

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZXLD1370

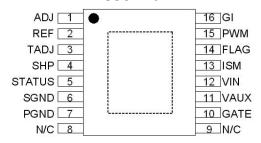
60V HIGH ACCURACY BUCK/BOOST/BUCK-BOOST LED DRIVER-CONTROLLER

Description

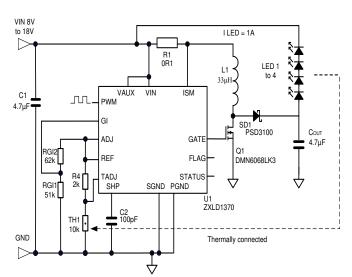
The ZXLD1370 is an LED driver controller IC for driving external MOSFETs to drive high current LEDs. It is a multi-topology controller that efficiently controls the current through series connected LEDs. The multi-topology enables it to operate in buck, boost and buckboost configurations.

The 60V capability, coupled with its multi-topology capability, enables it to be used in a wide range of applications and drive in excess of 15 LEDs in series.

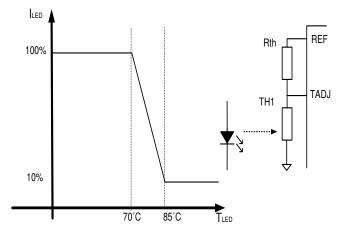
The ZXLD1370 is a modified hysteretic controller using a patent pending control scheme providing high output current accuracy in all three modes of operation. High accuracy dimming is achieved through DC control and high frequency PWM control.


The ZXLD1370 uses two pins for fault diagnosis. A flag output highlights a fault, while the multi-level status pin gives further information on the exact fault.

Features


- 0.5% Typical Output Current Accuracy
- 6V to 60V Operating Voltage Range
- LED Driver Supports Buck, Boost and Buck-Boost Configurations
- Wide Dynamic Range Dimming
- 20:1 DC Dimming
- 1000:1 Dimming Range at 500Hz
- Up to 1MHz Switching
- High Temperature Control of LED Current Using TADJ
- Available in Automotive Grade with AEC-Q100 and TS16949 Certification
- Available in "Green" Molding Compound (No Br, Sb) with Lead Free Finish/ RoHS Compliant
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)
- An Automotive-Compliant Part is Available Under Separate Data Sheet (<u>ZXLD1370Q</u>)

Pin Assignments


TSSOP-16EP

Typical Applications Circuit

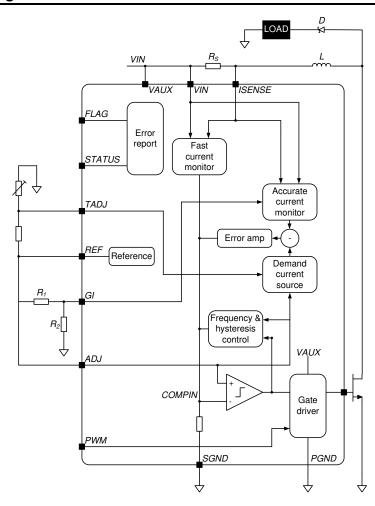
Buck-Boost Diagram Utilizing Thermistor and TADJ

Thermal network response in Buck configuration with: Rth = $2k\Omega$ and TH1= $10k\Omega$ (beta =3900)

Curve Showing LED Current vs. T_{LED}

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Pin Descriptions

Pin Name	Pin	Type (Note 4)	Function
ADJ	1	ı	Adjust Input (for DC Output Current Control) Connect to REF to set 100% output current. Drive with dc voltage (125mV <v<sub>ADJ< 2.5V) to adjust output current from 10% to 200% of set value. The ADJ pin has an internal clamp that limits the internal node to less than 3V. This provides some failsafe should they get overdriven.</v<sub>
REF	2	0	Internal 1.25V Reference Voltage Output
TADJ	3	I	Temperature Adjust Input for LED Thermal Current Control Connect thermistor/resistor network to this pin to reduce output current above a preset temperature threshold. Connect to REF to disable thermal compensation function (see section on Thermal Control).
SHP	4	I/O	Shaping Capacitor for Feedback Control Loop Connect 100pF ±20% capacitor from this pin to ground to provide loop compensation.
STATUS	5	0	Operation Status Output (Analog Output) Pin is at 4.5V (nominal) during normal operation. Pin switches to a lower voltage to indicate specific operation warnings or fault conditions (see section on STATUS output). Status pin voltage is low during shutdown mode.
SGND	6	Р	Signal Ground - Connect to 0V
PGND	7	Р	Power Ground - Connect to 0V and pin 8 to maximize copper area.
N/C	8	_	Not Connected Internally – recommend connection to pin 7, (PGND), to maximize PCB copper for thermal dissipation.
N/C	9	_	Not Connected Internally – recommend connection pin 10 (GATE) to permit wide copper trace to gate of MOSFET.
GATE	10	0	Gate Drive Output to External NMOS Transistor – connect to pin 9
V _{AUX}	11	Р	Auxiliary Positive Supply to Internal Switch Gate Driver Connect to V _{IN} , or auxiliary supply from 6V to 15V supply to reduce internal power dissipation (refer to Application Section for more details). Decouple to ground with capacitor close to device (refer to Applications section).
V _{IN}	12	Р	Input Supply to Device (6V to 60V) Decouple to ground with capacitor close to device (refer to Applications section).
ISM	13	I	Current Monitor Input Connect current sense resistor between this pin and V_{IN} . The nominal voltage across the resistor is 225mV .
FLAG	14	0	Flag Open Drain Output Pin is high impedance during normal operation. Pin switches low to indicate a fault, or warning condition.
PWM	15	I	Digital PWM Output Current Control Pin is driven either by open drain or push-pull, 3.3V or 5V logic levels. Drive with frequency higher than 100Hz to gate output 'on' and 'off' during dimming control. The device enters standby mode when PWM pin is driven with logic low level for more than 15ms nominal (refer to Application Section for more details).
GI	16	I	Gain Setting Input Used to set the device in Buck mode, Boost or Buck-Boost modes. Connect to ADJ in Buck mode operation. For Boost and Buck-Boost modes, connect to resistive divider from ADJ to SGND. This defines the ratio of switch current to LED current (see Application Section). The GI pin has an internal clamp that limits the internal node to less than 3V. This provides some failsafe should they get overdriven.
EP	PAD	Р	Exposed Paddle – Connect to 0V plane for electrical and thermal management.

Note: 4. Type refers to whether or not pin is an Input, Output, Input/Output or Power Supply pin.

Functional Block Diagram

Absolute Maximum Ratings (Note 5) (Voltages to GND, unless otherwise specified.)

Symbol	Parameter	Rating	Unit
V _{IN}	Input Supply Voltage Relative to GND	-0.3 to +65	V
V _{AUX}	Auxiliary Supply Voltage Relative to GND	-0.3 to +65	V
V _{ISM}	Current Monitor Input Relative to GND	-0.3 to +65	V
V _{SENSE}	Current Monitor Sense Voltage (V _{IN} -V _{ISM})	-0.3 to +5	V
V _{GATE}	Gate Driver Output Voltage	-0.3 to +20	V
I _{GATE}	Gate Driver Continuous Output Current	18	mA
V _{FLAG}	Flag Output Voltage	-0.3 to 40	V
V _{PWM} , V _{ADJ} , V _{TADJ} , V _{GI}	Other Input Pins	-0.3 to +5.5	V
TJ	Maximum Junction Temperature	150	°C
T _{ST}	Storage Temperature	-55 to +150	°C

Caution: Stresses greater than the 'Absolute Maximum Ratings' specified above, may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events. Suitable ESD precautions should be taken when handling and transporting these devices.

Package Thermal Data

Thermal Resistance	Package	Typical	Unit	
Junction-to-Ambient, θ _{JA} (Note 6)	TSSOP-16EP	50	°C/W	
Junction-to-Case, θ _{JC}	TSSOP-16EP	23	°C/W	

Notes:

- 5. For correct operation SGND and PGND should always be connected together.
- 6. Measured on High Effective Thermal Conductivity Test Board" according JESD51.

Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Performance/Comment	Min	Max	Unit
		Normal Operation	8	60	V
V _{IN}	Input Supply Voltage Range	Reduced Performance Operation (Note 7)	6.3		
		Normal Operation	8	8	
V_{AUX}	Auxiliary Supply Voltage Range (Note 8)	Reduced Performance Operation (Note 7)	6.3	60	V
V_{ISM}	Current Sense Monitor Input Range	_	6.3	60	V
V _{SENSE}	Differential Input Voltage	V_{VIN} - V_{ISM} , with $0 \le V_{ADJ} \le 2.5$	0	450	mV
V _{ADJ}	External dc Control Voltage Applied to ADJ Pin to Adjust Output Current DC Brightness Control Mode from 10% to 200%		0.125	2.5	V
I _{REF}	Reference External Load Current REF Sourcing Current			1	mA
f _{MAX}	Recommended Switching Frequency Range (Note 9)	_	300	1,000	kHz
V _{TADJ}	Temperature Adjustment (T _{ADJ}) Input Voltage Range	_	0	V_{REF}	V
4	Recommended PWM Dimming Frequency Range	To Achieve 1000:1 Resolution	100	500	Hz
f _{PWM}	Recommended FWW Dimining Frequency hange	To Achieve 500:1 Resolution	100	1,000	Hz
tpwmh/L	PWM Pulse Width in Dimming Mode	PWM Input High or Low	0.002	10	ms
V _{PWMH}	PWM Pin High Level Input Voltage	_	2	5.5	V
V _{PWML}	PWM Pin Low Level Input Voltage	_	0	0.4	V
TJ	Operating Junction Temperature Range	_	-40	125	°C
GI	Gain Setting Ratio for Boost and Buck-Boost Modes	Ratio = V _{GI} /V _{ADJ}	0.20	0.50	_

Notes:

- 7. Device starts up above 6V and as such, the minimum applied supply voltage has to be above 6.5V (plus any noise margin). The ZXLD1370 will, however, continue to function when the input voltage is reduced from ≥ 8V down to 6.3V.
- When operating with input voltages below 8V the output current and device parameters may deviate from their normal values; and is dependent on power MOSFET switch, load and ambient temperature conditions. To ensure best operation in Boost and Buck-Boost modes with input voltages, V_{IN}, between 6.3 and 8V a suitable bootstrap network on V_{AUX} pin is recommended.
- Performance in Buck mode will be reduced at input voltages (V_{IN}, V_{AUX}) below 8V a bootstrap network cannot be implemented in buck mode. And so a suitable low V_T MOSFET should be selected.
- 8. V_{AUX} can be driven from a voltage higher than V_{IN} to provide higher efficiency at low V_{IN} voltages, but to avoid false operation; a voltage should not be applied to V_{AUX} in the absence of a voltage at V_{IN}.
- 9. The device contains circuitry to control the switching frequency to approximately 400kHz. The maximum and minimum operating frequency is not tested in production.

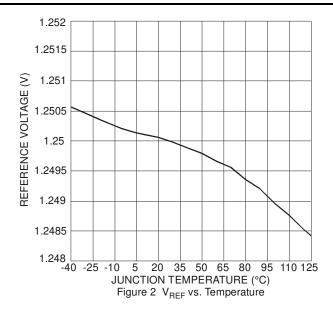
Electrical Characteristics (Note 5) (V_{IN} = V_{AUX} = 12V, T_A = +25°C, unless otherwise specified.)

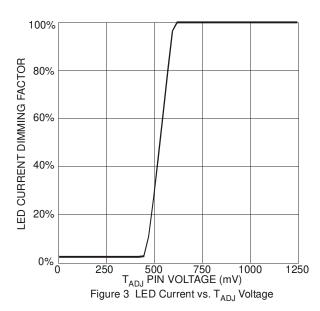
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Supply and R	Supply and Reference Parameters						
V _{UV-}	Undervoltage Detection Threshold Normal Operation to Switch Disabled	V _{IN} or V _{AUX} Falling	5.2	5.6	6.3	V	
V _{UV+}	Undervoltage Detection Threshold Switch Disabled to Normal Operation	V _{IN} or V _{AUX} Rising	5.5	6.0	6.5	V	
I _{Q-IN}	Quiescent Current into V _{IN}	PWM Pin Floating	_	1.5	3.0	mA	
I _{Q-AUX}	Quiescent Current into V _{AUX}	Output Not Switching	_	150	300	μΑ	
I _{SB-IN}	Standby Current into V _{IN}	PWM Pin Grounded	_	90	150	μΑ	
I _{SB-AUX}	Standby Current into V _{AUX}	for more than 15ms	_	0.7	10.0	μΑ	
V_{REF}	Internal Reference Voltage	No Load	1.237	1.250	1.263	V	
ΔV_REF	Change in Reference Voltage with Output Current	Sourcing 1mA Sinking 100μA	-5 	_	— 5	mV	
V _{REF_LINE}	Reference Voltage Line Regulation	V _{IN} = V _{AUX} , 6.5V <v<sub>IN = <60V</v<sub>	-60	-90	_	dB	
VREF_LINE VREF-TC	Reference Temperature Coefficient		_	+/-50	_	ppm/°C	
	erter Parameters			17 00		ррпі, о	
V _{ADJ}	External DC control voltage applied to ADJ pin to adjust output current (Note 8)	DC Brightness Control Mode 10% to 200%	0.125	1.25	2.50	V	
l _{ADJ}	ADJ Input Current (Note 10)	$V_{ADJ} \le 2.5V$ $V_{ADJ} = 5.0V^{\dagger}$	_	_	100 5	nA μA	
V _{GI}	GI Voltage threshold for boost and buck-boost modes selection (Note 8)	V _{ADJ} = 1.25V	_	_	0.8	٧	
I _{GI}	GI Input Current (Note 10)	$V_{GI} \le 2.5V$ $V_{GI} = 5.0V^{\dagger}$	_	_	100 5	nA μA	
I _{PWM}	PWM Input Current	V _{PWM} = 5.5V	_	36	100	μΑ	
t _{PWMOFF}	PWM Pulse Width (to enter shutdown state)	PWM Input Low	10	15	25	ms	
T _{SDH}	Thermal Shutdown Upper Threshold (GATE output forced low)	Temperature Rising	_	150	_	°C	
T _{SDL}	Thermal Shutdown Lower Threshold (GATE output re-enabled)	Temperature Falling	_	125	_	°C	
High-Side Cu	rrent Monitor (Pin ISM)				I	u.	
I _{ISM}	Input Current	@ V _{ISM} = 12V	_	11	20	μΑ	
	Current Measurement Sense Voltage	Buck		218	_		
V _{SENSE}		Boost (Note 11) V _{ADJ} = 1.25V	_	225	_	mV	
		Buck-Boost (Note 11)		_	_		
V _{SENSE_ACC}	Accuracy of Nominal V _{SENSE} Threshold Voltage	V _{ADJ} = 1.25V		±0.25	±2	%	
V _{SENSE-OC}	Overcurrent Sense Threshold Voltage	- ADV - 1.201	300	350	375	mV	

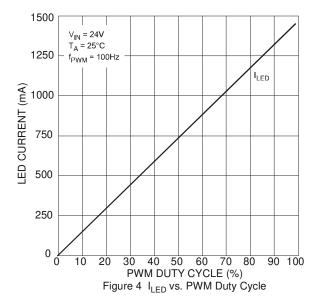
Notes: 10. The ADJ and GI pins have an internal clamp that limits the internal node to less than 3V. This provides some failsafe should those pins get overdriven. 11. Initial sense voltage in Boost and Buck-Boost modes at maximum duty cycle.

Electrical Characteristics (continued) (V_{IN} = V_{AUX} =12V, T_A = +25°C, unless otherwise specified.)


