: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

VARIABLE O FILTER

ZXF103Q16, ZXF103EV

DESCRIPTION

The ZXF103 is a versatile analog high Q bandpass filter. It can be configured to provide pass or notch characteristics.
The basic filter section requires 2 resistors and 2 capacitors to set the centre frequency. The frequency range is up to 600 kHz . Two external resistors control filter Q Factor. The Q can be varied up to 50 .

APPLICATIONS

Many filter applications including: -

- Sonar and Ultrasonic Systems
- Line frequency notch
- Signalling
- Motion detection
- Instrumentation
- Low frequency telemetry

FEATURES AND BENEFITS

- Centre Frequency up to 1 MHz
- Variable Q up to 50
- Low distortion
- Low noise
- Low power 25 mW
- Devices easily cascaded
- Small QSOP16 package

ORDERING INFORMATION

PART NUMBER	PACKAGE	PART MARK
ZXF103Q16	QSOP16	ZXF103

PART NUMBER	CONTAINER	INCREMENT
ZXF103Q16TA	Reel 7" 178 mm	500
ZXF103016TC	Reel 13" 330 mm	2500

PINOUT

ZXF103

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin $\quad 7.0 \mathrm{~V}$ (relative to 0 V)
Operating temperature range 0 to $70^{\circ} \mathrm{C}$
Storage temperature
-55 to $125^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS Test Conditions: Temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$, $0 \mathrm{~V}=0.00 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Typical	Max.	Units
Operating current			4.0	5.0	mA
Max. operating frequency	$\begin{aligned} & \text { Vout }=1.6 \mathrm{~V} \text { p-p } \\ & \text { Vout }=1.0 \mathrm{~V} p-\mathrm{p} \end{aligned}$			$\begin{gathered} 600 \\ 1000 \end{gathered}$	kHz
Q usable range		0.5		50	
Centre Frequency temperature coefficient	$\mathrm{Q}=30, \quad \mathrm{fo}=1 \mathrm{kHz}$		100		ppm $/{ }^{\circ} \mathrm{C}$
Q temperature coefficient	$\mathrm{Q}=30, \mathrm{fo}=1 \mathrm{kHz}$		0.1		\% / ${ }^{\circ} \mathrm{C}$
Voltage noise	$1-100 \mathrm{kHz}$		20		$\mathrm{n} V / \sqrt{ } \mathrm{Hz}$
Input impedance		10	15	20	k Ω
Linear Output Range	Output load $=10 \mathrm{k} \Omega$		2		V pk-pk
Sink current			450		$\mu \mathrm{A}$
Source current			450		$\mu \mathrm{A}$
Output impedance			10		Ω

Histogram of Centre Frequency ($\mathrm{Fo}=11.80 \mathrm{KHz} \mathrm{O}=25$)

Pin	Name	Function
1	R2	Phase retard node
2	0V	0 Volts
3	RC2	Phase retard node
4	BIAS	Internal bias generator
5	RC1	Phase advance node
6	0V	0 Volts
7	C1	Phase advance node
8	FI1	Filter input mode dependent
9	FI2	Filter input, mode dependent
10	FO	Filter output for all modes
11	Vcc	+5 Volt supply
12	N/C	No connection
13	GP2	Loop gain node
14	GP3	Loop gain node
15	Vcc	+5 Volt supply
16	GP1	Loop gain node

ZXF103

Filter Configurations and Responses

Notch Filter

AC Filter Performance

Fo $=\frac{1}{2 \pi R C}$
where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$
and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$
$\mathrm{Q} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
where $R 1, R 2, R 3$ and $R 4 \geqslant 2 k \Omega$
and C 1 and $\mathrm{C} 2 \geqslant 50 \mathrm{pF}$

See "Designing for a value of Q" for more details.

