imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Brief Description

The ZSC31015 is adjustable to nearly all piezoresistive bridge sensors. Measured and corrected bridge values are provided at the SIGTM pin, which can be configured as an analog voltage output or as a one-wire serial digital output.

The digital one-wire interface (OWI) can be used for a simple PC-controlled calibration procedure to program a set of calibration coefficients into an on-chip EEPROM. The calibrated ZSC31015 and a specific sensor are mated digitally: fast, precise, and without the cost overhead associated with trimming by external devices or laser. Integrated diagnostics functions make the ZSC31015 particularly well suited for automotive applications.*

Features

- Digital compensation of sensor offset, sensitivity, temperature drift, and non-linearity
- Programmable analog gain and digital gain; accommodates bridges with spans < 1mV/V and high offset
- Many diagnostic features on chip (e.g., EEPROM signature, bridge connection checks, bridge short detection, power loss detection)
- Independently programmable high and low clipping levels
- 24-bit customer ID field for module traceability
- Internal temperature compensation reference (no external components)
- Option for external temperature compensation with addition of single diode
- Output options: rail-to-rail ratiometric analog voltage (12-bit resolution), absolute analog voltage, digital one-wire interface
- Fast power-up to data out response; output available 5ms after power-up
- Current consumption depends on programmed sample rate: 1mA down to 250µA (typical)
- Fast response time: 1ms (typical)
- High voltage protection up to 30V with external JFET

Benefits

- No external trimming components required
- Simple PC-controlled configuration and calibration via one-wire interface
- High accuracy: ±0.1% FSO @ -25 to 85°C; ±0.25% FSO @ -50 to 150°C
- Single-pass calibration quick and precise

Available Support

- Evaluation Kit available
- Mass Calibration System available
- Support for industrial mass calibration available
- Quick circuit customization possible for large production volumes

Physical Characteristics

- Wide operation temperature: -50°C to +150°C
- Supply voltage 2.7 to 5.5V; with external JFET, 5.5 to 30V
- Small SOP8 package

ZSC31015 Application Circuit

* Not AEC-Q100-qualified.

ZSC31015 Block Diagram

Highly Versatile Applications in Many Markets Including

- Industrial
- * Building Automation
- * Office Automation
- White Goods
- Automotive *
- Portable Devices
- Your Innovative Designs

* Not AEC-Q100-qualified.

Rail-to-Rail Ratiometric Voltage Output Applications

Absolute Analog Voltage Output Applications

Ordering Examples (See section 11 of the data sheet for additional temperature range options.)

Sales Code	Description	Package
ZSC31015EEB	ZSC31015 Die — Temperature range: -50°C to +150°C	Unsawn on Wafer
ZSC31015EEC	ZSC31015 Die — Temperature range: -50°C to +150°C	Sawn on Wafer Frame
ZSC31015EEG1	ZSC31015 SOP8 (150 mil) — Temperature range: -50°C to +150°C	Tube: add "-T" to sales code. Reel: add "-R"
ZSC31015KIT	ZSC31015 ZACwire™ SSC Evaluation Kit: Communication Board, SSC Board, Sensor Replacement Board, USB Cable, 5 IC Samples (SOP8 150mil)	Kit
	(ZACwire™ SSC Evaluation Software can be downloaded from <u>www.IDT.com/ZSC31015</u>)	

() IDT.

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any licens e under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.

Contents

1	Electric	cal Characteristics	7
1	.1. Abs	solute Maximum Ratings	7
1	.2. Re	commended Operating Conditions	7
1	.3. Ele	ctrical Parameters	8
	1.3.1.	Supply/Regulation Characteristics	8
	1.3.2.	Parameters for Analog Front-End (AFE)	8
	1.3.3.	Parameters for EEPROM	8
	1.3.4.	Parameters for A/D Converter	8
	1.3.5.	Parameters for Analog Output (DAC and Buffer)	8
	1.3.6.	Diagnostics	9
	1.3.7.	External Temperature Measurement	9
	1.3.8.	Parameters for ZACwire [™] Serial Interface	9
	1.3.9.	Parameters for System Response	9
1	.4. Ana	alog Inputs versus Output Resolution	10
2	Circuit	Description	13
2	2.1. Sig	nal Flow and Block Diagram	13
2	2.2. Ana	alog Front End	14
	2.2.1.	Bandgap/PTAT and PTAT Amplifier	14
	2.2.2.	Bridge Supply	14
	2.2.3.	PREAMP Block	14
	2.2.4.	Analog-to-Digital Converter (ADC)	15
2	2.3. Dig	ital Signal Processor	15
	2.3.1.	EEPROM	17
	2.3.2.	One-Wire Interface – ZACwire™	17
2	.4. Ou	tput Stage	17
	2.4.1.	Digital to Analog Converter (Output DAC) with Programmable Clipping Limits	17
	2.4.2.	Output Buffer	18
	2.4.3.	Voltage Reference Block	18
2	2.5. Clo	ock Generator / Power-On Reset (CLKPOR)	20
	2.5.1.	Trimming the Oscillator	20
2	2.6. Dia	Ignostic Features	20
	2.6.1.	EEPROM Integrity	21
	2.6.2.	Sensor Connection Check	21
	2.6.3.	Sensor Short Check	22
	2.6.4.	Power Loss Detection	22
	2.6.5.	ExtTemp Connection Checks	22
3	Functio	onal Description	23

() IDT.

