

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MPPS™ Miniature Package Power Solutions 20V NPN LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY

NPN Transistor — V_{CEO} = 20V; R_{SAT} = 47m Ω ; I_{C} = 4.5A Schottky Diode — V_{R} = 40V; V_{F} = 500mV (@1A); I_{C} =1A

DESCRIPTION

Packaged in the new innovative 3mm x 2mm MLP this combination dual comprises an ultra low saturation NPN transistor and a 1A Schottky barrier diode. This excellent combination provides users with highly efficient performance in applications including DC-DC and charging circuits.

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

PCB area and device placement savings

Lower package height (0.9mm nom)

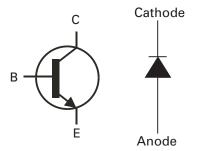
Reduced component count

FEATURES

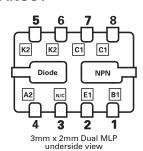
- Extremely Low Saturation Voltage (150mV @1A)
- H_{FF} characterised up to 6A
- I_C = 4.5A Continuous Collector Current
- Extremely Low V_F, fast switching Schottky
- 3mm x 2mm MLP

APPLICATIONS

- DC DC Converters
- Mobile Phones
- Charging Circuits
- Motor control


ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZX3CDBS1M832TA	7′′	8mm	3000
ZX3CDBS1M832TC	13′′	8mm	10000


DEVICE MARKING

BS1

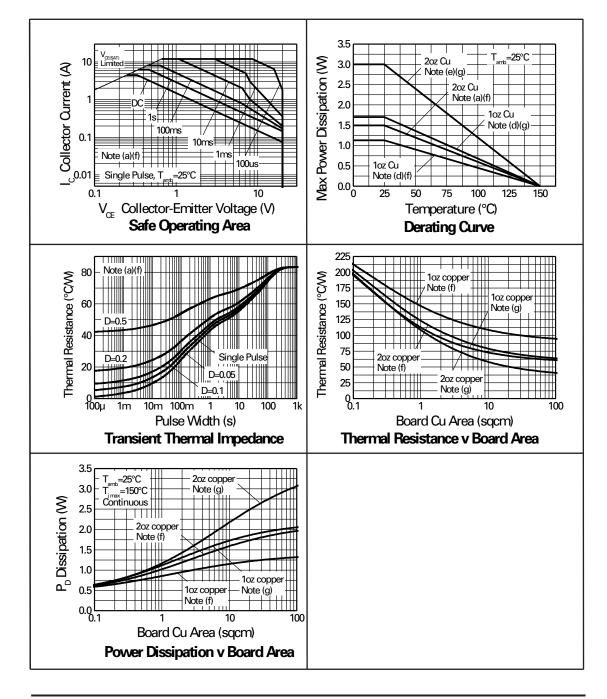
3mm x 2mm Dual Die MLP

PINOUT

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Transistor	•		
Collector-Base Voltage	V _{CBO}	40	V
Collector-Emitter Voltage	V _{CEO}	20	V
Emitter-Base Voltage	V _{EBO}	7.5	V
Peak Pulse Current	I _{CM}	12	А
Continuous Collector Current (a)(f)	I _C	4.5	А
Continuous Collector Current (b)(f)	I _C	5	Α
Base Current	I _B	1000	mA
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	P _D	1.5 12	W mW/°C
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2.45 19.6	W mW/°C
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	P _D	1 8	W mW/°C
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	P _D	1.13 9	W mW/°C
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.7 13.6	W mW/°C
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P _D	3 24	W mW/°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	T _i	150	°C

THERMAL RESISTANCE


PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$R_{\theta JA}$	83	°C/W
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	°C/W
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W

Notes

- (a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.
- (d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

TRANSISTOR TYPICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Schottky Diode	<u>'</u>		
Continuous Reverse Voltage	V _R	40	V
Forward Voltage @ I _F =1000mA(typ)	V _F	425	mV
Forward Current	I _F	1850	mA
Average Peak Forward Current D=50%	I _{FAV}	3	А
Non Repetitive Forward Current t≤ 100µs t≤ 10ms	I _{FSM}	12 7	A A
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	P _D	1.2 12	W mW/°C
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2 20	W mW/°C
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	P _D	0.8 8	W mW/°C
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	P _D	0.9 9	W mW/°C
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.36 13.6	W mW/°C
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P_{D}	2.4 24	W mW/°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	T _j	125	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$R_{ heta JA}$	83	°C/W
Junction to Ambient (b)(f)	$R_{ heta JA}$	51	°C/W
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

