

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Description

The ZMID5201, ZMID5202, and ZMID5203 family of inductive position sensor ICs are used for absolute rotary or linear motion sensing in automotive, industrial, medical, and consumer applications. The ZMID520x uses the physical principles of induction in a wire loop and eddy currents to detect the position of an electrically conducting target that is sliding or rotating above a set of coils, consisting of one transmitter coil and two receiver coils.

The three coils are typically printed as copper traces on a printed circuit board (PCB). They are arranged such that the transmitter coil induces a secondary voltage in the receiver coils that depends on the position of the metallic target above the coils.

A signal representative of the target's position over the coils is obtained by demodulating and processing the secondary voltages from the receiver coils. The target can be any kind of metal, such as aluminum, steel or a PCB with a printed copper layer.

The ZMID5201/02/03 ICs are fully qualified according to the automotive standard AEC-Q100 grade 0 (-40°C to 150°C ambient temperature).

Three versions with different output interfaces are available:

ZMID5201: Analog output

ZMID5202: PWM digital output

ZMID5203: SENT digital output

Available Support

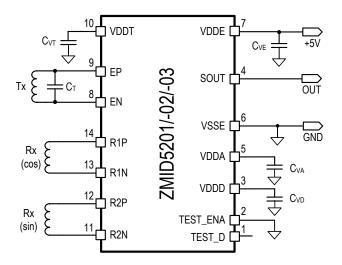
IDT provides Application Modules that demonstrate ZMID520x position sensing, including rotary, arc, and linear applications.

Physical Characteristics

Wide operation temperature: -40 C to +150°C

Supply voltage: 4.5V to 5.5V

Small 14-TSSOP package


Typical Applications

- Rotary position sensors up to 360°; e.g. steering angle sensors, potentiometer replacement
- Small-angle sensors or arc-motion sensors; e.g. pedal, vehicle level, or valve sensors
- Linear motion sensors; e.g. linear-actuator position sensors, fluid-level sensors

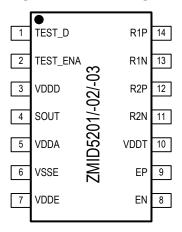
Features

- Position sensing based on inductive principle
- Cost effective; no magnet required
- Immune to magnetic stray fields; no shielding required
- Suitable for harsh environments and extreme temperatures
- Only three wires (ground, supply, output)
- Nonvolatile user memory; programming through output pin
- Single IC supports on-axis and off-axis rotation, linear motion, and arc motion sensing
- High resolution, even for small angle ranges
- High accuracy: ≤ 0.2% full scale
- 9-point user linearization
- Rotation sensing up to a full turn of 360°
- Overvoltage and reverse-polarity protection:
 -14V to +18V maximum, depending on product
- ESD and short-circuit protection
- Power or ground loss detection
- Facilitates redundant design requirements
- Programmable non-linearity correction
- Adaptive gain control supporting a wide range of coil designs and target displacement
- The ZMID5201/02/03 products are safety-related, intermediate hardware parts supporting ISO26262-compliant systems in regard to random failures

Application Circuit

Contents

1.	Pin /	Assignments	4
2.	Pin [Descriptions	4
3.	Abso	olute Maximum Ratings	5
4.	Ope	rating Conditions	6
5.	Elec	trical Characteristics	7
6.	Circ	uit Description	
	6.1	Overview	
	6.2	Block Diagram	10
7.	Red	undant Connection	11
8.	Prot	ection and Diagnostics	12
	8.1	I/O Protection	12
	8.2	Diagnostics	12
	8.3	Functional Safety	12
9.	ZMII	D5201 Inductive Sensor with Analog Output	13
10.	ZMI	D5202 Inductive Sensor with PWM Output	16
11.	ZMII	D5203 Inductive Sensor with SENT Output	19
	11.1	SENT Protocol	20
12.	Prog	gramming Options	23
13.	Ope	ration at High Rotation Speeds	24
14.	Inter	polation, Linearity Error Correction	25
15.	Appl	lication Examples	26
16.	Pack	kage Outline Drawings	28
17.	Mark	king Diagram	28
18.	Orde	ering Information	29
19.	Revi	ision History	30
		of Figures	
-		Pin Assignments for 14-TSSOP Package – Top View	
•		Parallel Resonator Circuit	
Figu		Coil Design for a Linear Motion Sensor	
•	re 4.	Block Diagram	
•	re 5.	Application Diagram, Dual Redundant Sensor with Shared Transmit Coil	
Figu		External Components for ZMID5201 Analog Interface with Pull-Down Resistor	
Figu		External Components for ZMID5201 Analog Interface with Pull-up Resistor	
Figu		Example of ZMID5201 Analog Output Transfer Function and Programming Options	
•	re 9.	External Components for ZMID5202 PWM Interface with Pull-Up Resistor	
Figu	re 10.	PWM Signal Range	17


Figure 11.	Example of PWM Output Signal	18
Figure 12.	. Example of ZMID5202 PWM Output Transfer Function and Programming Options	18
Figure 13.	External Components for ZMID5203 SENT Interface, Option A	19
Figure 14.	. External Components for ZMID5203 SENT Interface, Option B	19
Figure 15.	External Components for ZMID5203 SENT Interface, Option C	19
Figure 16.	. SENT Nibble Output for Value = 15 _{DEC}	21
Figure 17.	. SENT Frame	21
Figure 18.	Example of ZMID5203 Output Transfer Function and Programming Options	22
Figure 19.	Relationship between Resolution and Rotational Speed	24
Figure 20.	Example Setup: Linear Motion	26
Figure 21.	Example Setup: Arc Motion	26
Figure 22.	. Example Setup: End-of-Shaft Rotation, On-Axis, 1 × 360°	26
Figure 23.	Example Setup: Side-Shaft Rotation, Off-Axis, 1 × 360°	26
Figure 24.	Example Setup: Side-Shaft Rotation, Off-Axis, 2 × 180°	27
Figure 25.	Example Setup: Side-Shaft Rotation, Off-Axis, 6 × 60°	27
List o	of Tables	
Table 1.	Pin Descriptions	4
Table 2.	Absolute Maximum Ratings	
Table 3.	Operating Conditions	
Table 4.	ZMID5201/02/03 Electrical Characteristics	
Table 5.	Coil Specifications	
Table 6.	ZMID5201 Analog Output Buffer Characteristics	
Table 7.	ZMID5202 PWM Output Buffer Characteristics	16
Table 8.	ZMID5203 SENT Output Buffer Characteristics	20
Table 9.	SENT Nibble Output for Value = 0 _{DEC}	20
Table 10.	SENT Tick Length	21
Table 11.	Programming Options Overview	23
Table 12.	Maximum Output Data Rate	24
Table 13.	Resolution at Different Rotation Speeds	25
Table 14.	Linearity Correction Points	25
Table 15.	Examples of Resolution Differences Depending on Product	27