.1. Ge	neral Working Mode	23
.2. ZA	Cwire™ Communication Interface	25
3.2.1.	Properties and Parameters	25
3.2.2.	Bit Encoding	25
3.2.3.	Write Operation from Master to ZSC31015	26
3.2.4.	ZSC31015 Read Operations	26
3.2.5.	High Level Protocol	29
.3. Co	mmand/Data Bytes Encoding	30
.4. Ca	libration Sequence	31
.5. EE	PROM Bits	33
.6. Ca	libration Math	37
3.6.1.	Correction Coefficients	37
3.6.2.	Interpretation of Binary Numbers for Correction Coefficients	37
.7. Re	ading EEPROM Contents	41
Applica	ation Circuit Examples	42
.1. Th	ree-Wire Rail-to-Rail Ratiometric Output	42
.2. Ab	solute Analog Voltage Output	43
.3. Th	ree-Wire Ratiometric Output with Over-Voltage Protection	44
.4. Dig	jital Output	44
.5. Ou	tput Resistor/Capacitor Limits	44
EEPRO	OM Restoration	45
.1. De	fault EEPROM Contents	45
5.1.1.	Osc_Trim	45
5.1.2.	1V_Trim/JFET_Trim	45
.2. EE	PROM Restoration Procedure	45
Pin Co	nfiguration and Package	47
ESD/L	atch-Up-Protection	48
Test		48
Quality	and Reliability	48
Custor	nization	48
Part O	rdering Codes	49
Relate	d Documents	49
Definiti	ons of Acronyms	50
Docum	ent Revision History	51
	 Ge .2. ZA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.5. 3.2.4. 3.2.5. 3.6.2. 7. Re Applica 1. Thi 2. Ab 3.6.2. 7. Re Applica 1. Thi 2. Ab 3.6.2. 1. Thi 2. Ab 5. Ou EEPRO 1. De 5.1.1. 2. EE Pin Co ESD/Li Test Quality Custor Part O Related Definiti Docum 	1. General Working Mode 2. ZACwire ™ Communication Interface 3.2.1. Properties and Parameters 3.2.2. Bit Encoding 3.2.3. Write Operation from Master to ZSC31015 3.2.4. ZSC31015 Read Operations 3.2.5. High Level Protocol 3. Command/Data Bytes Encoding 4. Calibration Sequence 5. EEPROM Bits 6. Calibration Math 3.6.1. Correction Coefficients 3.6.2. Interpretation of Binary Numbers for Correction Coefficients 7. Reading EEPROM Contents Application Circuit Examples 1. Three-Wire Rali-to-Rail Ratiometric Output 2. Absolute Analog Voltage Output 3. Three-Wire Ratiometric Output with Over-Voltage Protection 4. Digital Output 5. Output Resistor/Capacitor Limits EEPROM Restoration 1. Default EEPROM Contents 5.1.1 Osc_Trim 5.1.2 1V_Trim/JFET_Trim 5.1.2 1V_Trim/JFET_Trim 2.1.3 EEPROM Restoration Procedure Pin Configuration and Package ESD/Latch-Up-Protection Test Quality and Reliability Customization Patordreing Codes Relate

List of Figures

ZSC31015 Block Diagram	13
DAC Output Timing for Highest Update Rate	18
General Working Mode	24
Manchester Duty Cycle	25
19-Bit Write Frame	26
Read Acknowledge	26
Digital Output (NOM) Bridge Readings	27
Digital Output (NOM) Bridge Readings with Temperature	27
Read EEPROM Contents	28
Transmission of a Number of Data Packets	28
ZACwire™ Output Timing for Lower Update Rates	29
Rail-to-Rail Ratiometric Voltage Output – Temperature Compensation via External Diode	42
Absolute Analog Voltage Output – Temperature Compensation via Internal Temperature PTAT External JFET Regulation	⁻ with 43
Ratiometric Output, Temperature Compensation via Internal Diode	44
EEPROM Validation and Restoration Procedure	46
ZSC31015 Pin-Out Diagram	47
	ZSC31015 Block Diagram DAC Output Timing for Highest Update Rate

List of Tables

Table 1.1	ADC Resolution Characteristics for an Analog Gain of 6	10
Table 1.2	ADC Resolution Characteristics for an Analog Gain of 24	11
Table 1.3	ADC Resolution Characteristics for an Analog Gain of 48	11
Table 1.4	ADC Resolution Characteristics for an Analog Gain of 96	12
Table 2.1	1V Reference Trim (1V vs. Trim for Nominal Process Run)	19
Table 2.2	Oscillator Trimming	20
Table 2.3	Summary of Diagnostic Features	21
Table 3.1	Pin Configuration and Latch-Up Conditions	25
Table 3.2	Special Measurement/Idle Time between Packets versus Update Rate	28
Table 3.3	Total Transmission Time for Different Update Rate Settings and Output Configuration	29
Table 3.4	Command/Data Bytes Encoding	30
Table 3.5	ZSC31015 EEPROM Bits	33
Table 3.6	Correction Coefficients	37
Table 3.7	Gain_B [13:0] Weightings	38
Table 3.8	Offset_B Weightings	38
Table 3.9	Gain_T Weightings	39
Table 3.10	Offset_T Weightings	39
Table 3.11	EEPROM Read Order	41
Table 6.1	Storage and Soldering Conditions for SOP-8 Package	47
Table 6.2	ZSC31015 Pin Configuration	47

1 Electrical Characteristics

1.1. Absolute Maximum Ratings

Note: The absolute maximum ratings are stress ratings only. The device might not function or be operable above the operating conditions given in section 1.2. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses above the recommended operating conditions might affect device reliability. IDT does not recommend designing to the "Absolute Maximum Ratings."

Parameter	Symbol	Min	Мах	Unit
Analog Supply Voltage	V _{DD}	-0.3	6.0	V
Voltages at Analog I/O – In Pin	V _{INA}	-0.3	VDD+0.3	V
Voltages at Analog I/O – Out Pin	Vouta	-0.3	VDD+0.3	V
Storage Temperature Range (≥10 hours)	T _{STOR}	-50	150	°C
Storage Temperature Range (<10 hours)	T _{STOR <10h}	-50	170	°C

Note: Also see Table 6.1 regarding soldering temperature and storage conditions.

