

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

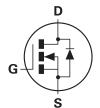
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

30V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

 $V_{(BR)DSS}$ =30V; $R_{DS(ON)}$ =0.045 Ω ; I_D =5.0A

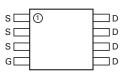
DESCRIPTION


This new generation of high density MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

MSOP8

FEATURES

- Low on-resistance
- · Fast switching speed
- Low threshold
- · Low gate drive
- Low profile SOIC package


APPLICATIONS

- DC DC converters
- Power management functions
- Disconnect switches
- Motor control

Pin out

ORDERING INFORMATION

DEVICE	REEL SIZE (inches)	TAPE WIDTH (mm)	QUANTITY PER REEL
ZXM64N03XTA	7	12 embossed	1,000
ZXM64N03XTC	13	12 embossed	4,000

Top view

DEVICE MARKING

ZXM4P03

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-Source Voltage	V _{DSS}	30	V	
Gate- Source Voltage	V _{GS}	±20	V	
Continuous Drain Current $ \begin{array}{c} (V_{GS}{=}4.5V;T_A{=}25^{\circ}C)(b) \\ (V_{GS}{=}4.5V;T_A{=}70^{\circ}C)(b) \end{array} $	I _D	5.0 4.0	А	
Pulsed Drain Current (c)	I _{DM}	30	А	
Continuous Source Current (Body Diode)(b)	Is	2.4	А	
Pulsed Source Current (Body Diode)(c)	I _{SM}	30	А	
Power Dissipation at T _A =25°C (a) Linear Derating Factor	P _D	1.1 8.8	W mW/°C	
Power Dissipation at T _A =25°C (b) Linear Derating Factor	P _D	1.8 14.4	W mW/°C	
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C	

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)	$R_{\theta JA}$	113	°C/W
Junction to Ambient (b)	$R_{\theta JA}$	70	°C/W

NOTES


(a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions

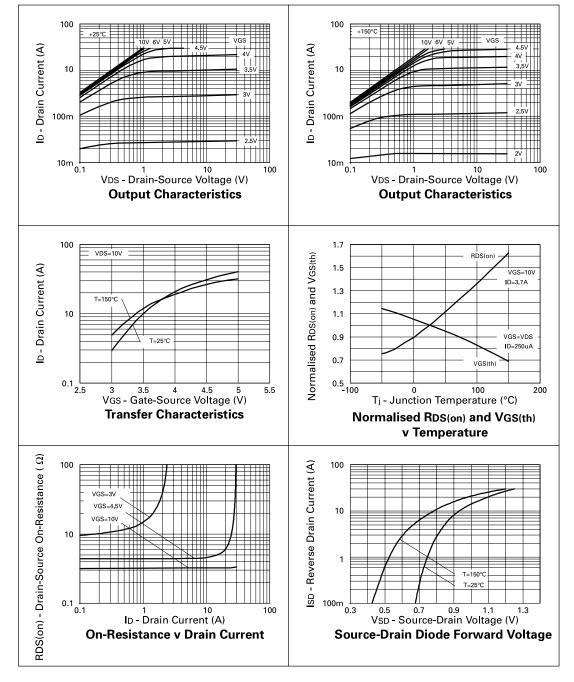
(c) Repetitive rating - pulse width limited by maximum junction temperature. Refer to Transient Thermal Impedance graph.

⁽b) For a device surface mounted on FR4 PCB measured at t≤10 secs.

CHARACTERISTICS

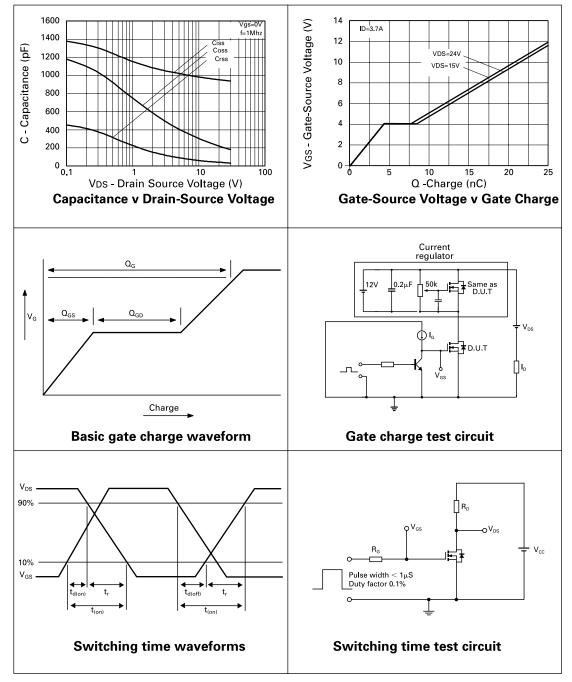
ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

