

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

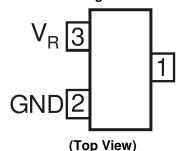
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZRC250

PRECISION 2.5 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE

Description


The ZRC250 uses a bandgap circuit design to achieve a precision micropower voltage reference of 2.5 volts. The device is available in a small outline surface mount package, ideal for applications where space saving is important, as well as a package for through hole requirements.

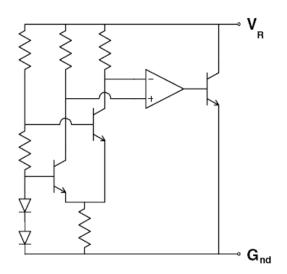
The ZRC250 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZRC250 is recommended for operation between $20\mu A$ and 5mA and so is ideally suited to low power and battery powered applications.

Excellent performance is maintained to an absolute maximum of 25mA, however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA. Superior switching capability allows the device to reach stable operating conditions in only a few microseconds.

Pin Assignments

SOT23 Package Suffix - F

Pin 1 floating or connected to pin 2


Features

- Small outline SOT23 package
- · No stabilizing capacitor required
- Low knee current, 15µA typical
- Typical T_C 30ppm/°C
- Typical slope resistance 0.4Ω
- ±3, ±2 and ±1% tolerance
- Industrial temperature range
- Operating current 20µA to 5mA
- Transient response, stable in less than 10µs
- Green molding compound (No Br, Sb)

Applications

- Battery powered and portable equipment.
- · Instrumentation.
- · Test equipment.

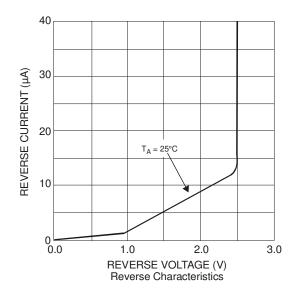
Typical Application Circuit

ZRC250 PRECISION 2.5 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE

Absolute Maximum Ratings (Voltages to GND Unless Otherwise Stated)

Parameter	Rating	Unit
Reverse Current	25	mA
Forward Current	25	mA
Operating Temperature	-40 to 85	°C
Storage Temperature	-55 to 125	°C
Power Dissipation (T _{AMB} = 25°C) SOT23	330	mW

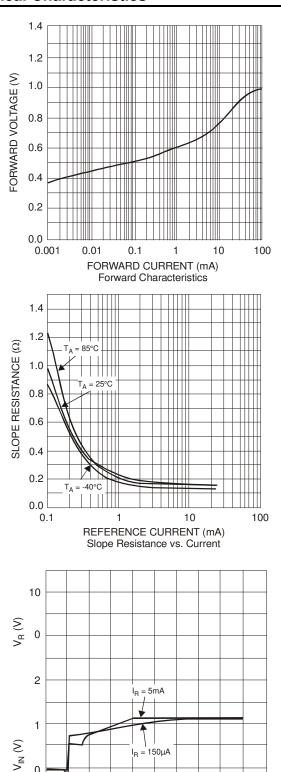
Electrical Characteristics (Test conditions: T_{AMB} = 25°C, unless otherwise specified.)

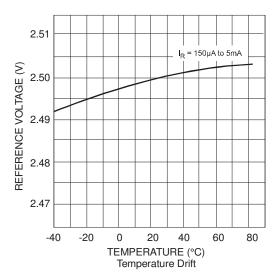

Symbol	Parameter	Condition	Min.	Тур.	Max.	Tol. (%)	Unit
			2.475	2.5	2.525	1	
V_{R}	Reverse breakdown voltage	$I_R = 150 \mu A$	2.45	2.5	2.55	2	V
			2.425	2.5	2.575	3	
I _{MIN}	Minimum operating current			13	20		μΑ
I _R	Recommended operating current		0.02		5		mA
T _C ^(*)	Average reverse breakdown voltage temperature coefficient	I _{R(MIN)} to		30	90		ppm/°C
R _S ^(†)	Slope resistance	I _{R(MAX)}		0.4	1		Ω
Z _R	Reverse dynamic impedance	$I_{R} = 1 \text{mA}$ $f = 100 \text{Hz}$ $I_{AC} = 0.1 I_{R}$		0.3	0.8		Ω
E _N	Wideband noise voltage	$I_R = 150\mu A$ f = 10Hz to 10kHz		60			μV(rms)

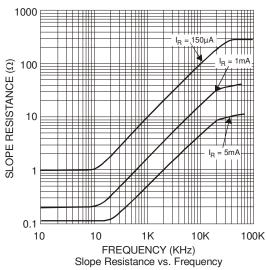
Note:

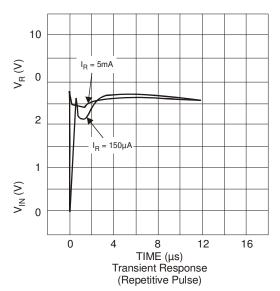
(*)
$$T_C = \frac{(V_{R(MAX)} - V_{R(MIN)})x1000000}{V_Rx(T_{(MAX)} - T_{(MIN)})}$$

Note: $V_{R(MAX)} - V_{R(MIN)}$ is the maximum deviation in reference voltage measured over the full operating temperature range


$$(\dagger) \ R_S = \frac{V_R \, Change \Big(I_{R(MIN)} \, to \, I_{R(MAX)}\Big)}{I_{R(MAX)} - I_{R(MIN)}}$$






PRECISION 2.5 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE

Typical Characteristics

0

8

TIME (µs)

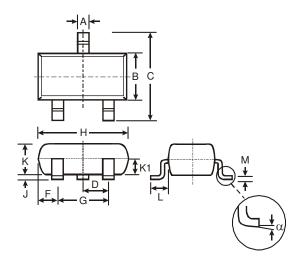
Transient Response (SIngle Pulse)

12

16

0

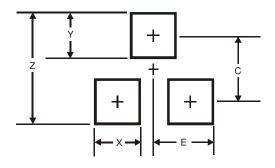
ZRC250 PRECISION 2.5 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE


Ordering Information*

R	Order leference	Tol (%)	Package	Device Mark	Reel Size (inches)	Quantity per reel	Tape Width (mm)
ZRO	C250F01TA	1	SOT23	25J	7	3000	8
ZRO	C250F02TA	2	SOT23	25H	7	3000	8
ZRO	C250F03TA	3	SOT23	25G	7	3000	8

Notes: *All ZRC250A variants (E-Line) are obsolete no longer available for sale. The closest alternative is the SOT23.

Package Outline Dimensions


SOT23

SOT23					
Dim	Min	Max	Тур		
Α	0.37	0.51	0.40		
В	1.20	1.40	1.30		
C	2.30	2.50	2.40		
D	0.89	1.03	0.915		
F	0.45	0.60	0.535		
G	1.78	2.05	1.83		
Η	2.80	3.00	2.90		
J	0.013	0.10	0.05		
K	0.903	1.10	1.00		
K1	-	-	0.400		
L	0.45	0.61	0.55		
М	0.085	0.18	0.11		
α	0°	8°	-		
All Dimensions in mm					

Suggested Pad Layout

SOT23

Dimensions	Value (in mm)
Z	2.9
X	0.8
Υ	0.9
С	2.0
E	1.35

PRECISION 2.5 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com