1.2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Analog Supply Voltage to Ground	V _{DD}	2.7	5.0	5.5	V
Analog Supply Voltage (with external JFET Regulator)	V _{SUPP}	5.5	7	30	V
Common Mode Voltage	V _{CM}	1		$V_{DD} - 1.3$	V
Ambient Temperature Range ^{1), 2)}	T _{AMB}	-50		150	°C
External Capacitance between V_{DD} and Ground		100	220	470	nF
Output Load Resistance to $V_{DD}^{3)}$	R _{L,OUT}	5			kΩ
Output Load Resistance to VSS 3),4)	R _{L,OUT}	5			kΩ
Output Load Capacitance 5)	C _{L,OUT}	1	10	15	nF
Bridge Resistance 6),7)	R _{BR}	0.3		100	kΩ
Power-On Rise Time	t _{PON}			100	ms

1) Note that the maximum EEPROM programming temperature is 85°C.

2) If buying die, designers should use caution not to exceed maximum junction temperature by proper package selection.

3) Only needed for Analog Output Mode; not needed for Digital Output Mode. When a pull-down resistor is used as the load resistor, the power loss detection diagnostic for loss of VSS cannot be assured at $R_L=5k$; $R_L=10k$ is recommended for this configuration.

4) Note: for unlocked devices or during calibration, the minimum value of output load resistance to VSS is $20k\Omega$.

5) Using the output for digital calibration, $C_{L,OUT}$ is limited by the maximum rise time $t_{ZAC,rise}$. See section 1.3.8.

6) Note: Minimum bridge resistance is a factor if using the Bsink feature. The rds(on) of the Bsink transistor is 8 to 10Ω when operating at V_{DD}=5V. This does give rise to a ratiometricity inaccuracy that becomes greater with low bridge resistances.

7) Note: Minimum bridge resistance is important if using certain diagnostic features. It must be at least $0.3k\Omega$ at V_{DD}=2.7V and at least $0.6k\Omega$ at V_{DD}=5V for the Sensor Short Check to function properly. For details, see section 2.6.3.

1.3. Electrical Parameters

See important table notes at the end of the table. Note: For parameters marked with an asterisk, there is no verification in mass production; the parameter is guaranteed by design and/or quality observation.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
1.3.1. Supply/Regulation Char	I.3.1. Supply/Regulation Characteristics						
Supply Voltage	V _{DD}		2.7	5.0	5.5	V	
Supply Current (varies with	las	At minimum update rate		0.25		mA	
update rate and output mode)	טטי	At maximum update rate		1.0	1.4	IIIA	
Temperature Coefficient – PTAT Source *	T _{CPTAT}			20	100	ppm/K	
Power Supply Rejection Ratio *	PSRR		60			dB	
Power-On Reset Level	POR		1.4		2.6	V	
1.3.2. Parameters for Analog F	Front-End (AF	E)					
Leakage Current Pin VBP, VBN	Iin_leak	Sensor connection and short check must be disabled.			±10	nA	
1.3.3. Parameters for EEPROM	1						
Number Write Cycles	N _{WRI_EEP}	At 150°C			100	Cycles	
		At 85°C			100k	Cycles	
Data Retention	t _{wri_eep}	At 100°C			10	Years	
1.3.4. Parameters for A/D Cont	verter						
ADC Resolution	r _{ADC}				14	Bit	
Integral Nonlinearity (INL) ¹⁾	INL _{ADC}	Based on ideal slope	-4		+4	LSB	
Differential Nonlinearity (DNL) *	DNL _{ADC}		-1		+1	LSB	
1.3.5. Parameters for Analog C	Output (DAC a	nd Buffer)					
Max. Output Current	Ι _{Ουτ}	Max. current maintaining accuracy	2.2			mA	
Resolution	Res	Referenced to V _{DD}			12	Bit	
Absolute Error	E _{ABS}	DAC input to output			±0.2%	V _{DD}	
Differential Nonlinearity *	DNL	No missing codes	-0.9		+3.0	LSB _{12Bit}	
Upper Output Voltage Limit	V _{OUT}	$R_L = 5 \ k\Omega$	95%			V _{DD}	
Lower Output Voltage Limit	V _{OUT}	With $5k\Omega$ pull down, 0 to1V output			16.5mV	mV	
Output Short Circuit Protection Limit	I _{SC}	Depends on operating conditions. Short circuit protection must be enabled via Diag_cfg (EEPROM word [102:100]). See section 2.4.2.	3		40	mA	
Analog Output Noise Peak-to-Peak	V _{NOISE,PP}	Shorted input			5 ±1LSB	mV	