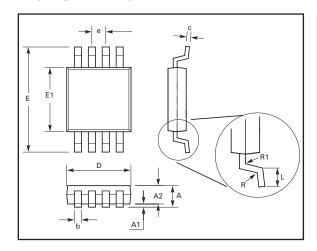
					l	
SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
V _{(BR)DSS}	30			V	I _D =-250μA, V _{GS} =0V	
I _{DSS}			1	μΑ	V_{DS} =30V, V_{GS} =0V	
I _{GSS}			±100	nA	V_{GS} =± 20V, V_{DS} =0V	
V _{GS(th)}	1.0			V	$I_{D}^{=-250 \mu A}, V_{DS}^{=} V_{GS}$	
R _{DS(on)}			0.045 0.060	Ω Ω	V _{GS} =10V, I _D =3.7A V _{GS} =4.5V, I _D =1.9A	
g _{fs}	4.3			S	V _{DS} =10V,I _D =-1.9A	
		-				
C _{iss}		950		pF	V _{DS} =25 V, V _{GS} =0V, f=1MHz	
Coss		200		pF		
C _{rss}		50		pF		
t _{d(on)}		4.2		ns		
t _r		4.5		ns	V _{DD} =5V, I _D =3.7A	
t _{d(off)}		20.5		ns	$R_G=6.2\Omega$, $R_D=4.0\Omega$ (Refer to test circuit)	
t _f		8		ns		
Qg			27	nC	V 04VV 40V	
Q _{gs}			5	nC	V _{DS} =24V,V _{GS} =10V, I _D =3.7A	
Q _{gd}			4.5	nC	(Refer to test circuit)	
V _{SD}	_		0.95	V	T _j =25°C, I _S =3.7A, V _{GS} =0V	
t _{rr}		24.5		ns	T _j =25°C, I _F =3.7A,	
Q _{rr}		19.1		nC	di/dt= 100A/μs	
	$\begin{tabular}{c} SYMBOL \\ \hline $V_{(BR)DSS}$ \\ \hline I_{DSS} \\ \hline I_{GSS} \\ \hline $V_{GS(th)}$ \\ \hline $R_{DS(on)}$ \\ \hline g_{fs} \\ \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline $t_{d(on)}$ \\ \hline t_r \\ \hline $t_{d(off)}$ \\ \hline t_f \\ \hline Q_{g} \\ \hline Q_{gd} \\ \hline V_{SD} \\ \hline t_{rr} \\ \hline \end{tabular}$	SYMBOL MIN. V(BR)DSS 30 I _{DSS} 1 I _{GSS} 1.0 R _{DS(on)} 4.3 C _{iss} C _{coss} C _{rss} C _{coss} C _{rss} C _{coss} C _{goss} C _{coss} C _{coss} C _{coss} C _{goss} C _{coss} C _{goss} C _{coss} C _{coss} C _{coss} C _{coss} C _{coss} C _{goss} C _{coss} C _{goss} C _{coss} C _{coss} C _{coss} C _{coss} C _{coss} C _{goss} C _{coss} C _{goss} C _{coss}	SYMBOL MIN. TYP. V(BR)DSS 30 IDSS IGSS VGS(th) 1.0 RDS(on) 950 950 Coss 200 200 Crss 50 50 td(on) 4.2 4.5 tr 4.5 4.5 td(off) 20.5 4.5 tf 8 0g Qgs 0gd 0gd VSD 1 24.5	SYMBOL MIN. TYP. MAX. V(BR)DSS 30 1 I _{DSS} ±100 0.045 V _{GS(th)} 1.0 0.045 R _{DS(on)} 0.060 0.060 g _{fs} 4.3 0.060 C _{iss} 950 0.060 C _{oss} 200 0.060 C _{rss} 50 0.00 t _r 4.2 0.00 t _r 4.5 0.00 t _f 8 0.00 Q _g 27 0.00 Q _g 5 0.00 V _{SD} 0.95 t _{rr} 24.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

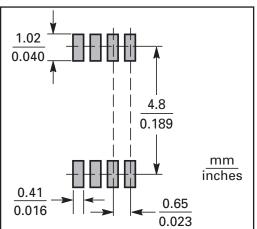

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s. Duty cycle \leq 2%.

⁽²⁾ Switching characteristics are independent of operating junction temperature.

⁽³⁾ For design aid only, not subject to production testing.


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS



PACKAGE DETAILS

PAD LAYOUT DETAILS

PACKAGE DIMENSIONS

DIM	Millimeters		Inches		
	MIN	MAX	MIN	MAX	
Α	0.91	1.11	0.036	0.044	
A1	0.10	0.20	0.004	0.008	
В	0.25	0.36	0.010	0.014	
С	0.13	0.18	0.005	0.007	
D	2.95	3.05	0.116	0.120	
е	0.65NOM		0.0256		
e1	0.33	0.33NOM		0.0128	
Е	2.95	3.05	0.116	0.120	
Н	4.78	5.03	0.188	0.198	
L	0.41	0.66	0.016	0.026	
θ°	0°	6°	0°	6°	

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