1. Pin Assignments

The ZMID5201/02/03 ICs are available in a 14-TSSOP RoHS package.

Figure 1. Pin Assignments for 14-TSSOP Package – Top View

2. Pin Descriptions

Table 1. Pin Descriptions

Number	Name	Туре	Description
1	TEST_D	Input/output	Factory test pin; must be left unconnected.
2	TEST_ENA	Input/output	Factory test pin. Connect to the VSSE pin.
3	VDDD	Supply	Internal regulated digital supply voltage. Connect capacitor C_{VD} = 100nF from the VDDD pin to the VSSE pin, no other load.
		Analog output: ZMID5201 only	Analog output (also referred to as AOUT for the ZMID5201). Refer to section 9, Figure 6, and Figure 7 for external connections.
4	SOUT	PWM digital output: ZMID5202 only	PWM digital output (also referred to as PWM OUT for the ZMID5202). Refer to section 10 and Figure 12 for external connections.
4		SENT digital output: ZMID5203 only	SENT output (also referred to as SENT OUT for the ZMID5203). Refer to section 11, Figure 13, Figure 14, and Figure 15 for external connections.
4		Digital input/output: programming only	Digital One-Wire Interface (OWI) used during programming.
5	VDDA	Supply	Internal regulated analog supply voltage. Connect C_{VA} = 100nF from the VDDA pin to the VSSE pin; no other load.
6	VSSE	Ground	Common ground connection.
7	VDDE	Supply	External supply voltage. Connect the VDDE pin to C_{VE} = 100nF capacitor in parallel with a 1pF to 10pF capacitor connected to the VSSE pin.
8	EN		Connect the transmitter coil between EP and EN. The resonant frequency is adjusted with a
9	EP	Analog output	parallel capacitor C _T between EP and EN (see application diagram on page 1 and block diagram in Figure 4).

Number	Name	Туре	Description
10	VDDT	Supply	Internal supply voltage for transmitter amplifier. Connect to C _{VT} = 100nF to VSSE.
11	R2N	Analog input	Connect receiver ceil 2 between the D2N and D2D nine
12	R2P	Analog input	Connect receiver coil 2 between the R2N and R2P pins.
13	R1N	Analog input	Connect receiver ceil 1 between the D1N and D1D nine
14	R1P	Analog input	Connect receiver coil 1 between the R1N and R1P pins.

3. Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the ZMID5201/02/03 at the absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions could affect device reliability.

Table 2. Absolute Maximum Ratings

Note: See important notes at the end of the table.

Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{VDDE}	External supply voltage		-18	18	V
Vout_ana	ZMID5201 analog output voltage on the	For negative voltage, external current must be limited to 10mA	-14	14	V
V OUT_ANA	AOUT pin ^[a]	Without external current limitation	-0.3	14	V
V _{OUT_PWM}	ZMID5202 PWM output voltage on the	For negative voltage, external current must be limited to 10mA	-14	18	V
	PWM OUT pin ^[a]	Without external current limitation	-0.3	18	V
Vout_sent	ZMID5203 SENT output voltage on the	For negative voltage, external current must be limited to 10mA	-14	18	V
	SENT OUT pin ^[a]	Without external current limitation	-0.3	18	V
Vosc_coil	Oscillator coil pins: EP, EN		-0.3	5.5	V
V_{R1P}	Receiver coil pin: R1P				
V_{R1N}	Receiver coil pin: R1N		0.0		.,,
V_{R2P}	Receiver coil pin: R2P		-0.3	3.6	V
V_{R2N}	Receiver coil pin: R2N				
V _{TEST_ENA}	Test pin: TEST_ENA		-0.3	5.5	V
V _{TEST_D}	Test pin: TEST_D		-0.3	3.6	V
V_{VDDA}	Regulated supply voltage pin: VDDA		-0.3	3.6	V
V_{VDDD}	Regulated supply voltage pin: VDDD		-0.3	3.6	V
V_{VDDT}	Regulated supply voltage pin: VDDT		-0.3	4.2	V

[[]a] The SOUT pin is referred to as the AOUT pin for the ZMID5201; PWM OUT for the ZMID5202; and SENT OUT for the ZMID5203.

4. Operating Conditions

Conditions: VDDE = 5V $\pm 10\%$, $T_{AMB} = -40$ °C to +150°C.

Table 3. Operating Conditions

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Тамв	Ambient temperature		-40		150	°C
TJ	Junction temperature		-40		175	°C
T _{STOR}	Storage temperature		-50		150	°C
R _{THJA}	Thermal resistance junction to ambient				140	°C/W
V _{VDDE}	Supply voltage		4.5	5	5.5	٧
	Electrostatic discharge, HBM 100pF/1.5kΩ	Pins VSS, VCC	±4			kV
ESD		Pin SOUT ^[a]	±3			kV
		All other pins	±2			kV

[[]a] The SOUT pin is referred to as the AOUT pin for the ZMID5201, PWM OUT for the ZMID5202, and SENT OUT for the ZMID5203.

5. Electrical Characteristics

The following electrical specifications are valid for the operating conditions as specified in Table 3: (T_{AMB} = -40°C to 150°C).