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
1.3.6. Diagnostics						
Upper diagnostic output level	V _{DIA,H}		97.5%			V_{DD}
Lower diagnostic output level	$V_{\text{DIA},\text{L}}$				2.5%	V_{DD}
	$R_{\text{L,OUT}_{PS}}$	Pull-up or pull-down in Analog Output Mode	5			kΩ
1.3.7. External Temperature M	easurement					
External Temperature (ExtTemp) Signal Input Range	V_{TSE}		150		800	mV
Required External Temperature Diode Sensitivity	ST_{TSE}		1.9		3.25	mV/K
Temperature Span with External Temperature Diode	$T_{TSE}SP$		-50		150	°C
1.3.8. Parameters for ZACwire	™ Serial Inter	face				
ZACwire [™] Line Resistance *	$R_{ZAC,load}$	The rise time must be $t_{ZAC,rise} = 2 * R_{ZAC,load} * C_{ZACload} \le 5\mu s$. If using a pull-up resistor instead of a line resistor, it must meet this specification. The absolute maximum for $C_{ZACload}$ is 15nF.			3.9	kΩ
ZACwire [™] Load Capacitance *	C _{ZAC,load}		0	1	15	nF
Voltage Level Low *	V _{ZAC,low}			0	0.2	V_{DD}
Voltage Level High *	V _{ZAC,low}		0.8	1		V_{DD}
1.3.9. Parameters for System F	Response					
Start-Up-Time	t _{sta}	Power-up to output Update_rate = 1 kHz (1 ms)			8	ms
Response Time – Analog Output	t _{RESP-A}	Update_rate = 1 kHz (1 ms)		1	2	ms
Response and Transmission Time for Digital Output	tres, dig	Varies with update rate. Value given at fastest rate.		1.6		ms
Sampling Rate	f _S	Update_rate = 1 kHz (1 ms)		1000		Hz
Overall Linearity Error- Digital	ELIND	Bridge input to output		0.025	0.04	%
Overall Linearity Error – Analog	E _{LINA}	Bridge input to output		0.1	0.2	%
Overall Ratiometricity Error	RE _{out}	±10%VDD, Not using Bsink feature			0.035	%

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Overall Accuracy – Digital	10	-25°C to 85°C			±0.1%	% ESO	
(only IC, without sensor bridge)	ACoutD	-50°C to 150°C			±0.25%	%FSU	
2) (1)		-25°C to 85°C			±0.25%	%FSO	
Overall Accuracy – Analog ^{3), 4)}	AC _{outA}	-40°C to 125°C			±0.35%		
		-50°C to 150°C			±0.5%		
 Note: This is ± 4 LSBs for the 14-bit A-to-D conversion. This results in absolute accuracy to 12-bits on the A-to-D result. Non-linearity is typically better at temperatures less than 125°C. 							
 When using a pull-down resistor as the load resistor, the power loss detection diagnostic for loss of VSS cannot be assured at R_L=5kΩ; R_L=10kΩ is recommended for this configuration. 							

3) Not included is the quantization noise of the DAC. The 12-bit DAC has a quantization noise of $\pm \frac{1}{2}$ LSB = 0.61mV (@ 5V VDD) = 0.0125%.

4) Analog output range 2.5% to 95%

1.4. Analog Inputs versus Output Resolution

The ZSC31015 has a fully differential chopper-stabilized pre-amplifier with four programmable gain settings. The output of the pre-amplifier feeds into a 14-bit charge-balanced ADC. Span, offset, temperature, and non-linearity correction are performed in the digital domain. Then the resulting corrected bridge value can be output in analog form through a 12-bit DAC or as a 16-bit serial digital packet. The resolution of the output depends on the input span (bridge sensitivity) and the analog gain setting programmed. Digital gains can vary from [0,32]. Analog gains available are 6, 24, 48, and 96.

Note: At higher analog gain settings, there will be higher output resolution, but the ability of the ZSC31015 to handle large offsets decreases. This is expected because the offset is also amplified by the analog gain and can therefore saturate the ADC input.

The following tables outline the guaranteed minimum resolution for a given bridge sensitivity range.

Analog Gain 6								
Input Span [mV/V]			Allowed Offset	Minimum Guaranteed				
Min	Тур	Max	(+/- % of Span) ¹	Resolution [Bits]				
57.8	80.0	105.8	38%	12.4				
50.6	70.0	92.6	53%	12.2				
43.4	60.0	79.4	73%	12.0				
36.1	50.0	66.1	101%	11.7				
28.9	40.0	52.9	142%	11.4				
21.7	30.0	39.7	212%	11.4				
¹⁾ In addition to Tco	¹⁾ In addition to Tco, Tcg.							

Table 1.1ADC Resolution Characteristics for an Analog Gain of 6

Analog Gain 24							
Input Span [mV/V]			Allowed Offset	Minimum Guaranteed			
Min	Тур	Мах	(+/- % of Span) ¹	Resolution [Bits]			
18.1	25.0	33.1	17%	12.7			
14.5	20.0	26.5	38%	12.4			
7.2	10.0	13.2	142%	11.4			
3.6	5.0	6.6	351%	10.4			
1.8	2.5	3.3	767%	9.4			
0.9	1.2	1.6	1670%	8.4			
¹⁾ In addition to Tco, Tcg. Important Note: The yellow shadowed fields indicate that for these input spans with the selected analog gain setting, the quantization noise is higher than 0.1% FSO.							

 Table 1.2
 ADC Resolution Characteristics for an Analog Gain of 24

Table 1.3ADC Resolution Characteristics for an Analog Gain of 48

Analog Gain 48					
Input Span [mV/V]			Allowed Offset	Minimum Guaranteed	
Min	Тур	Мах	(+/- % of Span) ¹	Resolution [Bits]	
10.8	15.0	19.8	3%	13.0	
7.2	10.0	13.2	38%	12.4	
4.3	6.0	7.9	107%	11.7	
2.9	4.0	5.3	194%	11.1	
1.8	2.5	3.3	351%	10.4	
1.0	1.4	1.85	678%	9.6	
0.72	1.0	1.32	976%	9.1	
¹⁾ In addition to Tco, Tcg. Important Note: The yellow shadowed fields indicate that for these input spans with the selected analog gain setting, the quantization noise is higher than 0.1% FSO.					

Analog Gain 96						
Input Span [mV/V]			Allowed Offset	Minimum Guaranteed		
Min	Тур	Max	(+/- % of Span) ¹	Resolution [Bits]		
4.3	6.0	7.9	21%	12.7		
2.9	4.0	5.3	64%	12.1		
1.8	2.5	3.3	142%	11.4		
1.0	1.4	1.85	306%	10.6		
0.72	1.0	1.32	455%	10.1		
¹⁾ In addition to Tco, Tcg.						