Symbol	Parameter	Conditions		Min	Тур	Max	Units
Output Para	Output Parameters						
V_{FLAGL}	FLAG Pin Low Level Output Voltage	Output sinking 1mA		_		0.5	V
I _{FLAGOFF}	FLAG Pin Open Drain Leakage Current	V _{FLAG} = 40V				1	μΑ
		Normal Operation		4.2	4.5	4.8	
		Out of Regulation (V _{SHP} Out of Range) (Note 13)		3.3	3.6	3.9	ı
.,	STATUS Flag No-Load Output Voltage	V _{IN} Undervoltage (V _{IN} < 5	5.6V)	3.3	3.6	3.9	
V _{STATUS}	(Note 12)	Switch Stalled (ton or tor	_F > 100μs)	3.3	3.6	3.9	V
		Overtemperature (T _J > +	125°C)	1.5	1.8	2.1	
		Excess Sense Resistor Current (V _{SENSE} > 0.32V)		0.6	0.9	1.2	
R _{STATUS}	Output Impedance of STATUS Output	Normal Operation		_	10	_	kΩ
Driver Outpu	Driver Output (PIN GATE)						
V _{GATEH}	High-Level Output Voltage	No Load Sourcing 1mA (Note 14)	V _{IN} = V _{AUX} = 12V	9.5	10.5	_	V
V _{GATEL}	Low-Level Output Voltage	Sinking 1mA, (Note 15)		_	_	0.5	V
V _{GATECL}	High-Level GATE CLAMP Voltage	$V_{IN} = V_{AUX} = V_{ISM} = 18V$ $I_{GATE} = 1mA$		_	12.8	15.0	V
I _{GATE}	Dynamic peak current available during rise or fall of output voltage	Charging or Discharging Gate of External Switch with Q _G = 10nC and 400kHz		_	±300	_	mA
tstall	Time to assert 'STALL' flag and warning on STATUS output (Note 16)	GATE low or high		_	100	170	μs
LED Thermal Control Circuit (T _{ADJ}) Parameters							
V _{TADJH}	Upper Threshold Voltage	Onset of Output Current Reduction (V _{TADJ} Falling)		560	625	690	mV
VTADJL	Lower Threshold Voltage	Output Current Reduced to <10% of Set Value (V _{TADJ} Falling)		380	440	500	mV
ITADJ	T _{ADJ} Pin Input Current	V _{TADJ} = 1.25V		_	_	1	μΑ


Notes:


- 12. In the event of more than one fault/warning condition occurring, the higher priority condition will take precedence. E.g. 'Excessive coil current' and 'Out of regulation' occurring together will produce an output of 0.9V on the STATUS pin. The voltage levels on the STATUS output assume the Internal regulator to be in regulation and VADJ<=VREF. A reduction of the voltage on the STATUS pin will occur when the voltage on VIN is near the minimum value of 6V.
- 13. Flag is asserted if V_{SHP}<2.5V or V_{SHP}>3.5V
- 14. GATE is switched to the supply voltage VAUX for low values of VAUX (i.e. between 6V and approximately 12V). For VAUX>12V, GATE is clamped internally to prevent it exceeding 15V. Below 12V the minimum gate pin voltage will be 2.5V below Vaux.
- 15. GATE is switched to PGND by an NMOS transistor
- 16. If ton exceeds tstall, the device will force GATE low to turn off the external switch and then initiate a restart cycle. During this phase, ADJ is grounded internally and the SHP pin is switched to its nominal operating voltage, before operation is allowed to resume. Restart cycles will be repeated automatically until the operating conditions are such that normal operation can be sustained. If toff exceeds tstall, the switch will remain off until normal operation is possible.



Typical Characteristics

Typical Characteristics (continued)

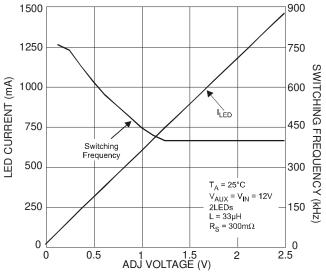


Figure 5 Buck LED Current, Switching Frequency vs. V_{ADJ}

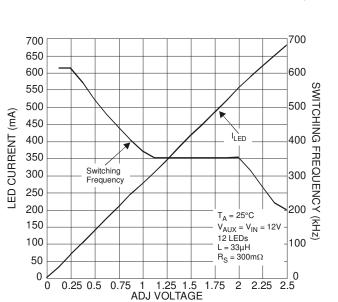


Figure 7 Boost LED Current, Switching Frequency vs. V_{ADJ}

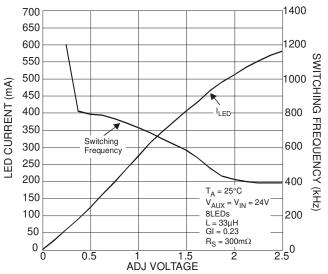


Figure 6 Buck-Boost LED Current, Switching Frequency vs. V_{ADJ}

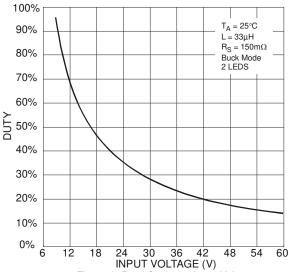
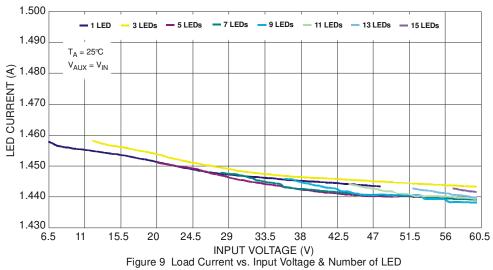



Figure 8 Duty Cycle vs. Input Voltage

Typical Character istics (cont.) Buck Mode – R_S = 150m Ω , L = 33 μ H

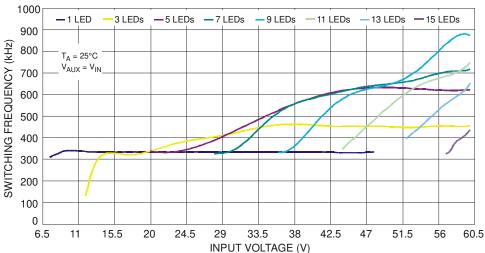


Figure 10 Frequency vs. Input Voltage & Number of LED

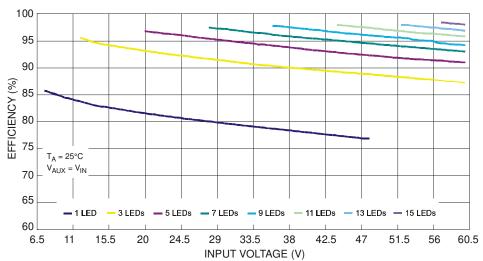


Figure 11 Efficiency vs. Input & Number of LED

Typical Characteristics (cont.) Buck Mode – R_S = 300m Ω , L = 47 μ H

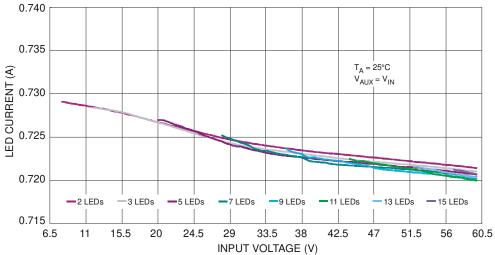


Figure 12 I_{LED} vs. Input & Number of LED

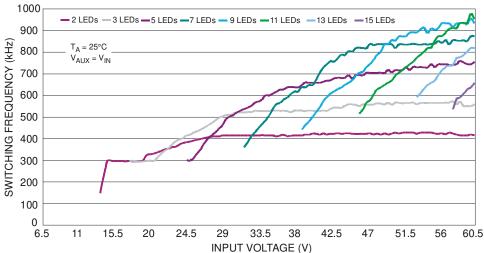


Figure 13 Frequency ZXLD1370 - Buck Mode - L47µH

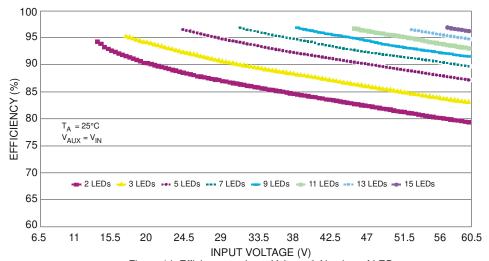


Figure 14 Efficiency vs. Input Voltage & Number of LED

$\begin{tabular}{ll} \textbf{Typical Characteristics} & (cont.) \ Boost \ Mode - R_S = 150m\Omega, \ GI_{RATIO} = 0.23, \ L = 33\mu H. \end{tabular}$