Table 4. ZMID5201/02/03 Electrical Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
VVDDE_TH_H	VDDE switch ON threshold	The device is activated when VDDE increases above this threshold			4.4	V
tstart	Startup Time	Time between VDDE > V _{VDDE_TH_H} and valid output at SOUT		5	9	ms
VVDDE_TH_L	VDDE switch OFF threshold	The device is deactivated when VDDE decreases below this threshold	4			V
V _{VDDE_HYST}	VDDE hysteresis		0.1			V
Vvdde_ovh	Over-voltage detection high	The device is deactivated after VDDE increases above this voltage			7	V
VVDDE_OVL	Over-voltage detection low	The device is activated after VDDE decreases below this voltage	5.6			V
V _{VDDA}	Regulated analog supply output voltage	Internally regulated, fixed	3.0	3.3	3.6	V
Vvddd	Regulated digital supply output voltage	Internally regulated, fixed	1.8	2.0	2.5	V
Vvddt	Regulated coil driver supply output voltage	Internally regulated, user program- mable. Nominal voltage at room temperature	2.7	3.3	4.1	V
TCVDDT	Temperature coefficient of VDDT regulator			4000		ppm/K
		Without coils. no load	5		9	mA
Icc	Current consumption	With coils, no load; depending on programmable Tx coil current		12	20	mA
Angle Calculatio	n					
t SAMPLE	Data acquisition time		45	50	55	μs
trefresh	Output update rate	Analog output			10	kHz
RES _{CORDIC}	CORDIC resolution	Internal; over 360° electrical		16		bits
Performance						
INL	Accuracy ^[a]	See note [a].		0.2		% FS

[[]a] The achievable accuracy depends on proper coil and target design. Nonlinearity errors in the calculated position might be further improved by 9-point linearization.

Table 5. Coil Specifications

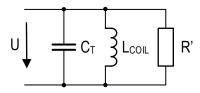
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
L	Excitation coil inductance	For Tx coil as shown in block diagram in Figure 4	1.5		30	μH
Q	Quality factor ^[a]	For Tx coil as shown in block diagram in Figure 4	10			
fosc	Excitation frequency	LC oscillator	2.2	3.5	5.6	MHz
V_{TX_P}	Excitation coil amplitude	Peak voltage, pins EP vs. EN			7200	mV_{pp}
V_{RX}	Receive coil amplitude	Input signal full range	50		360	mV_{pp}

[[]a] Recommendation: To ensure a good quality factor and low temperature drift for the LC tank circuit, use capacitors with NP0 (negative-positive-zero) or C0G (C-zero-G) ceramics. Use Equation 1 to calculate the Q factor for the circuit.

$$Q_p = \frac{R'}{w_r L} = R' \sqrt{\frac{C}{L}}$$
 Equation 1

Where

Q_p Quality factor of a parallel resonator circuit as illustrated in Figure 2


R' Equivalent parallel resistor

 ω_r L Coil reactance at resonance frequency

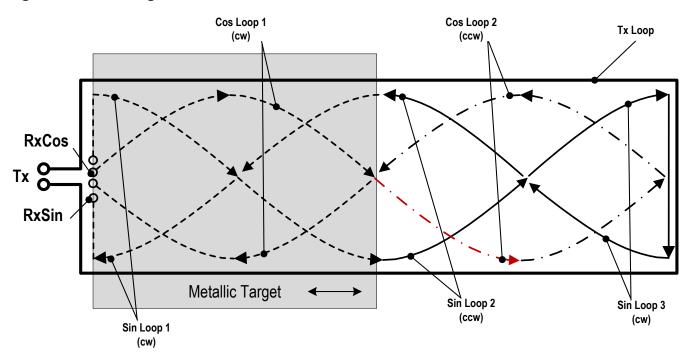
 C_T Capacitance of parallel capacitor C_T

 L_{COIL} Inductance of the printed circuit Tx coil

Figure 2. Parallel Resonator Circuit

6. Circuit Description

6.1 Overview

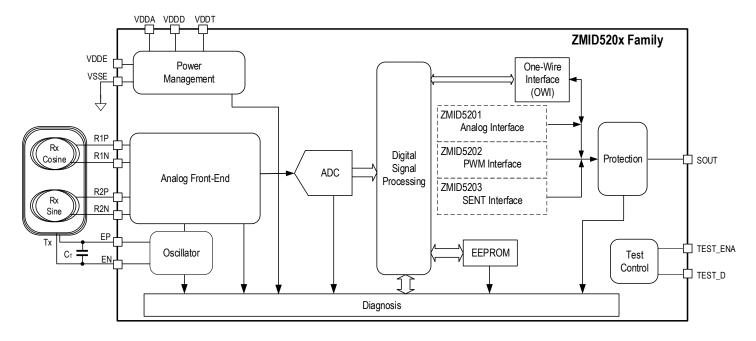

The ZMID5201/02/03 ICs are inductive position sensors for use in automotive, industrial, medical and consumer applications. They operate on the principles of induction in a wire loop and eddy currents. The sensing element is a set of coils that are directly connected to the IC. The coils consist of one transmit coil and two receive coils. The transmit coil and a capacitor form an LC oscillator that is directly driven by the IC. It generates a magnetic field within the transmit coil area that is picked up by the receiver coils.

The voltage generated by the receiver coils depends on the position of the target in the sense that areas shielded by the target generate a weaker secondary voltage compared to areas that are not shaded by the target.

The two receive coils are arranged so that the secondary voltages are relatively phase shifted by electrical 90°, thereby generating a response curve (receive coil output voltages versus position) that resembles a sine and cosine waveform over the range of target travel. By having a sine and cosine shaped response, a ratiometric measurement is possible, which greatly improves the robustness of the system because the output signal will remain stable, even if the gap between coils and target is varied.

Figure 3 shows an example of a linear motion sensor with one transmit coil (Tx loop) and two receive coils (Sin loop and Cos loop). The arrows in the receive coils indicate the direction of the induced current relative to each other. The direction of the current either clockwise (cw) or counterclockwise (ccw) determines the polarity of the voltage generated in each loop (RxCos, RxSin).

