T) is expressed as a function of ST-BUS frames, input channel number (m), output channel number (n), input channel delay (α) and output channel delay (β). Table 5 describes the variable range for input streams and Table 6 describes the variable range for output streams. Table 7 summarizes the data throughput delay under various input channel and output channel delay conditions. | Input Stream
Data Rate | Input Channel
Number (m) | Possible Input channel delay (α) | | |---------------------------|-----------------------------|----------------------------------|--| | 2 Mb/s | 0 to 31 | 1 to 31 | | | 4 Mb/s | 0 to 63 | 1 to 63 | | | 8 Mb/s | 0 to 127 | 1 to 127 | | Table 5 - Variable Range for Input Streams | Output Stream
Data Rate | Output Channel
Number (n) | Possible Output channel delay (β) | | |----------------------------|------------------------------|-----------------------------------|--| | 2 Mb/s | 0 to 31 | 1 to 31 | | | 4 Mb/s | 0 to 63 |
1 to 63 | | | 8 Mb/s | 0 to 127 | 1 to 127 | | **Table 6 - Variable Range for Output Streams** | Input Channel Delay OFF | Input Channel Delay ON | Input Channel Delay OFF | Input Channel Delay ON | |--------------------------|---------------------------------|--|--| | Output Channel Delay OFF | Output Channel Delay OFF | Output Channel Delay ON | Output Channel Delay ON | | T = 2 frames + (n-m) | T = 3 frames - α + (n-m) | $T = 2 \text{ frames} + \beta + (n-m)$ | T= 3 frames - α + β + (n-m) | Table 7 - Data Throughput Delay By default, when the input channel delay and output channel delay are set to zero, the data throughput delay (\mathbf{T}) is: $\mathbf{T} = \mathbf{2}$ frames + (\mathbf{m} - \mathbf{n}). Figure 21 shows the throughput delay when the input Ch0 is switched to the output Ch0. Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switched to Output Ch0 When the input channel delay is enabled and the output channel delay is disabled, the data throughput delay is: T = 3 frames - $\alpha + (m-n)$. Figure 22 shows the data throughput delay when the input Ch0 is switched to the output Ch0. Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disabled for Input Ch0 switched to Output Ch0 When the input channel delay is disabled and the output channel delay is enabled, the throughput delay is: T = 2 frames + β + (m-n). Figure 23 shows the data throughput delay when the input Ch0 is switched to the output Ch0. Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enabled for Input Ch0 switch to Output Ch0