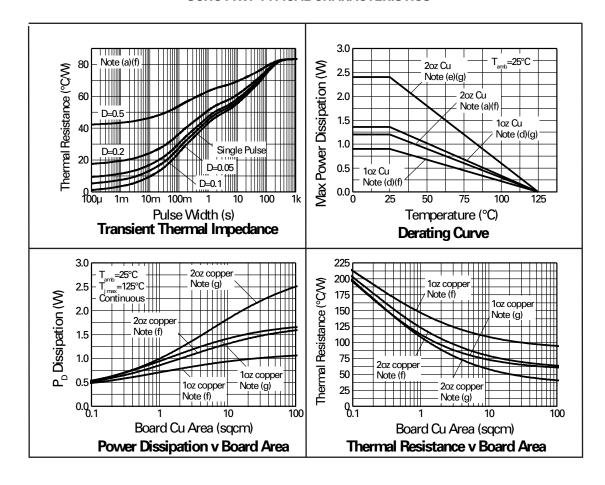
(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

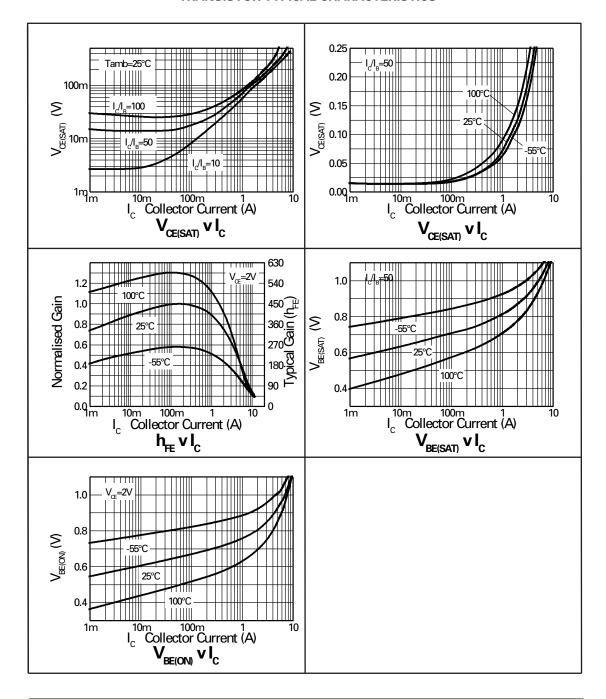
(f) For a dual device with one active die.


(g) For dual device with 2 active die running at equal power.

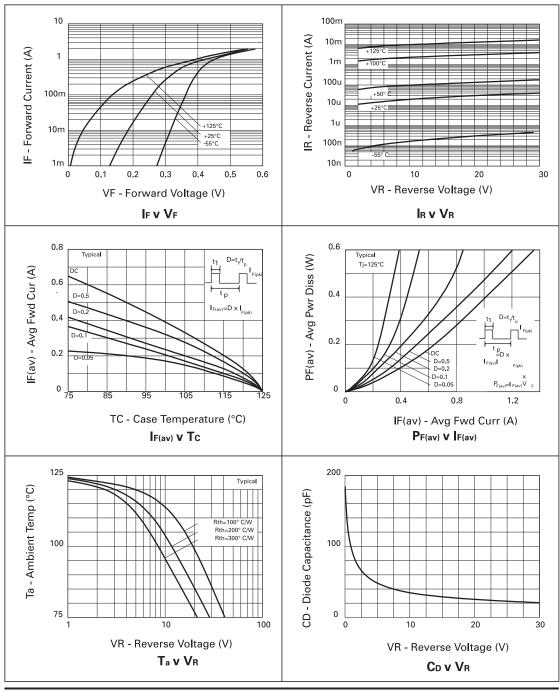
 $(h) \ Repetitive \ rating \ - \ pulse \ width \ limited \ by \ max \ junction \ temperature. \ Refer \ to \ Transient \ Thermal \ Impedance \ graph.$

(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 400mW.