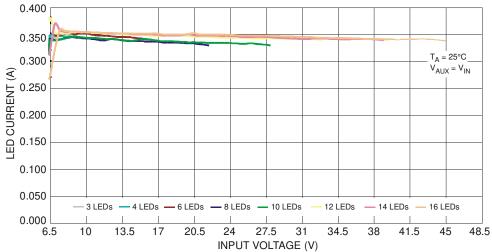


Figure 15 I_{LED} vs. Input Voltage & Number of LED

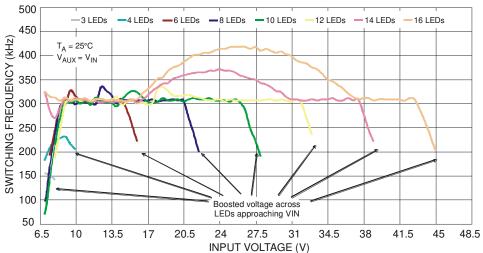


Figure 16 Frequency vs. Input Voltage & Number of LED

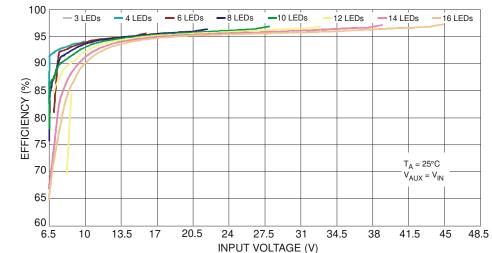


Figure 17 Efficiency vs. Input Voltage & Number of LED

$\textbf{Typical Characteristics} \ \, (\text{cont.}) \ \, \text{Buck-Boost Mode} - R_S = 150 \text{m} \Omega, \ \, \text{GI}_{RATIO} = 0.23, \ \, \text{L} = 47 \mu H$

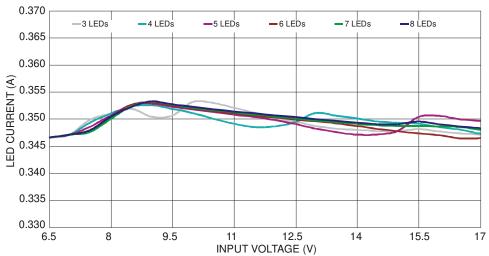


Figure 18 LED Current vs. Input Voltage & Number of LED

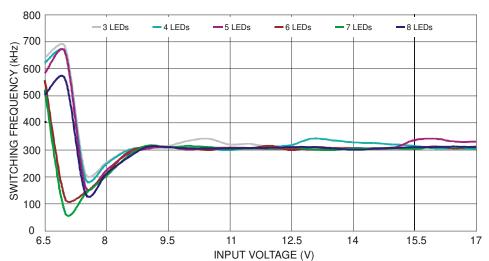
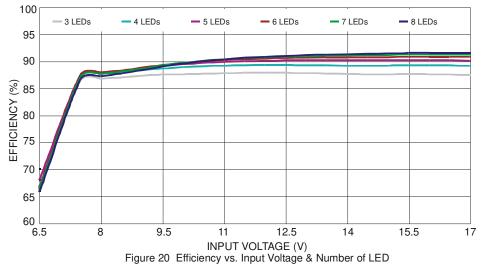



Figure 19 Switching Frequency vs. Input Voltage & Number of LED

Application Information

The ZXLD1370 is a high-accuracy hysteretic inductive buck/boost/buck-boost controller designed to be used with an external NMOS switch for current-driving single or multiple series-connected LEDs. The device can be configured to operate in buck, boost, or buck-boost modes by suitable configuration of the external components as shown in the schematics shown in the device operation description.

Device Description

a) Buck Mode - the most simple buck circuit shown in Figure 21

Control of the LED current buck mode is achieved by sensing the coil current in the sense resistor R_S, connected between the two inputs of a current monitor within the control loop block. An output from the control loop drives the input of a comparator, which drives the gate of the external NMOS switch transistor Q1 via the internal Gate Driver. When the switch is on, the drain voltage of Q1 is near zero. Current flows from V_{IN}, via R_S, LED, coil and switch to ground. The current ramps up until an upper threshold value is reached (see Figure 22). At this point, GATE goes low, the switch is turned off and the drain voltage increases to VIN plus the forward voltage, VF, of the Schottky diode D1. Current flows via RS, LED, coil and D1 back to VIN. When the coil current has ramped down to a lower threshold value, GATE goes high, the switch is turned on again and the cycle of events repeats, resulting in continuous oscillation. The feedback loop adjusts the NMOS switch duty cycle to stabilize the LED current in response to changes in external conditions, including input voltage and load voltage.

The average current in the sense resistor, LED and coil is equal to the average of the maximum and minimum threshold currents. The ripple current (hysteresis) is equal to the difference between the thresholds. The control loop maintains the average LED current at the set level by adjusting the switch duty cycle continuously to force the average sense resistor current to the value demanded by the voltage on the ADJ pin. This minimizes variation in output current with changes in operating conditions.

The control loop also regulates the switching frequency by varying the level of hysteresis. The hysteresis has a defined minimum (typ 5%) and a maximum (typ 30%). The frequency may deviate from nominal in some conditions. This depends upon the desired LED current, the coil inductance and the voltages at the input and the load. Loop compensation is achieved by a single external capacitor C2, connected between SHP and SGND.

The control loop sets the duty cycle so that the sense voltage is:

$$V_{SENSE} = 0.218 \left(\frac{V_{ADJ}}{V_{REF}} \right)$$

Therefore,

$$I_{LED} = \left(\frac{0.218}{R_S}\right) \left(\frac{V_{ADJ}}{V_{REF}}\right) \text{ (Buck mode)} \quad \text{Equation 1}$$

If the ADJ pin connected to the REF pin, this simplifies to:

$$I_{LED} = \left(\frac{0.218}{R_S}\right) \left(\frac{V_{ADJ}}{V_{REF}}\right) (Buck mode)$$

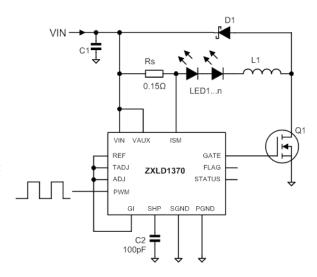


Figure 21 Buck Configuration

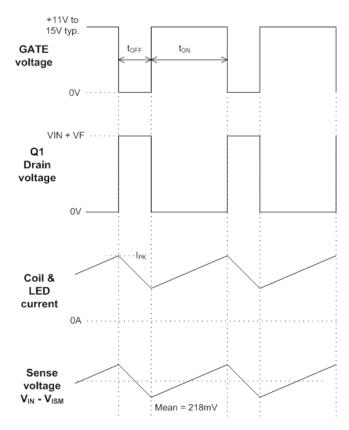


Figure 22 Operating Waveforms (Buck Mode)

b) Boost and Buck-Boost Modes - the most simple boost/buck-boost circuit shown in Figure 23

Control in Boost and Buck-Boost mode is achieved by sensing the coil current in the series resistor $R_{S},$ connected between the two inputs of a current monitor within the control loop block. An output from the control loop drives the input of a comparator, which drives the gate of the external NMOS switch transistor Q1 via the internal Gate Driver. When the switch is on, the drain voltage of Q1 is near zero. Current flows from $V_{IN},$ via $R_{S},$ coil and switch to ground. This current ramps up until an upper threshold value is reached (see Figure 24). At this point GATE goes low, the switch is turned off and the drain voltage increases to either:

 the load voltage VLEDS plus the forward voltage of D1 in Boost configuration,

or

2) the load voltage VLEDS plus the forward voltage of D1 plus V_{IN} in Buck-Boost configuration.