Table 1.4 ADC Resolution Characteristics for an Analog Gain of 96

2 Circuit Description

2.1. Signal Flow and Block Diagram

The ZSC31015 resistive bridge sensor interface ICs were specifically designed as cost-effective solutions for sensing in building automation, automotive *, industrial, office automation and white goods applications. The ZSC31015 employs IDT's high precision bandgap with proportional-to-absolute-temperature (PTAT) output; low-power 14-bit analog-to-digital converter (ADC, A2D, A-to-D); and an on-chip DSP core with EEPROM to precisely calibrate the bridge output signal.

Three selectable outputs, two analog and one digital, offer the ultimate in versatility across many applications. The ZSC31015 rail-to-rail ratiometric analog V_{out} signal (0V to ~5 V $V_{out} @ V_{DD}=5V$) suits most building automation and automotive requirements (12-bit resolution). Typical office automation and white goods applications require the 0 to ~1V V_{out} signal, which in the ZSC31015 is referenced to the internal bandgap. The ZSC31015 is capable of running in high-voltage (5.5 to 30V) systems when combined with an external JFET.

Direct interfacing to µP controllers is facilitated via IDT's single-wire serial ZACwire™ digital interface.

© 2016 Integrated Device Technology, Inc

^{*} Not AEC-Q100-qualified.

2.2. Analog Front End

2.2.1. Bandgap/PTAT and PTAT Amplifier

The highly linear Bandgap/PTAT section provides the PTAT signal to the ADC, which allows accurate temperature conversion. In addition, the ultra-low ppm Bandgap provides a stable voltage reference over temperature for the operation of the rest of the IC. If the bridge is not near the ZSC31015, an external diode can be used for temperature measurement/compensation.

The temperature signal (internal PTAT or external diode) is amplified through a path in the Pre-Amp and fed to the ADC for conversion. The most significant 12-bits of this converted result are used for temperature measurement and temperature correction of bridge readings. When temperature is output in Digital Mode, only the most significant 8 bits are given.

When external temperature is selected, add a diode from the ExtTemp pin to ground. The diode is biased with approximately 50μ A during temperature measurement cycles. The voltage level on ExtTemp is amplified through the Pre-Amp and converted by the ADC. Ensure that the ExtTemp signal is in the range of 150mV to 800mV to prevent saturation of the ADC. If the selected diode has a sensitivity in the range of 1.9mV/°C to 3.25mV/°C, a corrected temperature output (in Digital Mode) can be achieved for a 200° C temperature span (- 50° C to 150° C).

2.2.2. Bridge Supply

The voltage-driven bridge is usually connected to V_{DD} and ground. As a power savings feature, the ZSC31015 also includes a switched transistor to interrupt the bridge current via pin 1 (Bsink). The transistor switching is synchronized to the analog-to-digital conversion and released after finishing the conversion. To utilize this feature, the low supply of the bridge should be connected to Bsink instead of ground.

Depending on the programmable update rate, the average current consumption (including bridge current) can be reduced to approximately 20%, 5%, or 1%. Note: this feature has no power savings benefit if using the fastest update rate mode.

2.2.3. PREAMP Block

The differential signal from the bridge is amplified through a chopper-stabilized instrumentation amplifier with very high input impedance designed for low noise and low drift. This pre-amp provides gain for the differential signal and re-centers its DC to $V_{DD}/2$. The output of the Pre-Amp block is fed into the ADC. The calibration sequence performed by the digital core includes an auto-zero sequence to null any drift in the Pre-Amp state over temperature.

The Pre-Amp can be set to a gain of 6, 24, 48, or 96 through an EEPROM setting.

The inputs to the Pre-Amp from (VBN/VBP pins) can be reversed via an EEPROM configuration bit.

2.2.4. Analog-to-Digital Converter (ADC)

A 14-bit/1ms 2nd order charge-balancing ADC is used to convert signals coming from the pre-amplifier. The converter, designed in full differential switched capacitor technique, is used for converting the various signals in the digital domain.

This principle offers the following advantages:

- High noise immunity because of the differential signal path and integrating behavior
- Independence from clock frequency drift and clock jitter
- Fast conversion time due to second-order mode

Four selectable values for the zero point of the input voltage allow conversion to adapt to the sensor's offset parameter. With the Reverse Input Polarity Mode and the negative digital gain options, this results in seven possible zero point adjustments (not eight because the -1/2,1/2 offset setting is the same regardless of gain polarity).

The conversion rate varies with the programmed update rate. The fastest conversation rate is 1k samples/s and the response time is then 1ms. Based on a best fit, the Integral Nonlinearity (INL) is less than 4 LSB_{14Bit}.

2.3. Digital Signal Processor

A digital signal processor (DSP) is used for processing the converted bridge data as well as performing temperature correction and computing the temperature value for output on the digital channel.

The digital core reads correction coefficients from EEPROM and can correct for the following:

- Bridge Offset
- Bridge Gain
- Variation of Bridge Offset over Temperature (Tco)
- Variation of Bridge Gain over Temperature (Tcg)
- A single second order effect (SOT) (Second Order Term)

The EEPROM contains a single SOT that can be applied to correct one and only one of the following:

- 2nd order behavior of bridge measurement
- 2nd order behavior of Tco
- 2nd order behavior of Tcg

If the SOT applies to correcting the bridge reading, then the correction formula for the bridge reading is represented as a two-step process as follows:

$$ZB = Gain_B(1 + \Delta T * Tcg) * (BR_Raw - Offset_B + \Delta T * Tco)$$
(1)

$$BR = ZB(1.25 + SOT * ZB)$$
⁽²⁾

Where:

Note

BR	=	Corrected Bridge reading that is output as digital or analog on the SIG ^{IM} pin					
ZB	=	Intermediate result in the calculations					
BR_Raw	=	Raw Bridge reading from ADC					
T_Raw	=	Raw Temp reading converted from PTAT signal or external diode					
Gain_B	=	Bridge Gain term					
Offset_B	=	Bridge Offset term					
Тсд	=	Temperature Coefficient Gain					
Тсо	=	Temperature Coefficient Offset					
ΔT	=	(T_Raw - T _{SETL})					
T _{SETL}	=	 T_Raw reading at which low calibration was performed (typically 25°C) 					
SOT	=	Second-Order Term					
For solving equation (1) the following condition must be met:							

 $BR_Raw \ge BR/Gain_B$

If this condition is not met, the analog Pre-Amp Gain must be set to a smaller value because a negative Offset_B is not supported.