Figure 3. Coil Design for a Linear Motion Sensor



6.2 Block Diagram

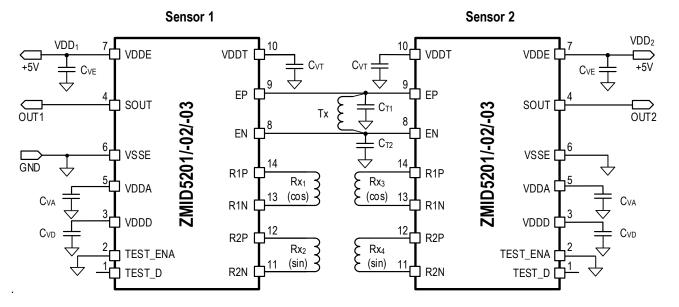
Figure 4 shows the block diagram of the ZMID5201/02/03

Figure 4. Block Diagram

The main building blocks include the following:

- Power management: power-on-reset (POR) circuit, low drop-out (LDO) regulators for internal supplies.
- Oscillator: generation of the transmit coil signal.
- Analog front-end: demodulator and gain control for the receive signals.
- Analog-to-digital converter (ADC): conversion into digital domain.
- Digital signal processing: offset correction; conversion of sine and cosine signals into angle and magnitude; angle range adjustment; and linearization.
- EEPROM: nonvolatile storage of factory and user-programmable settings.
- One-wire interface (OWI): programming of the chip through the output pin.
- Interface options:
 - Analog output for ZMID5201
 - PWM output for ZMID5202
 - SENT output for ZMID5203
- Protection: overvoltage, reverse polarity, short circuit protection.
- Test control: factory testing; connect TEST_D and TEST_ENA pins as indicated in Table 1.

Note: For the LC tank circuit, the capacitor C_T should be placed as close as possible to the ZMID520x pins EP and EN to minimize the loop area between pins and capacitor(s).


7. Redundant Connection

In applications requiring extended reliability, a redundant set-up is required. The ZMID5201/02/03 ICs also support this requirement by either having two identical but physically separated sensors or by interleaving the 2×2 receiving coils and using one shared transmitter coil.

In Figure 5, two sensors share one common transmitter coil (Tx). Both sensors must share the same ground connection (GND) but could have separate positive supply connections (VDD₁, VDD₂). This setup is particularly useful for designs having limited coil space.

In normal operation, both chips drive the transmitter coil (Tx) and calculate the target's position through the receiving coil signals. If one chip fails to drive the transmitter coil, for example due to loss of supply, the host system can detect the failed part (loss of signal) while the second chip continues to drive the coil and maintains correct operation.

Figure 5. Application Diagram, Dual Redundant Sensor with Shared Transmit Coil

8. Protection and Diagnostics

8.1 I/O Protection

In order to meet the automotive requirements for overvoltage and reverse-polarity protection on both the output and power supply pins, the ZMID5201/02/03 ICs include several protection and diagnosis features:

- Detection of broken power line, interrupted output signal, and broken ground connection on the receiving side
- 2. Protection against short circuit of output pin to VSSE, output pin to VDDE, and supply VDDE to VSSE
- Overvoltage protection on supply pin VDDE
- 4. Overvoltage protection on output pin
- 5. Reverse-polarity protection on supply pin VDDE to VSSE
- 6. Reverse-polarity protection on output pin to VSSE
- 7. Reverse-polarity protection on output pin to VDDE

8.2 Diagnostics

The ZMID5201/02/03 monitors a number of features to accommodate ISO26262 diagnostic requirements. The monitored diagnostic features include the following:

- 1. Supply voltage too low or too high
- 2. Rx sine coil: open, short, short to ground, or short to Rx cosine coil
- 3. Rx sine coil: amplitude error or offset error
- 4. Rx cosine coil: open, short, short to ground, or short to Rx sine coil
- Rx cosine coil: amplitude error or offset error
- 6. Tx coil: amplitude too low or open
- 7. Tx coil: frequency out of range
- 8. LC oscillator failure
- 9. CORDIC magnitude too high or too low
- 10. Missing target
- 11. Internal EEPROM failure
- 12. ADC signal processing overflow

8.3 Functional Safety

The ZMID5201/02/03 products are safety-related, intermediate hardware parts supporting ISO26262-compliant systems in regard to random failures, and, as such, they have been qualified according to ISO 26262:2012 Part 8, Clause 13 (Table 6).

Integration of ZMID5201/02/03 products into safety-related applications requires a safety analysis performed by the user.

Note: The ZMID520x Functional Safety Manual (FSM) is available on request (requires a non-disclosure agreement).

9. ZMID5201 Inductive Sensor with Analog Output

Typical interface circuits for the ZMID5201 are shown in Figure 6 and Figure 7.

Note: The pull-up or pull-down resistors are not mandatory for normal operation. However, they are recommended for proper detection of broken ground or broken supply wires at the receiving side.

Note: R_F, C_F = optional low pass filter. Values depend on user's application.

Figure 6. External Components for ZMID5201 Analog Interface with Pull-Down Resistor

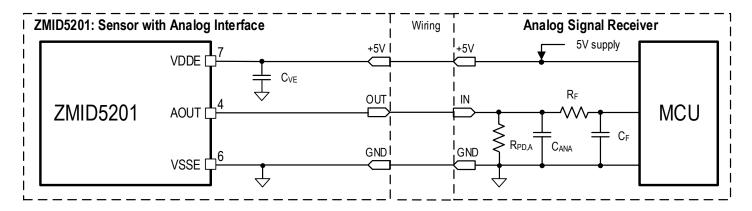
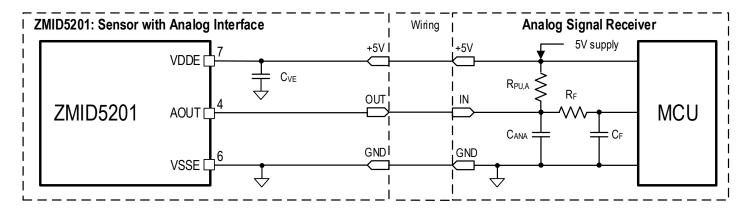