Current flows via R_S , coil, D1 and LED back to V_{IN} (Buck-boost mode), or GND (Boost mode). When the coil current has ramped down to a lower threshold value, GATE goes high, the switch is turned on again and the cycle of events repeats, resulting in continuous oscillation. The feedback loop adjusts the NMOS switch duty cycle to stabilize the LED current in response to changes in external conditions, including input voltage and load voltage. Loop compensation is achieved by a single external capacitor C2, connected between SHP and SGND. Note that in reality, a load capacitor C_{OLIT} is used, so that the LED current waveform shown is smoothed.

The average current in the sense resistor and coil, I_{RS}, is equal to the average of the maximum and minimum threshold currents and the ripple current (hysteresis) is equal to the difference between the thresholds.

The average current in the LED, I_{LED} , is always less than I_{RS} . The feedback control loop adjusts the switch duty cycle, D, to achieve a set point at the sense resistor. This controls I_{RS} . During the interval t_{OFF} , the coil current flows through D1 and the LED load. During t_{ON} , the coil current flows through Q1, not the LEDs. Therefore, the set point is modified by D using a gating function to control I_{LED} indirectly. In order to compensate internally for the effect of the gating function, a control factor, GI_ADJ is used. GI_ADJ is set by a pair of external resistors, R_{GI1} and R_{GI2} (Figure 23). This allows the sense voltage to be adjusted to an optimum level for power efficiency without significant error in the LED controlled current.

$$GI_ADJ = \left(\frac{RGII}{RGII + RGI2}\right)$$

Equation 2 (Boost and Buck-Boost modes)

The control loop sets the duty cycle so that the sense resistor current is:

$$R_S = \left(\frac{0.225}{R_S}\right) \left(\frac{GI_ADJ}{1-D}\right) \left(\frac{V_{ADJ}}{V_{REF}}\right)$$

Equation 3 (Boost and Buck-Boost modes)

 $I_{\rm RS}$ equals the coil current. The coil is connected only to the switch and the Schottky diode. The Schottky diode passes the LED current.

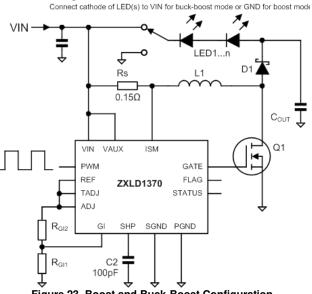
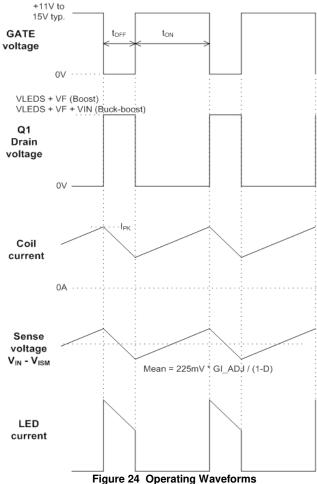



Figure 23 Boost and Buck-Boost Configuration

(Boost and Buck-Boost modes)

Therefore, the average LED current is the coil current multiplied by the Schottky diode duty cycle, 1-D.

$$I_{LED} = I_{RS} (1 - D) = \left(\frac{0.225}{R_S}\right) GI_ADJ \left(\frac{V_{ADJ}}{V_{REF}}\right)$$
(Boost and Buck-Boost)

Equation 4

This shows that the LED current depends on the ADJ pin voltage, the reference voltage and 3 resistor values (Rs, R_{Gl1} and R_{Gl2}). It is independent of the input and output voltages.

If the ADJ pin is connected to the REF pin, this simplifies to:

$$I_{LED} = \left(\frac{0.225}{R_S}\right) GI_ADJ$$
 (Boost and Buck-Boost)

Now I_{LED} is dependent only on the 3 resistor values.

Considering power dissipation and accuracy, it is useful to know how the mean sense voltage varies with input voltage and other parameters.

$$V_{RS} = I_{RS} = 0.225 \left(\frac{GI_ADJ}{1-D} \right) \left(\frac{V_{ADJ}}{V_{RFF}} \right)$$
(Boost and Buck-Boost)

Equation 5

This shows that the sense voltage varies with duty cycle in Boost and Buck-Boost configurations.

Application Circuit Design

External component selection is driven by the characteristics of the load and the input supply, since this will determine the kind of topology being used for the system. Component selection begins with the current setting procedure, the inductor/frequency setting and the MOSFET selection. Finally after selecting the freewheeling diode and the output capacitor (if needed), the application section will cover the PWM dimming and thermal feedback. The full procedure is greatly accelerated by the web Calculator spreadsheet, which includes fully automated component selection, and is available on the Diodes website. However, the full calculation is also given here.

Some components depend upon the switching frequency and the duty cycle. The switching frequency is regulated by the ZXLD1370 largely, depending upon conditions. This is discussed in a later paragraph dealing with coil selection.

Duty Cycle Calculation and Topology Selection

The duty cycle is a function of the input and output voltages. Approximately, the MOSFET switching duty cycle is:

$$D_{BUCK} \approx \frac{V_{OUT}}{V_{IN}} \hspace{1cm} \text{for Buck}$$

$$D_{BOOST} \approx \frac{V_{OUT} - V_{IN}}{V_{OUT}} \hspace{1cm} \text{for Boost}$$

$$D_{BB} \approx \frac{V_{OUT}}{V_{OUT} + V_{IN}} \hspace{1cm} \text{for Buck-Boost}$$

Because D must always be a positive number less than 1, these equations show that:

 $V_{OUT} < V_{IN}$ for Buck (voltage step-down) $V_{OUT} > V_{IN}$ for Boost (voltage step-up)

 V_{OUT} > or = or < V_{IN} for Buck-Boost (voltage step-down or step-up)

This allows us to select the topology for the required voltage range.

More exact equations are used in the web Calculator. These are:

$$D_{BUCK} = \frac{V_{OUT} + V_F + I_{OUT}(R_S + R_{COIL})}{V_{IN} + V_F - V_{DSON}} \qquad \text{for Buck}$$

$$D_{BOOST} = \frac{V_{OUT} - V_{IN} + I_{IN}(R_S + R_{COIL}) + V_F}{V_{OUT} + V_F - V_{DSON}} \qquad \text{for Boost}$$

$$D_{BB} = \frac{V_{OUT} + V_F + (I_{IN} + I_{OUT})(R_S + R_{COIL})}{V_{OUT} + V_{IN} + V_F - V_{DSON}} \qquad \text{for Buck-Boost}$$

Where V_F = Schottky diode forward voltage, estimated for the expected coil current, I_{COIL}

 V_{DSON} = MOSFET drain source voltage in the ON condition (dependent on R_{DSON} and drain current = I_{COIL})

R_{COIL} = DC winding resistance of L1

The additional terms are relatively small, so the exact equations will only make a significant difference at lower operating voltages at the input and output, i.e. low input voltage or a small number of LEDs connected in series. The estimates of V_F and V_{DSON} depend on the coil current. The mean coil current, I_{COIL} depends upon the topology and upon the mean terminal currents as follows:

 I_{LED} is the target LED current and is already known. I_{IN} will be calculated with some accuracy later, but can be estimated now from the electrical power efficiency. If the expected efficiency is roughly 90%, the output power P_{OUT} is 90% of the input power, P_{IN} , and the coil current is estimated as follows.

Where N is the number of LEDs connected in series, and V_{LED} is the forward voltage drop of a single LED at I_{LED}.

So
$$I_{IN} \approx \frac{I_{LED}NV_{LED}}{0.9 V_{IN}}$$
 Equation 9

Equation 9 can now be used to find I_{COIL} in **Equation 8**, which can then be used to estimate the small terms in **Equation 7**. This completes the calculation of Duty Cycle and the selection of Buck, Boost or Buck-Boost topology.