If the **SOT** applies to correcting the 2nd order behavior of **Tco**, then the formula for bridge correction is as follows:

$$BR = Gain_B(1 + \Delta T * Tcg) * [BR_Raw - Offset_B + \Delta T(SOT * \Delta T + Tco)]$$
(3)

If the SOT applies to correcting the 2nd order behavior of Tcg, then the formula for bridge correction is as follows:

$$BR = Gain_B[1 + \Delta T(SOT * \Delta T + Tcg)] * [BR_Raw - Offset_B + \Delta T * Tco]$$
(4)

The bandgap reference gives a very linear PTAT signal, so temperature correction can always simply be accomplished with a linear gain and offset term.

© 2016 Integrated Device Technology, Inc

(5)

Corrected Temperature Reading:

 $T = Gain_T(T_Raw + Offset_T)$

Where:

T_Raw = Raw Temperature reading converted from PTAT signal or external diode

Offset_T = Offset Coefficient for Temperature

Gain_T = Gain Coefficient for Temperature

2.3.1. EEPROM

The EEPROM contains the calibration coefficients for gain and offset, etc., and the configuration bits, such as output mode, update rate, etc. The ZSC31015 also offers three user-programmable storage bytes for module traceability. When programming the EEPROM, an internal charge pump voltage is used; therefore a high voltage supply is not needed. The EEPROM is implemented as a shift register. During an EEPROM read, the contents are shifted 8 bits before each transmission of one byte occurs. The charge pump is internally regulated to 12.5 V, and the programming time is 6ms.

See section 2.6.1 regarding EEPROM signatures for verifying EEPROM integrity.

Note: EEPROM writing can only be performed at temperatures lower than 85°C.

2.3.2. One-Wire Interface – ZACwire™

The IC communicates via a one-wire serial interface. There are different commands available for the following:

- Reading the conversion result of the ADC (Get_BR_Raw, Get_T_Raw)
- Calibration commands
- Reading from the EEPROM ("dump" of entire contents)
- Writing to the EEPROM (trim setting, configuration, and coefficients)

2.4. Output Stage

2.4.1. Digital to Analog Converter (Output DAC) with Programmable Clipping Limits

A 12-bit DAC based on sub-ranging resistor strings is used for the digital-to-analog output conversion in the analog ratiometric and absolute analog voltage modes. Options during calibration configure the system to operate in either of these modes. The design allows for excellent testability as well as low power consumption. The DAC allows programming a lower and upper clipping limit (Low_Clip_Lim and Up_Clip_Lim bit fields respectively; see section 3.5) for the output signal (analog and digital). The internal 14-bit calculated bridge value is compared against the 14-bit value formed by {11,Up_Clip_Lim[6:0],11111} for the upper limit and against {00,Low_Clip_Lim[6:0],00000} for the lower limit. If the calculated bridge value is higher than the upper limit or less than the lower limit, the analog output value is clipped to this value; otherwise it is output as is.

Example for the upper clipping level: If the Up_Clip_Lim[6:0] = 0000000, then the 14-bit value used for the clipping threshold is 11000000011111. This is 75.19% of full scale. Since there are 7 bits of upper clipping limit, there are 127 possible values between 75.19% and 100%. Therefore the resolution of the clipping limits 0.195%.

Example for the lower clipping level: If the Low_Clip_Lim[6:0] = 1111111, then the 14-bit value used for the clipping threshold is 00111111100000. This is 24.8% of full scale. Since there are 7 bits of lower clipping limit, there are 127 possible values between 0 and 24.8%. Therefore the resolution of the lower clipping limit is 0.195%.

Figure 2.2 shows the data timing of the DAC output for the update rate setting 00.

Figure 2.2 DAC Output Timing for Highest Update Rate

2.4.2. Output Buffer

A rail-to-rail op amp configured as a unity gain buffer can drive resistive loads (whether pull-up or pull-down) as low as $5k\Omega$ and capacitances up to 15nF (for pure analog output). In addition, to limit the error due to amplifier offset voltage, an error compensation circuit is included which tracks and reduces offset voltage to < 1mV. The output of the ZSC31015 output can be permanently shorted to VDD or VSS without damaging the device. The output driver contains a current-limiting block that detects a hard short and limits the current to a safe level. The short circuit protection current can vary from a minimum of 3mA to a maximum of 40mA depending on operating conditions. Output short circuit protection can be enabled via Diag_cfg (EEPROM [102:100]). Enabling this protection is recommended when using the analog output.

2.4.3. Voltage Reference Block

A linear regulator control circuit is included in the Voltage Reference Block to interface with an external JFET to allow operation in systems where the supply voltage exceeds 5.5V. This circuit can also be used for over-voltage protection. The regulator set point has a coarse adjustment controlled by the JFET_cfg EEPROM bits that can adjust the set point around 5.0 or 5.5V. (See Table 3.5 for bit locations and section 2.3.1 regarding writing to the EEPROM.). The 1V trim setting (see below) can also act as a fine adjust for the regulation set point. The 5V reference can be trimmed within +/-15mV.

