

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

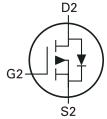
COMPLEMENTARY 30V ENHANCEMENT MODE MOSFET

SUMMARY

N-Channel : $V_{(BR)DSS}$ = 30V : $R_{DS(on)}$ = 0.050 Ω ; I_{D} = 5.4A P-Channel : $V_{(BR)DSS}$ = -30V : $R_{DS(on)}$ = 0.070 Ω ; I_{D} = -4.4A

DESCRIPTION

This new generation of trench MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.


SO8

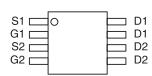
FEATURES

- Low on-resistance
- · Fast switching speed
- Low threshold
- · Low gate drive
- Low profile SOIC package

G1 S1

Q1 = N-channel

Q2 = P-channel


APPLICATIONS

- Motor drive
- LCD backlighting

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL	
ZXMC3A17DN8TA	7"	12mm	500 units	
ZXMC3A17DN8TC	13"	12mm	2500 units	

PINOUT

Top View

DEVICE MARKING

 ZXMC 3A17

ADVANCE INFORMATION

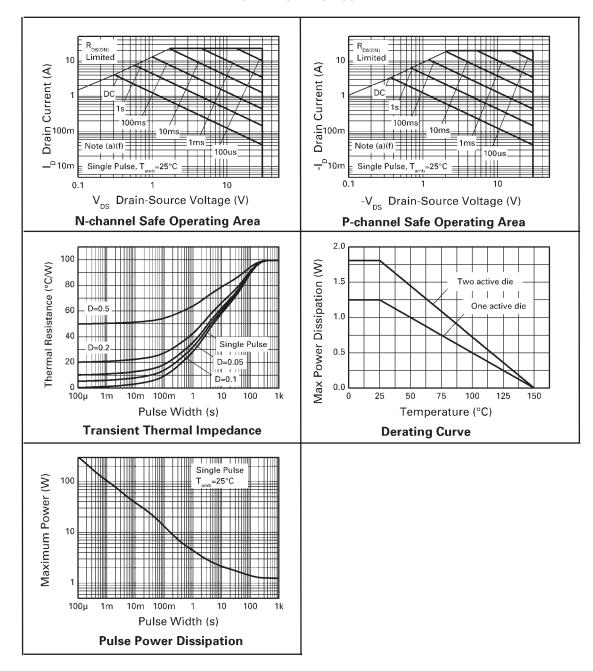
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	N-channel	P-channel	UNIT
Drain-Source Voltage	V _{DSS}	30	-30	V
Gate-Source Voltage	V _{GS}	±20	±20	٧
Continuous Drain Current $ \begin{array}{c} (V_{GS} = 10V; T_A = 25^{\circ}C) \stackrel{(b)(d)}{} \\ (V_{GS} = 10V; T_A = 70^{\circ}C) \stackrel{(b)(d)}{} \\ (V_{GS} = 10V; T_A = 25^{\circ}C) \stackrel{(a)(d)}{} \end{array} $	I _D	5.4 4.3 4.1	-4.4 -3.6 -3.4	А
Pulsed Drain Current ^(c)	I _{DM}	23	-20	Α
Continuous Source Current (Body Diode) (b)	I _S	2.6	-2.5	Α
Pulsed Source Current (Body Diode) ^(c)	I _{SM}	23	-20	Α
Power Dissipation at T _A =25°C ^{(a) (d)} Linear Derating Factor	P _D	1.25 10		W mW/°C
Power Dissipation at T _A =25°C ^{(a) (e)} Linear Derating Factor	P _D	1.8 14		W mW/°C
Power Dissipation at T _A =25°C ^{(b) (d)} Linear Derating Factor	P _D	2.1 17		W mW/°C
Operating and Storage Temperature Range	T _j , T _{stg}	-55 to	+150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient ^{(a) (d)}	$R_{\Theta JA}$	100	°C/W
Junction to Ambient ^{(a) (e)}	R_{\ThetaJA}	70	°C/W
Junction to Ambient (b) (d)	$R_{\Theta JA}$	60	°C/W

NOTES:


- (a) For a dual device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (b) For a dual device surface mounted on FR4 PCB measured at t \leq 10 sec.
- (c) Repetitive rating 25mm x 25mm FR4 PCB, D = 0.02, pulse width = $300\,\mu s$ pulse width limited by maximum junction temperature.
- (d) For a dual device with one active die.
- (e) For dual device with two active die running at equal power.