An initial estimate of duty cycle is required before we can choose a coil. In **Equation 7**, the following approximations are recommended:

$$\begin{array}{lll} V_F & = 0.5V \\ I_{IN} \left(R_S + R_{COIL} \right) & = 0.5V \\ I_{OUT} \left(R_S + R_{COIL} \right) & = 0.5V \\ V_{DSON} & = 0.1V \\ \left(I_{IN} + I_{OUT} \right) \left(R_S + R_{COIL} \right) & = 1.1V \end{array}$$

Then Equation 7 becomes:

$$D_{BUCK} \approx \frac{V_{OUT} + 1}{V_{IN} + 0.4} \hspace{1cm} \text{for Buck}$$

$$D_{BOOST} \approx \frac{V_{OUT} - V_{IN} + 1}{V_{OUT} + 0.4} \hspace{1cm} \text{for Boost}$$
 Equation 7a
$$D_{BB} \approx \frac{V_{OUT} + 1.6}{V_{OUT} + V_{IN} + 0.4} \hspace{1cm} \text{for Buck-Boost}$$

Setting the LED Current

The LED current requirement determines the choice of the sense resistor R_S. This also depends on the voltage on the ADJ pin and the voltage on the GI pin, according to the topology required.

The ADJ pin may be connected directly to the internal 1.25V reference (V_{REF}) to define the nominal 100% LED current. The ADJ pin can also be driven with an external DC voltage between 125mV and 2.5V to adjust the LED current proportionally between 10% and 200% of the nominal value

For a divider ratio GI_ADJ greater than 0.65V, the ZXLD1370 operates in Buck mode when $V_{ADJ} = 1.25V$. If GI_ADJ is less than 0.65V (typical), the device operates in Boost or Buck-Boost mode, according to the load connection. This 0.65V threshold varies in proportion to V_{ADJ} , i.e., the Buck mode threshold voltage is 0.65 V_{ADJ} /1.25V.

ADJ and GI are high-impedance inputs within their normal operating voltage ranges. An internal 2.6V clamp protects the device against excessive input voltage and limits the maximum output current to approximately 4% above the maximum current set by V_{REF} if the maximum input voltage is exceeded.

Buck Topology

In Buck mode, GI is connected to ADJ as in Figure 25. The LED current depends only upon R_S , V_{ADJ} and V_{REF} . From **Equation 1** above,

$$R_{SBUCK} = \left(\frac{0.218}{I_{ED}}\right) \left(\frac{V_{ADJ}}{V_{REE}}\right)$$
 Equation 10

If ADJ is directly connected to VREF, this becomes:

$$R_{SBUCK} = \left(\frac{0.218}{I_{LED}}\right)$$

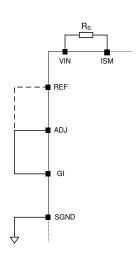


Figure 25 Setting LED Current in Buck Configuration

REF

ADJ

GI

SGNE

R_{GI2}

R_{GI1}

Boost and Buck-Boost Topology

For Boost and Buck-boost topologies, the LED current depends upon the resistors, R_S , R_{GI1} , and R_{GI2} as in **Equations 4** and **2** above. There is more than one degree of freedom. That is to say, there is not a unique solution. From **Equation 4**,

$$R_{SBOOSTBB} = \left(\frac{0.225}{I_{LED}}\right) GI_ADJ \left(\frac{V_{ADJ}}{V_{REF}}\right)$$
 Equation 1

If ADJ is connected to REF, this becomes

$$R_{SBOOSTBB} = \left(\frac{0.225}{I_{LED}}\right) GI_ADJ$$

GI_ADJ is given by **Equation 2**, repeated here for convenience:

$$GI_ADJ = \left(\frac{RGII}{RGII + RGI2}\right)$$

Figure 26 Setting LED Current in Boost and Buck-Boost Configuration

Note that from considerations of ZXLD1370 input bias current, the recommended limits for R_{GI1} are:

$$22k\Omega < R_{GI1} < 100k\Omega$$

Equation 12

The additional degree of freedom allows us to select GI_ADJ within limits but this may affect overall performance a little. As mentioned above, the working voltage range at the GI pin is restricted. The permitted range of GI_ADJ in Boost or Buck-Boost configuration is:

The mean voltage across the sense resistor is:

$$V_{RS} = I_{COIL} R_{S}$$
 Equation 14

Note that if GI_ADJ is made larger, these equations show that R_S is increased and V_{RS} is increased. Therefore, for the same coil current, the dissipation in R_S is increased. So, in some cases, it is better to minimize GI_ADJ . However, consider **Equation 5**. If ADJ is connected to REF, this becomes

$$V_{RS} = 0.225 \left(\frac{GI_ADJ}{1-D} \right)$$

This shows that V_{RS} becomes smaller than 225mV if $GI_ADJ < 1$ - D. If also D is small, V_{RS} can become too small. For example if D = 0.2, and GI_ADJ is the minimum value of 0.2, then V_{RS} becomes 0.225^* 0.2 / 0.8 = 56.25 mV. This will increase the LED current error due to small offsets in the system, such as mV drop in the copper printed wiring circuit, or offset uncertainty in the ZXLD1370. If now, GI_ADJ is increased to 0.4 or 0.5, V_{RS} is increased to a value greater than 100mV. This will give small enough I_{LED} error for most practical purposes. Satisfactory operation will be obtained if V_{RS} is more than about 80mV. This means GI_ADJ should be greater than $(1-D_{MIN})^*$ 80/225 = $(1-D_{MIN})^*$ 0.355.

There is also a maximum limit on V_{RS} which gives a maximum limit for GI_ADJ. If V_{RS} exceeds approximately 300mV, or 133% of 225mV, the STATUS output may indicate an overcurrent condition. This will happen for larger D_{MAX} .

Therefore, together with the requirement of Equation 13, the recommended range for GI_ADJ is:

$$0.355 (1-D_{MIN}) < GI_ADJ < 1.33 (1-D_{MAX})$$

Equation 15

An optimum compromise for GI ADJ is suggested, i.e.

$$GI_ADJ_{AUTO} = 1 - D_{MAX}$$

Equation 16

This value is used for the "Automatic" setting of the web Calculator. If 1-D_{MAX} is less than 0.2, then GI_ADJ is set to 0.2. If 1- D_{MAX} is greater than 0.5 then GI_ADJ is set to 0.5.

Once GI_ADJ has been selected, a value of RGI1 can be selected from Equation 12.

Then R_{GI2} is calculated as follows, rearranging Equation 2:

$$R_{GI2} = R_{GI1} \left(\frac{1 - GI_ADJ}{GI_ADJ} \right)$$
 Equation 17

For example to drive 12 LEDS at a current of 350mA from a 12V supply requires Boost configuration. Each LED has a forward voltage of 3.2V at 350mA, so $V_{OUT} = 3.2*12 = 38.4V$. From **Equation 6**, the duty cycle is approximately

$$\frac{\left(V_{OUT}-V_{IN}\right)}{V_{OUT}} = \left(\frac{38.4-12}{38.4}\right) = 0.6875$$

From **Equation 16**, we set GI_ADJ to 1 - D = 0.3125.

IF $R_{GI1} = 33k\Omega$, then from **Equation 17**,

$$R_{GI2} = 33x \left(\frac{1 - 0.3125}{0.3125} \right) = 72.6k\Omega$$

Let us choose the preferred value $R_{GI2} = 75k\Omega$. Now GI_ADJ is adjusted to the new value, using **Equation 2**.

$$GI_ADJ = \left(\frac{RGII}{RGII + RGI2}\right) = \frac{33k}{33k + 75k} = 0.305$$

Now we calculate R_S from **Equation 11**. Assume ADJ is connected to REF.

$$R_{SBOOSTBB} \!=\! \left(\frac{0.225}{I_{LED}}\right) \! xGI_ADJx \! \left(\frac{V_{ADJ}}{V_{REF}}\right) \! =\! \frac{0.225}{0.35} x0.305 = 0.196 \Omega$$

A preferred value of $R_{SBOOSTBB} = 0.2\Omega$ will give the desired LED current with an error of 2% due to the preferred value selection.