Note: If using the external JFET for over-voltage protection purposes (i.e., 5V at JFET drain and expecting 5V at JFET source), there will be a voltage drop across the JFET; therefore ratiometricity will be slightly compromised depending on the rds(on) of the chosen JFET. A Vishay J107 is the best choice because it has only an 8mV drop worst case. If using as regulation instead of over-voltage protection, a MMBF4392 or BSS169 also works well.

© 2016 Integrated Device Technology, Inc

The Voltage Reference Block uses the absolute reference voltage provided by the bandgap to produce two regulated on-chip voltage references. A 1V reference is used for the output DAC high reference when the part is configured in 0-1V Analog Output Mode. For this reason, the 1V reference must be very accurate and includes trim so that its value can be trimmed within +/- 3mV of 1.00V. The 1V reference is also used as the on-chip reference for the JFET regulator block. The regulation set point of the JFET regulator can be fine-tuned using the 1V trim.

The reference trim setting is selected with the 1V_Trim/JFET_Trim bits in EEPROM. See Table 3.5 for bit locations. Table 2.1 shows the order of trim codes with 0111 for the lowest reference voltage and 1000 for the highest reference voltage.

Important: Optimal reference trim is determined during wafer-level testing and final package testing. Back-up copies of these bits are stored in bits in the CUST_ID0 bits for applications requiring accurate references. In this case, see section 5 for important notes and instructions for verifying the integrity of the 1V_Trim/JFET_Trim bits and if necessary, restoring the value from the CUST_ID0 bits before calibration.

Order	1Vref/ 5Vref_trim3	1Vref/ 5Vref_trim2	1Vref/ 5Vref_trim1	1Vref/ 5Vref_trim0
Highest Reference Voltage	1	0	0	0
	1	0	0	1
	1	0	1	0
	1	0	1	1
	1	1	0	0
	1	1	0	1
	1	1	1	0
	1	1	1	1
	0	0	0	0
	0	0	0	1
	0	0	1	0
	0	0	1	1
	0	1	0	0
	0	1	0	1
	0	1	1	0
Lowest Reference Voltage	0	1	1	1

 Table 2.1
 1V Reference Trim (1V vs. Trim for Nominal Process Run)

2.5. Clock Generator / Power-On Reset (CLKPOR)

If the power supply exceeds 2.5V (maximum), the reset signal de-asserts and the clock generator starts working at a frequency of approximately 512kHz (\pm 20%). The exact value only influences the conversion cycle time and communication to the outside world but not the accuracy of signal processing. In addition, to minimize the oscillator error as the V_{DD} voltage changes, an on-chip regulator is used to supply the oscillator block.

2.5.1. Trimming the Oscillator

Settings for the Osc_Trim bits in EEPROM fine-tune the oscillator frequency. See Table 3.5 for bit locations and Table 2.2 for possible settings. The default value is 0_{HEX} to ensure communication on start-up.

Important: Optimal oscillator trimming is determined during wafer-level testing and final package testing, and this part-specific factory value, which can be copied to Osc_Trim, is stored in bits in the CUST_ID1 and CUST_ID2 EEPROM bits for applications requiring optimal response time. In this case, see section 5 for important notes and instructions for copying these optimal values to the Osc_Trim bits before calibration. It is strongly recommended that only the default value or the factory trim value be used because ZACwire[™] communication is not guaranteed at different oscillator frequencies.

Osc_Trim Bits	Delta Frequency (kHz)
100	+385
101	+235
110	+140
111	+65
000	Nominal
001	-40
010	-76
011	-110

Table 2.2 Oscillator Trimming

Example: Programming $011_B \rightarrow$ the trimmed frequency = nominal value – 110 kHz.

2.6. Diagnostic Features

The ZSC31015 offers a full suite of diagnostic features to ensure robust system operation in the most "missioncritical" applications. If the part is programmed in Analog Output Mode, then diagnostic states are indicated by an output below 2.5% of VDD or above 97.5% of VDD. If the part is programmed in Digital Output Mode, then diagnostic states will be indicated by a transmission with a generated parity error.

Table 2.3 gives a summary of the diagnostic features, which are explained in detail in the following sections. EEPROM settings that control diagnostic functions are given in section 3.5.

Detected Fault	Analog Diagnostic Level	ZACwire [™] Diagnostic	Delay in Detection	
EEPROM signature Lower		Generates parity error	10ms after power-on	
Loss of bridge positive	Upper	Generates parity error	2ms	
Loss of bridge negative	Upper	Generates parity error	2ms	
Open bridge connection	Upper	Generates parity error	2ms	
Bridge input short	Upper	Generates parity error	2ms	
ExtTemp pin open	Lower	Generates parity error	300ms	
ExtTemp pin shorted to PWR/GND	Lower	Generates parity error	300ms	
ExtTemp pin shorted to BP/BN [†] Upper		Generates parity error	3ms	
Loss of VDD Lower		Transmissions stop	Dependent on R_L and C_L	
Loss of VSS	Upper	Transmissions stop	Dependent on R_L and C_L	

Table 2.3 Summary of Diagnostic Features

2.6.1. EEPROM Integrity

The contents of the EEPROM are protected by an 8-bit LFSR signature (linear feedback shift register). This signature is regenerated and stored in EEPROM every time EEPROM contents are changed. This signature is generated and checked for a match after Power-On-Reset prior to entering Normal Operation Mode. If the generated signature fails to match, the part will output a diagnostic state on the output.