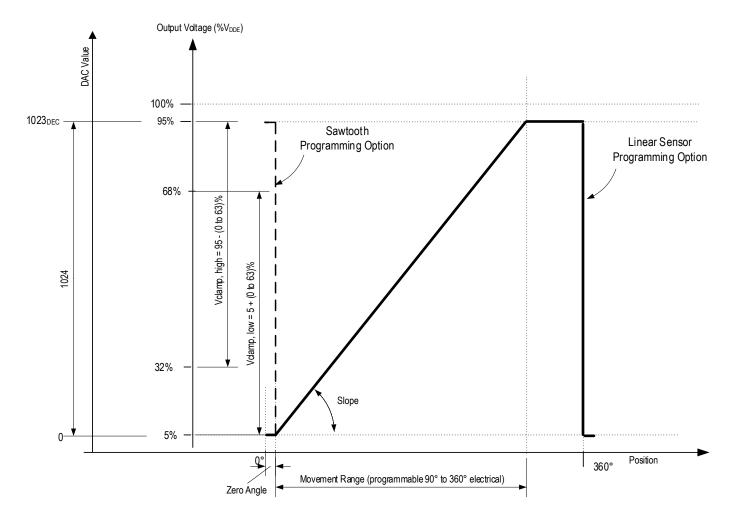
Figure 7. External Components for ZMID5201 Analog Interface with Pull-up Resistor

Table 6. ZMID5201 Analog Output Buffer Characteristics

Note: Refer to the VDDE pin description in Table 1 for the value of C_{VE}.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Out_err	Analog output error	Offset and nonlinearity error	-6		6	mV
Step_large	Output response, large step	Step = 4.5V, C _{ANA} = 10nF, R _{PD,A} = 5kΩ, 10% to 90%			160	μs
Tupd,ana	Analog output update rate	Minimum oversampling rate	50.1	55.7	61.2	μs
	(programmable)	Maximum oversampling rate	401	445.4	490	
Cana	Output capacitor for analog		0.47		27	nF
RES _{ANA}	Analog output resolution		10			bits
R _{PU,A}	Output pull-up resistor		3	4.7	10	kΩ
R _{PD,A}	Output pull down resistor		3	4.7	10	kΩ
	Normal operating range	Limits are programmable	5		95	%VDDE
Diag_high_ana	Diagnostic high for analog		96			%VDDE
Diag_low_ana	Diagnostic low for analog				4	%VDDE
V _{CL_L}	Clamping level , low [a]	Programmable in 1% steps	5		68	%VDDE
V _{CL_H}	Clamping level, high [a]	Programmable in 1% steps	32		95	%VDDE
Current_limit	Output node short current	Short to VDDE or VSSE			50	mA

[[]a] Low clamping level must be programmed lower than the V_{CL_H} high clamping level.


For the ZMID5201, the 100% position range is mapped to a voltage range from 250mV to 4750mV. The stepping rate of the clamping parameters is 1% so that the analog voltage stepping rate is 47.5 mV/%. The diagnostic low level is $\leq 200 \text{mV}$ and the diagnostic high level is $\geq 4800 \text{mV}$.

Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero angle offset, slope programming (linear vs. sawtooth), and clamping level register settings (refer to section 12 and Figure 8). For example, for a pedal sensor with ratiometric analog output (ZMID5201), having 20° mechanical degrees of movement range and clamping levels of 5% and 95%, the output value 0.25V (5% of VDDE) represents 0° mechanical degrees and the output value 4.75V (95% of VDDE) represents 20° mechanical degrees. Note that the slope can be programmed to either rising (as shown in Figure 8) or falling with increasing electrical angle.

Figure 8. Example of ZMID5201 Analog Output Transfer Function and Programming Options

Note: The following figure illustrates an example of 5% and 95% clamping levels and a rising slope setting.

10. ZMID5202 Inductive Sensor with PWM Output

The typical interface circuit for the ZMID5202 is shown in Figure 9.

Note: R_F , C_F = optional low pass filter. Values depend on user's application.

Figure 9. External Components for ZMID5202 PWM Interface with Pull-Up Resistor

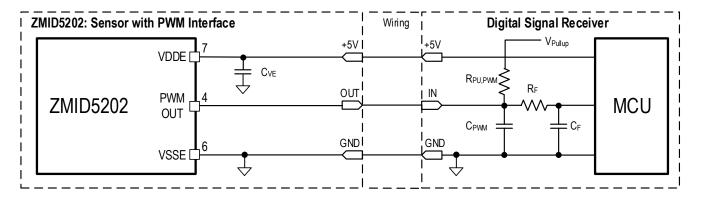
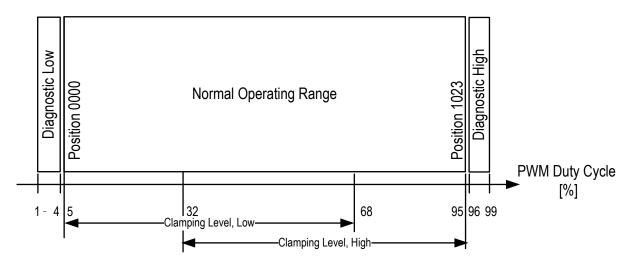


Table 7. ZMID5202 PWM Output Buffer Characteristics

Note: Refer to VDDE pin in Table 1 for the value of C_{VE}.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
f _{PWM}	PWM output frequency	User programmable	Typical – 7%	0.125	Typical + 7%	kHz
				0.25		
				0.50		
				0.75		
				1.00		
				1.25		
				1.50		
				2.00		
tpwm_fall	PWM fall time	C_{PWM} =4.7nF, $R_{PU,PWM}$ =1k Ω , V_{Pullup} =5V, 2 correction bits	2.45		4.55	μs
RES _{PWM}	PWM resolution		10			bits
V _{Pullup}	PWM output voltage (pull-up)				16	V
V_{OL_PWM}	PWM output LOW level	V _{Pullup} =5V to V _{Pullup} =16V			10	$%V_{Pullup}$
V _{OH_PWM}	PWM output HIGH level	V _{Pullup} =5V to V _{Pullup} =16V	90			$%V_{Pullup}$
D	Dullup register for DWM	V _{Pullup} =5V	1		10	kΩ
R _{PU,PWM}	Pullup resistor for PWM	V _{Pullup} =16V	3		10	
СРИМ	Output capacitor for PWM		1	4.7	20	nF
	Normal operating range	Limits are programmable	5		95	% duty cycle



Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Diag_high_PWM	Diagnostic high for PWM		96	97.5		% duty cycle
Diag_low_PWM	Diagnostic low for PWM			2.5	4	% duty cycle
D _{CL_L}	Clamping level , low [a]	Programmable in 1% steps	5		68	% duty cycle
D _{CL_H}	Clamping level, high [a]	Programmable in 1% steps	32		95	% duty cycle

[[]a] Low clamping level must be programmed lower than the D_{CL_H} high clamping level.