Table 1 shows typical resistor values used to determine the GI ADJ ratio with E24 series resistors.

Table 1

GI Ratio	R _{Gl1}	R _{G2}
0.2	30kΩ	120kΩ
0.25	33kΩ	100kΩ
0.3	39kΩ	91kΩ
0.35	30kΩ	56kΩ
0.4	100kΩ	150kΩ
0.45	51kΩ	62kΩ
0.5	30kΩ	30kΩ

This completes the LED current setting.

Inductor Selection and Frequency Control

The selection of the inductor coil, L1, requires knowledge of the switching frequency and current ripple, and depends on the duty cycle to some extent. In the hysteretic converter, the frequency depends upon the input and output voltages and the switching thresholds of the current monitor. The peak-to-peak coil current is adjusted by the ZXLD1370 to control the frequency to a fixed value. This is done by controlling the switching thresholds within particular limits. This effectively much reduces the overall frequency range for a given input voltage range. Where the input voltage range is not excessive, the frequency is regulated to approximately 330kHz in Buck configuration, and 300kHz in Boost and Buck-Boost configurations. This is helpful in terms of EMC and other system requirements.

For larger input voltage variation, or when the choice of coil inductance is not optimum, the switching frequency may depart from the regulated value, but the regulation of LED current remains successful. If desired, the frequency can to some extent be increased by using a smaller inductor, or decreased using a larger inductor. The web Calculator will evaluate the frequency across the input voltage range and the effect of this upon power efficiency and junction temperatures.

Determination of the input voltage range for which the frequency is regulated may be required. This calculation is very involved, and is not given here. However, the performance in this respect can be evaluated within the web Calculator for the chosen inductance.

The inductance is given as follows in terms of peak-to-peak ripple current in the coil, ∆I_L and the MOSFET on time, to_N.

$$L1 = \begin{cases} \{V_{IN} - V_{LED} - I_{OUT} (R_{DSON} + R_{COIL} + R_S)\} \frac{t_{ON}}{\Delta I_L} & \text{for Buck} \end{cases}$$

$$\{V_{IN} - I_{IN} (R_{DSON} + R_{COIL} + R_S)\} \frac{t_{ON}}{\Delta I_L} & \text{for Boost} \qquad \textbf{Equation 18}$$

$$\{V_{IN} - (I_{IN} + I_{OUT})(R_{DSON} + R_{COIL} + R_S)\} \frac{t_{ON}}{\Delta I_L} & \text{for Buck-Boost}$$

Therefore, In order to calculate L1, we need to find I_{IN}, toN, and ΔI_L. The effects of the resistances are small and will be estimated.

I_{IN} is estimated from Equation 9.

 $t_{\mbox{\scriptsize ON}}$ is related to switching frequency, f, and duty cycle, D, as follows:

$$t_{ON} = \frac{D}{t}$$
 Equation 19

As the regulated frequency is known, and we have already found D from **Equation 7** or the approximation **Equation 7b**, this allows calculation of ton.

The ZXLD1370 sets the ripple current, ΔI_L is monitored by the ZXLD1370 which sets this to be between nominally 10% and 30% of the mean coil current, I_{COIL} , which is found from **Equation 8**. The device adjusts the ripple current within this range in order to regulate the switching frequency. We therefore need to use a value of 20% of I_{COIL} to find an inductance which is optimized for the input voltage range. The range of ripple current control is also modulated by other circuit parameters as follows.

$$\Delta I_{LMAX} = \left\{0.03 + 0.12 \left(\frac{V_{ADJ}}{V_{REF}}\right)\right\} \frac{1 - D}{GI_ADJ}I_{COIL}$$

$$\Delta I_{LMIN} = \left\{0.01 + 0.04 \left(\frac{V_{ADJ}}{V_{REF}}\right)\right\} \frac{1 - D}{GI_ADJ}I_{COIL}$$
 Equation 20
$$\Delta I_{LMID} = \left\{0.02 + 0.08 \left(\frac{V_{ADJ}}{V_{REF}}\right)\right\} \frac{1 - D}{GI_ADJ}I_{COIL}$$

If ADJ is connected to REF, this simplifies to:

$$\Delta I_{LMAX} = 0.15 \frac{1-D}{GI_ADJ}I_{COIL}$$

$$\Delta I_{LMIN} = 0.05 \frac{1-D}{GI_ADJ}I_{COIL}$$
 Equation 20a
$$\Delta I_{LMID} = 0.1 \frac{1-D}{GI_ADJ}I_{COIL}$$

Where ΔI_{LMID} is the value we must use in **Equation 18**. We have now established the inductance value.

The chosen coil should have a saturation current higher than the peak sensed current. This saturation current is the DC current for which the inductance has decreased by 10% compared to the low current value.

Assuming ±10% ripple current, we can find this peak current from Equation 8, adjusted for ripple current:

$$I_{\text{COILPEAK}} = \begin{cases} 1.1 \text{ } I_{\text{LED}} & \text{for Buck} \\ 1.1 \text{ } I_{\text{INMAX}} & \text{for Boost} \\ 1.1 \text{ } I_{\text{INMAX}} + I_{\text{LED}} & \text{for Buck-Boost} \end{cases}$$
Equation 21

Where I_{INMAX} is the value of I_{IN} at minimum V_{IN} .

The mean current rating is also a factor, but normally the saturation current is the limiting factor.

The following websites may be useful in finding suitable components:

www.coilcraft.com www.niccomp.com www.wuerth-elektronik.de

MOSFET Selection

The ZXLD1370 requires an external NMOSFET as the main power switch with a voltage rating at least 15% higher than the maximum circuit voltage to ensure safe operation during the overshoot and ringing of the switch node. The current rating is recommended to be at least 10% higher than the average transistor current. The power rating is then verified by calculating the resistive and switching power losses.

Resistive Power Losses

The resistive power losses are calculated using the RMS transistor current and the MOSFET on-resistance. Calculate the current for the different topologies as follows:

Buck Mode

$$I_{MOSFET-MAX} = D_{MAX} \times I_{LED}$$

When operating at low V_{IN} in Buck mode a MOSFET with a suitably low V_T must be chosen to ensure that the MOSFET is properly enhanced. This is of most importance in Buck mode where a Bootstrap cannot be implemented.

Boost and Buck-Boost Mode

$$I_{MOSFET-MAX} = \frac{D_{MAX}}{1 - D_{MAX}} \times i_{LED}$$

When operating at low V_{IN} in Boost or Buck-Boost modes, a Bootstrap circuit (see Figure 37) to V_{AUX} is recommended to fully enhance the external MOSFET. If a Bootstrap circuit is not implemented, then a MOSFET with a suitably low V_T must be chosen to ensure that the MOSFET is properly enhanced.

The approximate RMS current in the MOSFET will be:

Buck Mode

$$I_{MOSFET-RMS} = I_{LED}\sqrt{D}$$

Boost and Buck-Boost Mode

$$I_{MOSFET-RMS} = \frac{\sqrt{D}}{1-D} x I_{LED}$$

The resistive power dissipation of the MOSFET is:

$$P_{RESISTIVE} = I_{MOSFET-RMS}^2 x R_{DS-ON}$$

Switching Power Losses

Calculating the switching MOSFET's switching loss depends on many factors that influence both turn-on and turn-off. Using a first order rough approximation, the switching power dissipation of the MOSFET is:

$$P_{SWITCHING} = \frac{C_{RSS} \times V^{2}_{IN} \times f_{sw} \times I_{LOAD}}{I_{GATE}}$$

Where:

C_{RSS} is the MOSFET's reverse-transfer capacitance (a data sheet parameter),

f_{SW} is the switching frequency,

I_{GATE} is the MOSFET gate-driver's sink/source current at the MOSFET's turn-on threshold.