ZXF103

Filter Configurations and Responses (Continued) Inverse Notch Filter (with OdB Stop Band)

AC Filter Performance

Fo $=\frac{1}{2 \pi \mathrm{RC}}$
where $\mathrm{R}=\mathrm{R} 1=\mathrm{R}$ 2
and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$
$\mathrm{O} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
where $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ and $\mathrm{R} 4 \geqslant 2 \mathrm{k} \Omega$
and C 1 and $\mathrm{C} 2 \geqslant 50 \mathrm{pF}$

ZXF103

Filter Configurations and Responses (Continued) Inverse Notch Filter (with attenuating skirts)

AC Filter Performance

$F o=\frac{1}{2 \pi R C}$
where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$
and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$
$\mathrm{O} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
where $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ and $\mathrm{R} 4 \geqslant 2 \mathrm{k} \Omega$ and C 1 and $\mathrm{C} 2 \geqslant 50 \mathrm{pF}$

See "Designing for a value of Q" for more details.

The skirt 'roll off' away from the peak is $-20 \mathrm{~dB} /$ Decade regardless of chosen Q .

Typical responses from the circuit with component values derived from the diagram.

ZXF103

Designing for a value of \mathbf{Q}

As mentioned on the configuration pages, there is a proportional relationship between the ratio of R4 and R3, and Q .
$Q \propto \frac{R 4}{R 3}$
These resistors define the gain of an inverting amplifier that determines the peak value of gain and therefore the Q of the filter, as Q is described as;
$Q=\frac{\text { Fo }}{-3 \mathrm{dBBandwidth}}$
This value of required gain is quite critical. As the maximum value of Q is approached, too much gain will cause the filter to oscillate at the centre frequency Fo. A small reduction of gain will cause the value of Q to fall significantly. Therefore, for high values of Q factor or tight tolerances of lower values of Q, the resistor ratio must be trimmed.

Typical Gain at Fo V Q Factor $\quad(\mathrm{Fo}=140 \mathrm{KHz})$

Frequency dependant effects must be accounted for in determining the appropriate gain. As the frequency increases, the effective circuit gain reduces. The required gain is nominally two but at higher frequencies it will need to be slightly greater than two in order to compensate for loss of gain and internal phase shifts.

This is not really a problem for circuits where the desired Fo remains constant, as the phase shifts are accounted for permanently. For designs where Q is high and Fo is to be 'swept', care must be taken that a gain appropriate at the highest frequency does not cause oscillation at the lowest.

Variation in Q increases from device to device, as the value of Q increases, due to internal gain spreads.

Q Factor V Temperature

ZXF103

EVALUATION BOARD

An evaluation board (ZXF103EV) is available to assist with in-system or stand-alone performance evaluation. The board can be set, by simple jumper links, to perform any of the filter characterisitics responses.

Evaluation boards can be purchased from our catalogue distributors.

Digi-Key North America www.digikey.com
Tel: 1-800344-4539
Europe - Farnell www.farnell.com
Tel: 44-113-263-6311

Evaluation Board Schematic

The evaluation board is designed for operation at 70 kHz .
\square

ZXF103

QSOP16 PACKAGE OUTLINE

Conforms to JEDEC MO-137AB Iss A

OSOP16 PACKAGE DIMENSIONS

| DIM | Millimetres | | Inches | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| A | 4.80 | 4.98 | 0.189 | 0.196 |
| B | 0.635 | | 0.025 NOM | |
| C | 0.23 REF | | 0.009 REF | |
| D | 0.20 | 0.30 | 0.008 | 0.012 |
| E | 3.81 | 3.99 | 0.15 | 0.157 |
| F | 1.35 | 1.75 | 0.053 | 0.069 |
| G | 0.10 | 0.25 | 0.004 | 0.01 |
| J | 5.79 | 6.20 | 0.228 | 0.244 |
| K | 0° | 8° | 0° | 8° |

© Zetex plc 2002

Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	Hauppauge, NY11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 1616224422	Telefon: (49) 894549490	Telephone: (631) 3602222	Telephone: (852) 26100611
Fax: (44) 1616224420 uk.sales@zetex.com	Fax: (49) 8945494949 europe.sales@zetex.com	Fax: (631) 3608222 usa.sales@zetex.com	Fax: (852) 24250494 asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.
This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company eserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.
For the latest product information, log on to WWW.zetex.com

ISSUE 2 - JULY 2002