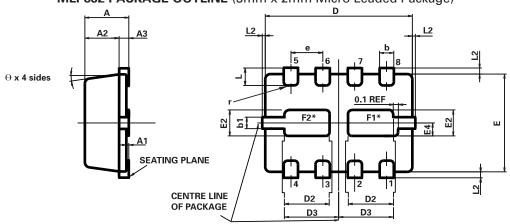
SCHOTTKY TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
TRANSISTOR ELECTRICAL CHARA	CTERISTICS	'				
Collector-Base Breakdown Voltage	V _{(BR)CBO}	40	100		V	I _C =100μA
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	20	27		V	I _C =10mA*
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	7.5	8.2		V	I _E =100μA
Collector Cut-Off Current	I _{CBO}			25	nA	V _{CB} =32V
Emitter Cut-Off Current	I _{EBO}			25	nA	V _{EB} =6V
Collector Emitter Cut-Off Current	I _{CES}			25	nA	V _{CES} =16V
Collector-Emitter Saturation Voltage	V _{CE(sat)}		8 90 115 190 210	15 150 135 250 270	mV mV mV mV	I _C =0.1A, I _B =10mA* I _C =1A, I _B =10mA* I _C =2A, I _B =50mA* I _C =3A, I _B =100mA* I _C =4.5A, I _B =125mA*
Base-Emitter Saturation Voltage	V _{BE(sat)}		0.98	-1.05	V	I _C =4.5A, I _B =125mA*
Base-Emitter Turn-On Voltage	V _{BE(on)}		0.88	-0.95	V	I _C =4.5A, V _{CE} =2V*
Static Forward Current Transfer Ratio	h _{FE}	200 300 200 100	400 450 360 180			I _C =10mA, V _{CE} =2V* I _C =0.2A, V _{CE} =2V* I _C =2A, V _{CE} =2V* I _C =6A, V _{CE} =2V*
Transition Frequency	f _T	100	140		MHz	I _C =50mA, V _{CE} =10V f=100MHz
Output Capacitance	C _{obo}		23	30	pF	V _{CB} =10V, f=1MHz
Turn-On Time	t _(on)		170		ns	$V_{CC}=10V$, $I_{C}=3A$
Turn-Off Time	t _(off)		400		ns	I _{B1} =I _{B2} =10mA
SCHOTTKY DIODE ELECTRICAL CH	ARACTERIS	TICS				
Reverse Breakdown Voltage	V _{(BR)R}	40	60		V	I _R =300μA
Forward Voltage	V _F		240 265 305 355 390 425 495 420	270 290 340 400 450 500 600	mV mV mV mV mV mV	I _F =50mA* I _F =100mA* I _F =250mA* I _F =500mA* I _F =750mA* I _F =1000mA* I _F =1000mA* I _F =1000mA,T _a =100°C*
Reverse Current	I _R		50	100	μΑ	V _R =30V
Diode Capacitance	C _D		25		pF	f=1MHz,V _R =25V
Reverse Recovery Time	t _{rr}		12		ns	switched from $I_F = 500$ mA to $I_R = 500$ mA Measured at $I_R = 50$ mA


^{*}Measured under pulsed conditions.

TRANSISTOR TYPICAL CHARACTERISTICS



SCHOTTKY TYPICAL CHARACTERISTICS

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

^{*}Exposed Flags. Solder connection to improve thermal dissipation is optional. F1 at collector 1 potential

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

	MILLIN	IETRES	INC	HES		MILLIMETRES		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	DIM	MIN.	MAX.	MIN.	MAX.
Α	0.80	1.00	0.031	0.039	е	0.65	REF	0.025	6 BSC
A1	0.00	0.05	0.00	0.002	Е	2.00	BSC	0.0787	7 BSC
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
А3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2		0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075	BSC	0.002	9 BSC
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex Semiconductors plc 2004

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Lansdowne Road, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9TY
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

F2 at collector 2 potential