ADVANCE INFORMATION

ZXMC3A17DN8

CHARACTERISTICS

ADVANCE INFORMATION

N-CHANNEL ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
STATIC							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	30			V	I _D = 250μA, V _{GS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}			0.5	μА	V _{DS} =30V, V _{GS} =0V	
Gate-Body Leakage	I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V	
Gate-Source Threshold Voltage	V _{GS(th)}	1.0			V	I _D = 250μA, V _{DS} =V _{GS}	
Static Drain-Source On-State Resistance ⁽¹⁾	R _{DS(on)}			0.050 0.065	Ω	$V_{GS} = 10V, I_{D} = 7.8A$ $V_{GS} = 4.5V, I_{D} = 6.8A$	
Forward Transconductance (1) (3)	9 _{fs}		10		S	V _{DS} = 10V, I _D = 7.8A	
DYNAMIC (3)	!					1	
Input Capacitance	C _{iss}		600		pF		
Output Capacitance	C _{oss}		104		pF	V _{DS} = 25V, V _{GS} =0V f=1MHz	
Reverse Transfer Capacitance	C _{rss}		58.5		pF	1 I = I IVI M Z	
SWITCHING (2) (3)	•	•	•	•	•		
Turn-On-Delay Time	t _{d(on)}		2.9		ns	.,	
Rise Time	t _r		6.4		ns	V_{DD} = 15V, I_{D} =3.5A $R_{G} \cong 6.0\Omega$,	
Turn-Off Delay Time	t _{d(off)}		16		ns	$V_{GS} = 10V$	
Fall Time	t _f		11.2		ns	143	
Gate Charge	Qg		6.9		nC	$V_{DS} = 15V, V_{GS} = 5V$ $I_{D} = 3.5A$	
Total Gate Charge	Qg		12.2		nC	., .=., .,	
Gate-Source Charge	Q _{gs}		1.7		nC	$V_{DS} = 15V, V_{GS} = 10V$ $I_{D} = 3.5A$	
Gate-Drain Charge	Q _{gd}		2.4		nC	- 1 _D = 3.5Α	
SOURCE-DRAIN DIODE			-				
Diode Forward Voltage ⁽¹⁾	V _{SD}		0.85	0.95	V	$T_j=25$ °C, $I_S=3.2A$, $V_{GS}=0V$	
Reverse Recovery Time (3)	t _{rr}		18.8		ns	T _i =25°C, I _F = 3.5A,	
Reverse Recovery Charge (3)	Q _{rr}		14.1		nC	di/dt=100A/μs	

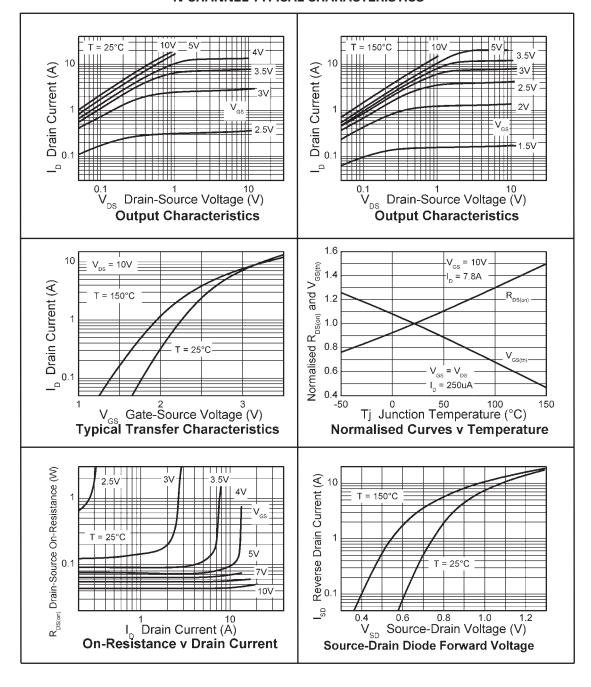
 ⁽¹⁾ Measured under pulsed conditions. Pulse width ≤ 300ms; Duty cycle ≤ 2%.
 (2) Switching characteristics are independent of operating junction temperature.
 (3) For design aid only, not subject to production testing.