The 100% position range is mapped to a duty cycle of 5% to 95%. A clamping step of 1% is mapped to a duty cycle change of 0.9%. The diagnostic low level is mapped to a 2.5% (typical) duty cycle; the diagnostic high level is mapped to a 97.5% (typical) duty cycle.

Figure 10. PWM Signal Range

The graph in Figure 11 shows examples of different PWM signals with 5%, 50%, and 95% duty cycle, representing the minimum, 50%, and maximum output values.

Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero angle offset, slope programming (linear or sawtooth), and clamping level (minimum/maximum duty cycle) register settings (see section 12 and Figure 12). For example, for a pedal sensor with PWM output (ZMID5202), having 20° mechanical degrees of movement range and clamping levels of 5% and 95%, the output value 0 represents 0° mechanical degrees and the output value 1023_{DEC} represents 20° mechanical degrees. Note that the slope can be programmed to either rising (as shown in Figure 12) or falling with increasing electrical angle.

Figure 11. Example of PWM Output Signal

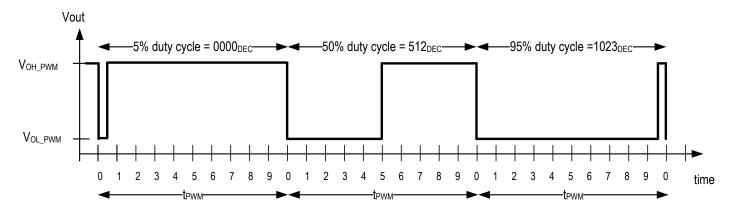
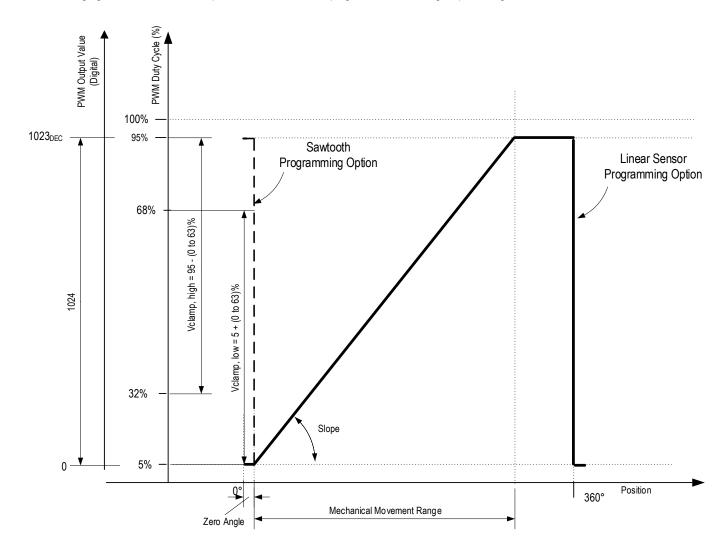



Figure 12. Example of ZMID5202 PWM Output Transfer Function and Programming Options

Note: The following figure illustrates an example of 5% and 95% clamping levels and a rising slope setting.

11. ZMID5203 Inductive Sensor with SENT Output

Three options for the typical interface circuit for the ZMID5203 are shown in Figure 13, Figure 14, and Figure 15.

Note: R_F, C_F and R_P = optional low pass filter for the SENT interface. Values depend on user's application.

Figure 13. External Components for ZMID5203 SENT Interface, Option A

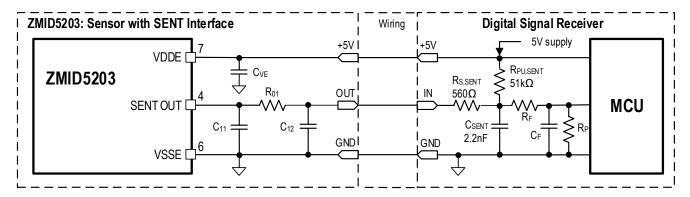


Figure 14. External Components for ZMID5203 SENT Interface, Option B

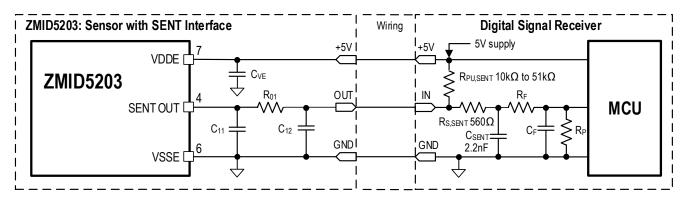
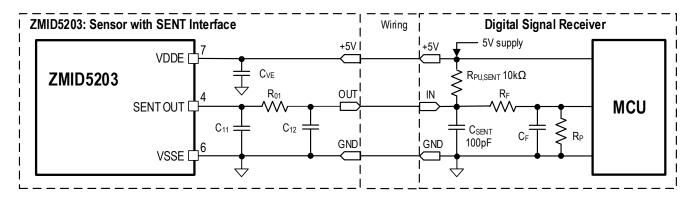
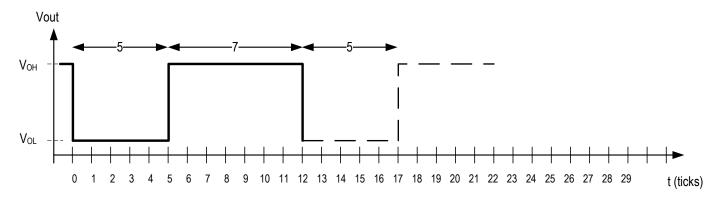



Figure 15. External Components for ZMID5203 SENT Interface, Option C

Table 8. ZMID5203 SENT Output Buffer Characteristics

Note: Refer to VDDE pin in Table 1 for the value of C_{VE}.


Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
RESSENT	SENT output resolution		12			bits
tstable_high	SENT HIGH stabilization time	HIGH level at 3.8V	6			μs
V _{OL}	Output LOW level				0.5	V
V _{OH}	Output HIGH level		4.1			V
R ₀₁	SENT output pi (π) filter resistor	For application circuits options A,B, and C		120		Ω
C ₁₁	SENT output pi (π) filter first capacitor	For application circuits options A, B, and C		2.2		nF
t _{TICK}	Clock tick time		3.0	3.36	3.67	μs
	CENT output ni (=) filter	For application circuit option C		3.9		nF
C ₁₂	SENT output pi (π) filter, second capacitor	For application circuits options A and B		2.2		nF

11.1SENT Protocol

The SENT (Single Edge Nibble Transmission) protocol conforms to SAE J2716, Revision 2. In addition, SENT Pause and CRC can be programmed according to SAE J2716, Revision 3.

For transmitting a nibble with the 0 value, 12 clock ticks are required: a fixed LOW period of 5 ticks followed by a HIGH period of 7 ticks. One tick equals t_{TICK} = 3.0 μ s to 3.67 μ s (see Table 8).

Table 9. SENT Nibble Output for Value = ODEC

For transmitting a nibble with the value 15_{DEC} (1111_{BIN}, F_{HEX}), 27 clock ticks are required: a fixed LOW period of 5 ticks followed by a HIGH period of 22 ticks. The total time for one nibble can be calculated as with the following equation:

$$t_{NIBBLE} = t_{TICK} * (12 + x)$$

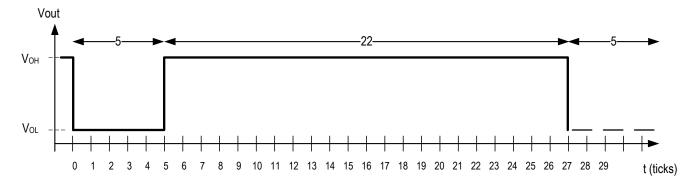

Where x = the nibble decimal value = 0 to 15.

Table 10. SENT Tick Length

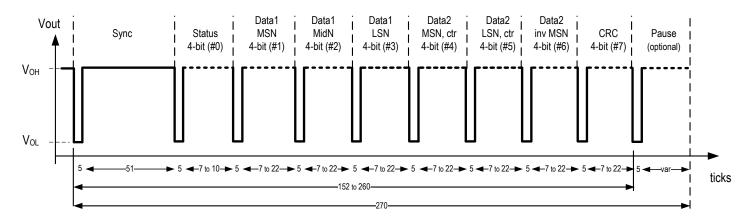

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Number of Ticks	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Figure 16. SENT Nibble Output for Value = 15DEC

Figure 17. SENT Frame

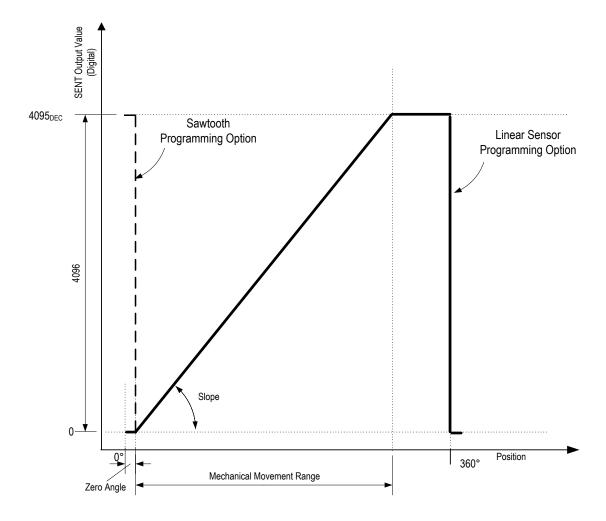
The SENT protocol frame consists of a fixed-length synch pulse (LOW period of 5 ticks followed by a HIGH period of 51 ticks), followed by a status nibble, 6 data nibbles, and a CRC nibble. An optional pause pulse can be programmed to adjust the SENT frame to a fixed length of 270 ticks.

Note that the status nibble has a maximum length of only 5 + 10 = 15 ticks since bits 2 and 3 are always zero:

Status nibble: 0000_{BIN} = Normal operation 0011_{BIN} = Diagnostic state

The SENT output frame format can be programmed in one of two options:

1. 12-bit position data + 8-bit rolling counter ("ctr" in Figure 17) + inverted copy of Data1 MSN (nibble #1 in Figure 17) + cyclic redundancy check (CRC). In this option, the SENT frame length is between 152 and 260 ticks with a variable frame length and 270 ticks with a fixed frame length.


2. 12-bit position data + "000" data + CRC. In this option, if the pause pulse is disabled, the SENT frame has the shortest possible length: less than 220 ticks.

Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero angle offset and slope register settings (see section 12 and Figure 18). For example for a pedal sensor with SENT output (ZMID5203) with 20° mechanical degrees of movement range, the output value 0 represents 0° mechanical degrees and the output value 4095_{DEC} represents 20° mechanical degrees. Note that the slope can be programmed to either rising (as shown in Figure 18) or falling with increasing electrical angle.

Figure 18. Example of ZMID5203 Output Transfer Function and Programming Options

Note: The following figure illustrates an example using the rising slope setting.

12. Programming Options

The ZMID520x family offers a variety of programming options. The IC is programmed through the output pin via a proprietary bi-directional one-wire interface (OWI). For programming, no additional wires or programming voltage is required, so the IC can be fully programmed in the field. Note: A full description of the IDT one-wire interface protocol and a detailed memory map are available on request. The main programming functions are described in Table 11.