Matching the MOSFET with the controller is primarily based on the rise and fall time of the gate voltage. The best rise/fall time in the application is based on many requirements, such as EMI (conducted and radiated), switching losses, lead/circuit inductance, switching frequency, etc. How fast a MOSFET can be turned on and off is related to how fast the gate capacitance of the MOSFET can be charged and discharged. The relationship between C (and the relative total gate charge Q_G), turn-on/turn-off time and the MOSFET driver current rating can be written as:

$$dt = \frac{dV \cdot C}{I} = \frac{Qg}{I}$$

Where:

dt = turn-on/turn-off time

dV = gate voltage

C = gate capacitance = Q_G/V

I = drive current – constant current source (for the given voltage value)

Here the constant current source "I" usually is approximated with the peak drive current at a given driver input voltage.

(Example 1)

Using the DMN6068 MOSFET ($V_{DS(MAX)} = 60V$, $I_{D(MAX)} = 8.5A$):

$$\rightarrow$$
 Q_G = 10.3nC at V_{GS} = 10V

ZXLD1370 I_{PEAK} = I_{GATE} = 300mA

$$dt = \frac{Q_g}{I_{PEAK}} = \frac{10.3nC}{300mA} = 35ns$$

Assuming that cumulatively the rise time and fall time can account for a maximum of 10% of the period, the maximum frequency allowed in this condition is:

$$t_{PERIOD} = 20^*dt$$
 \rightarrow $f = 1/t_{PERIOD} = 1.43MHz$

This frequency is well above the max frequency the device can handle, therefore the DNM6068 can be used with the ZXLD1370 in the whole spectrum of frequencies recommended for the device (from 300kHz to 1MHz).

(Example 2)

Using the ZXMN6A09K ($V_{DS(MAX)} = 60V$, $I_{D(MAX)} = 12.2A$):

$$\rightarrow$$
 Q_G = 29nC at V_{GS} = 10V

ZXLD1370 I_{PEAK} = 300mA

$$dt = \frac{Q_g}{I_{PEAK}} = \frac{29nC}{300mA} = 97ns$$

Assuming that cumulatively the rise time and fall time can account for a maximum of 10% of the period, the maximum frequency allowed in this condition is:

$$t_{PERIOD} = 20^*dt$$
 \rightarrow $f = 1/t_{PERIOD} = 515kHz$

This frequency is within the recommended frequency range the device can handle, therefore the ZXMN6A09K is recommended to be used with the ZXLD1370 for frequencies from 300kHz to 500kHz.

The recommended total gate charge for the MOSFET used in conjunction with the ZXLD1370 is less than 30nC.

Junction Temperature Estimation

Finally, the ZXLD1370 junction temperature can be estimated using the following equations:

Total supply current of ZXLD1370:

$$I_{QTOT} \approx I_{Q} + f \cdot Q_{G}$$

Where I_Q = total quiescent current $I_{Q-IN} + I_{Q-AUX}$

Power consumed by ZXLD1370:

$$P_{IC} = V_{IN} \cdot (I_Q + f \cdot Qg)$$

Or in case of separate voltage supply, with $V_{AUX} < 15V$:

$$P_{IC} = V_{IN} \cdot I_{Q-IN} + V_{AUX} \cdot (I_{Q-AUX} + f \cdot Qg)$$

$$T_J = T_A + P_{IC} \cdot \theta_{JA} = T_A + P_{IC} \cdot (\theta_{JC} + \theta_{CA})$$

Where the total quiescent current I_{QTOT} consists of the static supply current (I_Q) and the current required to charge and discharge the gate of the power MOSFET. Moreover, the part of thermal resistance between case and ambient depends on the PCB characteristics.

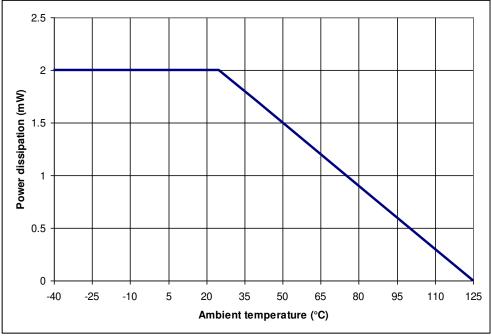


Figure 27 Power Derating Curve for ZXLD1370 Mounted on Test Board According to JESD51

ZXLD1370 Document number: DS32165 Rev. 7 - 2

Diodes Selection

For maximum efficiency and performance, the rectifier (D1) should be a fast low capacitance Schottky diode* with low reverse leakage at the maximum operating voltage and temperature. The Schottky diode also provides better efficiency than silicon PN diodes, due to a combination of lower forward voltage and reduced recovery time.

It is important to select parts with a peak current rating above the peak coil current and a continuous current rating higher than the maximum output load current. In particular, it is recommended to have a voltage rating at least 15% higher than the maximum transistor voltage to ensure safe operation during the ringing of the switch node and a current rating at least 10% higher than the average diode current. The power rating is verified by calculating the power loss through the diode.

The higher forward voltage and overshoot due to reverse recovery time in silicon diodes will increase the peak voltage on the Drain of the external MOSFET. If a silicon diode is used, care should be taken to ensure that the total voltage appearing on the Drain of the external MOSFET, including supply ripple, does not exceed the specified maximum value.

*A suitable Schottky diode would be PDS3100 (Diodes Incorporated).

Output Capacitor

An output capacitor may be required to limit interference or for specific EMC purposes. For boost and buck-boost regulators, the output capacitor provides energy to the load when the freewheeling diode is reverse biased during the first switching subinterval. An output capacitor in a buck topology will simply reduce the LED current ripple below the inductor current ripple. In other words, this capacitor changes the current waveform through the LED(s) from a triangular ramp to a more sinusoidal version without altering the mean current value.

In all cases, the output capacitor is chosen to provide a desired current ripple of the LED current (usually recommended to be less than 40% of the average LED current).

Buck

$$C_{OUTPUT} = \frac{\Delta I_{L-PP}}{8x f_{SW} x r_{LED} x \Delta I_{LED-PP}}$$

Boost and Buck-Boost

$$C_{OUTPUT} = \frac{DxI_{LED-PP}}{f_{SW} xr_{LED} x\Delta I_{LED-PP}}$$

Where:

- $\Delta I_{L\text{-PP}}$ is the ripple of the inductor current, usually $\pm 20\%$ of the average sensed current
- $\Delta I_{I,ED,PP}$ is the ripple of the LED current, it should be <40% of the LEDs average current
- f_{SW} is the switching frequency (From graphs and calculator)
- r_{LED} is the dynamic resistance of the LEDs string (n times the dynamic resistance of the single LED from the datasheet of the LED manufacturer).

The output capacitor should be chosen to account for derating due to temperature and operating voltage. It must also have the necessary RMS current rating. The minimum RMS current for the output capacitor is calculated as follows:

Buck

$$I_{COUTPUT-RMS} = \frac{I_{LED-PP}}{\sqrt{12}}$$

Boost and Buck-Boost

$$I_{COUTPUT-RMS} = I_{LED} \sqrt{\frac{D_{MAX}}{1 - D_{MAX}}}$$

Ceramic capacitors with X7R dielectric are the best choice due to their high ripple current rating, long lifetime, and performance over the voltage and temperature ranges.

Input Capacitor

The input capacitor can be calculated knowing the input voltage ripple $\Delta V_{\text{IN-PP}}$ as follows:

Buck

$$C_{IN} = \frac{Dx(1-D)xI_{LED}}{f_{SW} x\Delta V_{IN-PP}}$$

Use D = 0.5 as worst case

Boost

$$C_{IN} = \frac{\Delta I_{L-PP}}{8x f_{SW} x \Delta V_{IN-PP}}$$

Buck-Boost

$$C_{IN} = \frac{D \times I_{LED}}{f_{SW} \times \Delta V_{IN-PP}}$$

Use $D = D_{MAX}$ as worst case

The minimum RMS current for the output capacitor is calculated as follows:

Buck

$$I_{CIN-RMS} = I_{LED} x \sqrt{Dx(1-D)}$$

Use D = 0.5 as worst case

Boost

$$I_{CIN-RMS} = \frac{I_{L-PP}}{\sqrt{12}}$$

Buck-Boost

$$I_{CIN-RMS} = I_{LED} x \sqrt{\frac{D}{(1-D)}}$$
 Use D = D_{MAX} as worst case