

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SUPPLY VOLTAGE MONITOR

ISSUE 2- JANUARY 2003

ZSH330

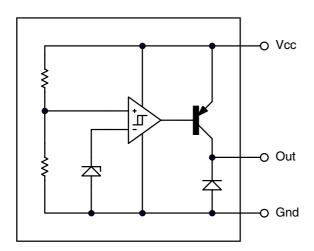
DEVICE DESCRIPTION

The ZSH330 is a three terminal under voltage monitor circuit for use in microprocessor systems. The threshold voltage of the device has been set to 3.1 volts making it ideal for 3.3 volt circuits.

Included in the device is a precise voltage reference and a comparator with built in hysteresis to prevent erratic operation. The ZSH330 features an open collector output capable of sourcing at least I0mA which only requires a single external resistor to interface to following circuits.

Operation of the device is guaranteed from one volt upwards, from this level to the device threshold voltage the output is held high providing a power on reset function. Should the supply voltage, once established, at any time drop below the threshold level then the output again will pull high.

The device is available in a TO92 package for through hole applications as well as SOT223 for surface mount requirements.


FEATURES

- SOT223 and TO92 packages
- Power on reset generator
- Automatic reset generation
- Low standby current
- Guaranteed operation from 1 volt
- Wide supply voltage range
- Internal clamp diode to discharge delay capacitor
- 3.1 volt threshold for 3.3 volt logic
- 20mV hysteresis prevents erratic operation

APPLICATIONS

- Microprocessor systems
- Computers
- Computer peripherals
- Instrumentation
- Automotive
- Battery powered equipment

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATING

-1 to 10V **Power Dissipation** Input Supply Voltage

Offstate Output Voltage 10V TO92 780mW Onstate Output Source Current(Note 1) SOT223 2W(Note 2)

Internally limited

Clamp Diode Forward Current(Note 1)

100mA **Operating Junction** Temperature 150°C -40 to 85°C **Operating Temperature** Storage Temperature -55 to 150°C

TEST CONDITIONS

(T_{amb}=25°C for typical values, T_{amb}=-40 to 85°C for min/max values (Note3))

COMPARATOR

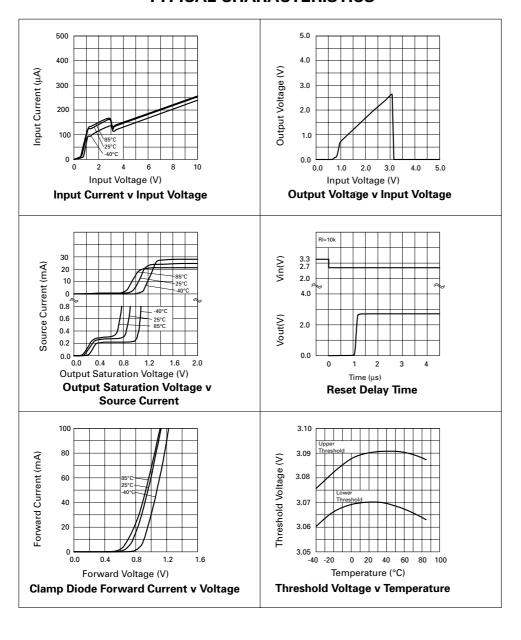
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Threshold Voltage					
Low state output (V _{cc} increasing)	V _{IL}	3.01	3.09	3.15	V
Threshold Voltage					
High state output (V _{cc} decreasing)	V _{IH}	3.01	3.07	3.15	V
Hysteresis	V_{H}	0.01	0.02	0.05	V

OUPUT

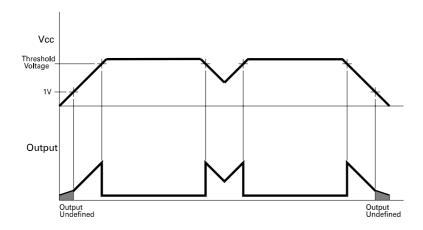
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Output source saturation:	V _{OH}				
(V _{cc} =2.7V, I _{source} =8.0mA)				V _{CC} -1.3	V
(V _{cc} =2.7V, I _{source} =2.0mA)				V _{CC} -1.2	V
$(V_{cc}=1.0V, I_{source}=2\mu A)$				V _{CC} -0.4	V
Onstate output source current (V _{cc} =2.7V, Output=0V)	I _{source}	10	21	50	mA
Offstate output leakage current (V _{cc} =3.3V, Output=0V)	I _{oh}		0.02	0.5	μΑ
Clamp diode forward voltage (I _f =10mA)	V _f	0.6	1.2	1.5	V
Propagation delay (V _{in} 3.3V to 2.7V, R _I =10k, T _{amb} =25°C)	T _d		1.4		μs

TOTAL DEVICE

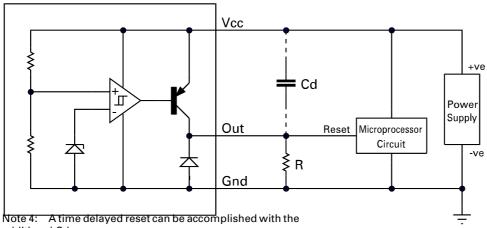
PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Operating input voltage range	V _{cc}	1.0 to 6.5			V
Quiescent input current (V _{cc} =3.3V)	Iq		130	180	μΑ


Note:

1. Maximum package power dissipation must be observed.

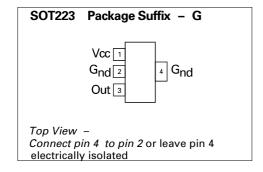

2. Maximum power dissipation for the SOT223 package is calculated assuming that the device is mounted on a PCB measuring 2 inches square.

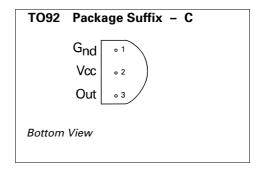
3. Low duty cycle pulse techniques are used during test to maintain junction temperatures as close to ambient as possible.


TYPICAL CHARACTERISTICS

TIMING DIAGRAM

APPLICATION CIRCUIT


additional Cd.


 $T_{DY} = RCd \left[ln \left(\frac{1}{V_{TH}} \right) - ln \left(\frac{1}{V_{TH}} \right) \right]$

T_{DY} =Time (Seconds) V_{TH} =Microprocessor Reset Threshold (ground referenced)

V_{SAT} =Output Saturation Voltage (from Output Saturation Voltage characteristic)
V_{in} =Power Supply Voltage

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part No	Package	Partmark
ZSH330C	TO92	ZSH330
ZSH330G	SOT223	ZSH330