Table 11. Programming Options Overview

Function Products		Programming Option	Notes			
Coil input	All	Reverse coil polarity (increasing or decreasing output relative to target movement)	Invert coils to change the direction of the output values			
Input amplifier All		Offset of sine and cosine channels	Offset correction before CORDIC angle calculation			
Slope of transfer function	All	Steepness of slope, rising/falling	Adjustment of angle range			
Zero position	All	Zero angle	To match mechanical zero position with electrical zero position			
Linearization	All	9-point linearization	To increase accuracy and compensate for imperfections in coil design			
Transmit coil	All	Coil driver current and amplitude	To optimize Tx oscillator			
Output mode	All	Linear or sawtooth	Single or multiple ramps			
Clamp low, clamp high	ZMID5201	Minimum, maximum output voltage	Define normal operating range			
Clamp low, clamp high	ZMID5202	Minimum, maximum PWM duty cycle	Define normal operating range			
Diagnostic levels	ZMID5201	Output voltage in diagnostic mode	To indicate diagnostic alarm			
Diagnostic levels	ZMID5202	PWM duty cycle in diagnostic mode	To indicate diagnostic alarm			
PWM fall time	ZMID5202	PWM output signal slew rate	To optimize EMC performance			
PWM base frequency	ZMID5202	PWM frequency	Base frequency of PWM signal			
SENT CRC	ZMID5203	CRC according to SAE J2716, Rev.2 or Rev.3	Implementation of CRC calculation			
SENT Pause ZMID5203		Optional pause setting according to SAE J2716, Revision 2 or Revision 3	Revision 2: No pause pulse Revision 3: Fixed frame length + pause			
SENT Frame ZMID5203		Type of data transmitted in SENT frame	12-bit position data + 8-bit rolling counter + inverted copy of first data nibble + CRC (see Figure 17)			
			12-bit position data + "000" data + CRC			
		CORDIC magnitude upper and lower levels	To trigger alarm if CORDIC magnitude i out of range			
		Transmit coil frequency alarm	Detects out of range Tx frequency			
Diagnostics	All	Automatic gain control (AGC)	Detects AGC out of range			
		EEPROM double error; shadow register parity error	Internal memory errors			
		R1 or R2 coil open or short	Detect defective receiver coils			
		Signal processing overflow	Internal processing errors			

13. Operation at High Rotation Speeds

The ZMID520x ICs are primarily designed for low-speed or static operation due to their inherent interface types (analog ramp, PWM, SENT). There is no upper speed limit for using the ZMID520x in high speed applications; however, due to the maximum data rate at the various outputs, the resolution (on a rotary application: number of measurements per revolution) will be reduced with increasing speed.

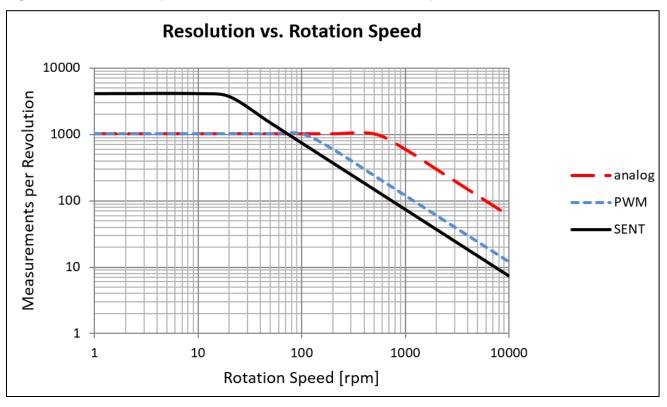

The maximum output data rates for the various versions are given in Table 12.

Table 12. Maximum Output Data Rate

Product	Type of Output	Maximum Output Rate, Updates per Second	Notes			
ZMID5201	Analog ramp	10000	Linear analog ramp			
ZMID5202	PWM	2000	Programmable from 125Hz to 2000Hz			
ZMID5203	SENT	1235	270 ticks at 3µS			

With these maximum output data rates, the resolution versus rotation speed relationship is shown in the graph in Figure 19.

Figure 19. Relationship between Resolution and Rotational Speed

For example, the number of readings per revolution at 10 rpm and 1000 rpm are given in Table 13.

Table 13. Resolution at Different Rotation Speeds

Product	Type of Output	Readings per Revolution at 10rpm	Readings per Revolution at 1000rpm			
ZMID5201	Analog ramp	1024 (10-bit)	600 (9.2-bit)			
ZMID5202	PWM	1024 (10-bit)	120 (6.9-bit)			
ZMID5203	SENT	4096 (12-bit)	74 (6.2-bit)			

14. Interpolation, Linearity Error Correction

A post-CORDIC linearity correction is available to correct nonlinearities and to further increase the overall accuracy of the system.

The correction factors are applied by linear interpolation between 9 equidistant points over one phase (0 to 360°) with one of two options:

- Option 1: Starting at 0° with intervals of 45°
- Option 2: Same as option1 shifted by 22.5°, starting at 22.5° with intervals of 45°

Table 14. Linearity Correction Points

Point	1	2	3	4	5	6	7	8	9
Option 1	0°	45°	90°	135°	180°	225°	270°	315°	360°
Option 2	22.5°	67.5°	112.5°	157.5°	202.5°	247.5°	292.5°	337.5°	382.5° (22.5°)

Note that in a rotating application, correction point 1 (0°) and point 9 (360°) coincide at the same angle. Therefore in such cases, it is useful to use the same correction values for both point 1 and point 9.

In general, the correction points are applicable as follows:

Correction point 1 is used for angles $0^{\circ} \le \alpha < 45^{\circ}$ and optionally for $22.5^{\circ} \le \alpha < 67.5^{\circ}$.

(...)

Correction point 9 is used for angles $315^{\circ} \le \alpha < (360^{\circ} = 0^{\circ})$ and optionally for $337.5^{\circ} \le \alpha < 22.5^{\circ}$.

For each point, an offset can be applied. Angle values between two points are corrected by linear interpolation between the two linearization points.