In addition to an extensive temporal and code interlock mechanism used to prevent false writes to the EEPROM, the ZSC31015 offers an EEPROM lock mechanism for high-security applications. When EEPROM bits 105:103 are programmed with "011" or "110," this 3-bit field will permanently disable the VPP charge pump and will not allow further writes to the EEPROM. See Table 2.3 in section 2.6 for more information.

2.6.2. Sensor Connection Check

Four dedicated comparators permanently check the range of the bridge inputs (BP/BN) to ensure they are within the envelope of 0.8V to 0.85*VDD during all conversions. The two sensor inputs have a switched ohmic path to ground and if left floating, would be discharged. If any of the wires connecting the bridge break, this mechanism will detect it and put the ZSC31015 in a diagnostic state. This same diagnostic feature can also detect a short between BP/BN and the ExtTemp signal if an external diode is being used for temperature measurement. See Table 2.3 in section 2.6 for more information.

[†] A short from ExtTemp to BP/BN might not be detected in some circuit configurations.

2.6.3. Sensor Short Check

If a short occurs between BP/BN (bridge inputs), it would normally produce an in-range output signal and therefore would not be detected as a fault. This diagnostic mode, if enabled, will deliberately look for such a short. After the measurement cycle of the bridge, it will deliberately pull the BP bridge input to ground for 4μ sec. At the end of this 4μ sec window, it will check to see if the BN input "followed" it down below the 0.8V comparator checkpoint. If so, a short must exist between BP/BN, and the part will output a diagnostic state. The bridge will have a minimum of 480μ sec recovery time prior to the next measurement. See Table 2.3 in section 2.6 for more information.

The bridge resistance must be taken into account if the Sensor Short diagnostic feature is used. At V_{DD} = 2.7V, the minimum bridge resistance is 0.3K Ω , and at V_{DD} = 5V, the minimum bridge resistance is 0.6K Ω .

2.6.4. Power Loss Detection

If the power or GND connection to the module containing the sensor bridge and the ZSC31015 is lost, the ZSC31015 will output a diagnostic state if a pull-up or pull-down terminating resistor greater than or equal to $5k\Omega$ is connected in the final application. This diagnostic mode only works when the part is configured in Analog Output Mode. See Table 2.3 in section 2.6 for more information.

2.6.5. ExtTemp Connection Checks

When external temperature is selected and connection checking is enabled, the part performs range checking on the converted temperature value. If the internal ADC reading of the temperature is less than 1/32 of full scale or greater than 63/64 of full scale then a diagnostic state is asserted. If the ExtTemp pin is shorted to ground, the ADC reads less than 1/32. Because 100μ A is sourced onto the ExtTemp pin during conversions, it naturally pulls up during these times. If the ExtTemp pin is open, it produces an ADC reading greater than 63/64 of full scale. Both these bad connection conditions would be detected and result in a diagnostic output. If internal temperature is selected or sensor connection check is not enabled, then this diagnostic check is not enabled. See Table 2.3 in section 2.6 for more information.

3 Functional Description

3.1. General Working Mode

The command/data transfer takes place via the one-wire SIG[™] pin using the ZACwire[™] serial communication protocol.

After power-on, the ZSC31015 waits for 3ms (= Command window) for the Start_CM command.

Without this command, the Normal Operation Mode (NOM) starts. In this mode, raw bridge values are converted, and the corrected values are presented on the output in analog or digital format (depending on the configuration stored in EEPROM).

Command Mode (CM) can only be entered during the 3ms command window after power-on. If the ZSC31015 receives the Start_CM command during the command window, it remains in the Command Mode. The CM allows changing to one of the other modes via command. After the command Start_RW, the ZSC31015 is in the Raw Mode (RM). Without correction, the raw values are transmitted to the digital output in a predefined order. The RM can only be stopped by a power-off. RM is used by the calibration software for collection of raw bridge and temperature data so the correction coefficients can be calculated.

If diagnostic features are enabled and a diagnostic fault is detected, diagnostic states are indicated as follows depending on the programmed mode:

- In Analog Output Mode, diagnostic states are indicated by an output below 2.5% of VDD or above 97.5% of VDD.
- In Digital Output Mode, diagnostic states will be indicated by a transmission with a generated parity error.

For more details see section 2.6.

Figure 3.1 General Working Mode

* See section 2.6.

3.2. ZACwire[™] Communication Interface

3.2.1. Properties and Parameters

 Table 3.1
 Pin Configuration and Latch-Up Conditions

No.	Parameter	Symbol	Min	Тур	Max	Unit	Comments
1	Pull-up resistor (on-chip)	R _{ZAC,pu}		30		kΩ	On-chip pull-up resistor switched on during Digital Output Mode and during CM Mode (first 3 ms after power up).
2	Pull-up resistor (external)	R _{ZAC,pu_ext}	150			Ω	If the master communicates via a push- pull stage, no pull-up resistor is needed; otherwise, a pull-up resistor with a value of at least 150 Ω must be connected.
3	ZACwire™ rise time	t _{ZAC,rise}			5	μs	Any user RC network included in the Sig™ path must meet this rise time.
4	ZACwire [™] line resistance ¹⁾	RZACload			3.9	kΩ	Also see section 1.3.8.
5	ZACwire [™] load capacitance ¹⁾	CZAC,load	0	1	15	nF	Also see section 1.3.8.
6	Voltage low level	$V_{\text{ZAC,low}}$		0	0.2	V_{DD}	Rail-to-rail CMOS driver.
7	Voltage high level	$V_{ZAC,high}$	0.8	1		V_{DD}	Rail-to-rail CMOS driver.
¹⁾ The rise time must be t _{ZAC,rise} = 2 * R _{ZACload} * C _{ZACload} ≤ 5 µs . If using a pull-up resistor instead of a line resistor, it must meet this specification. The absolute maximum for C _{ZACload} is 15nF.							

3.2.2. Bit Encoding