ADVANCE INFORMATION

P-CHANNEL

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

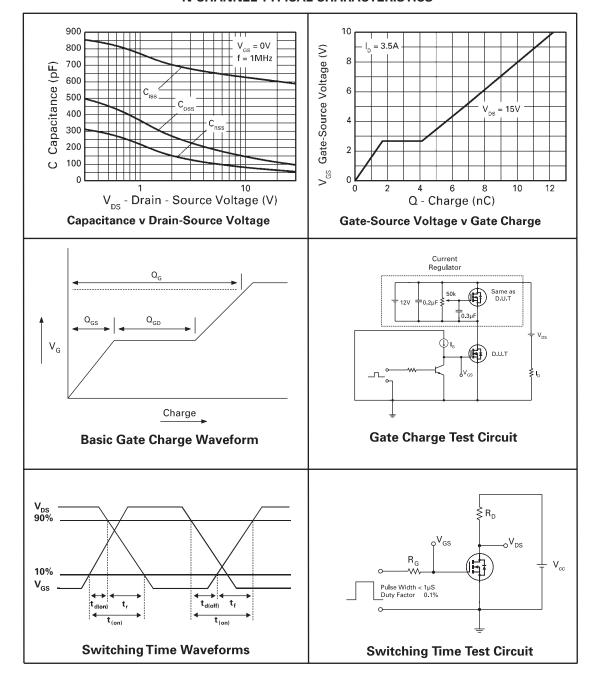
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
STATIC			•		•	•
Drain-Source Breakdown Voltage	V _{(BR)DSS}	-30			V	I _D = -250μA, V _{GS} =0V
Zero Gate Voltage Drain Current	I _{DSS}			-1.0	μА	V _{DS} = -30V, V _{GS} =0V
Gate-Body Leakage	I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V
Gate-Source Threshold Voltage	V _{GS(th)}	-1.0			V	I_D = -250 μ A, V_{DS} = V_{GS}
Static Drain-Source On-State Resistance (1)	R _{DS(on)}			0.070 0.110	Ω	V _{GS} = -10V, I _D = -3.2A V _{GS} = -4.5V, I _D = -2.5A
Forward Transconductance (1) (3)	g _{fs}		6.4		S	V _{DS} = -15V, I _D = -3.2A
DYNAMIC (3)						
Input Capacitance	C _{iss}		630		pF	
Output Capacitance	Coss		113		pF	V _{DS} = -15V, V _{GS} =0V
Reverse Transfer Capacitance	C _{rss}		78		pF	f=1MHz
SWITCHING (2) (3)						
Turn-On-Delay Time	t _{d(on)}		1.7		ns	- \/ 45\/ 4A
Rise Time	t _r		2.9		ns	$V_{DD} = -15V, I_{D} = -1A$ $R_{G} \cong 6.0\Omega,$
Turn-Off Delay Time	t _{d(off)}		29.2		ns	V _{GS} = -10V
Fall Time	t _f		8.7		ns	
Gate Charge	O _g		8.3		nC	$V_{DS} = -15V, V_{GS} = -5V$ $I_{D} = -3.2A$
Total Gate Charge	Qg		15.8		nC	V _{DS} = -15V, V _{GS} = -10V
Gate-Source Charge	Q _{gs}		1.8		nC	
Gate Drain Charge	O _{gd}		2.8		nC	I _D = -3.2A
SOURCE-DRAIN DIODE						
Diode Forward Voltage ⁽¹⁾	V _{SD}		-0.85	-0.95	V	T _j =25°C, I _S = -2.5A, V _{GS} =0V
Reverse Recovery Time (3)	t _{rr}		19.5		ns	T _j =25°C, I _S = -1.7A,
Reverse Recovery Charge (3)	Q _{rr}		16.3		nC	di/dt=100A/μs


NOTES:

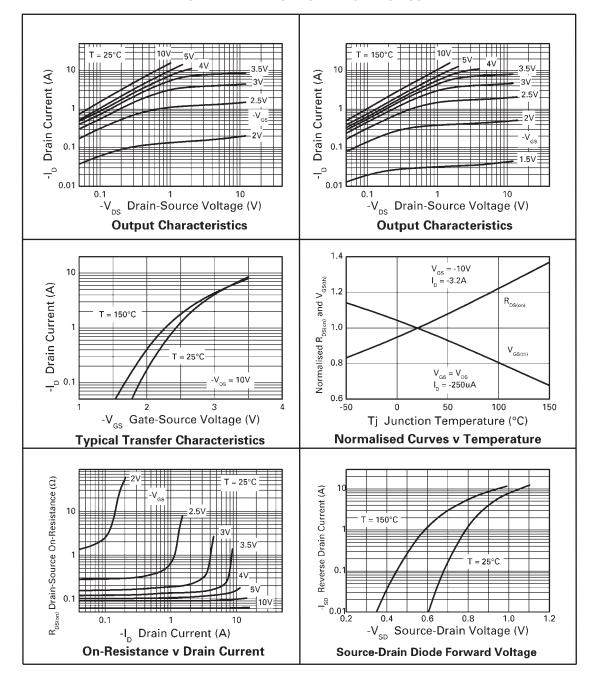
- (1) Measured under pulsed conditions. Pulse width \leq 300ms; Duty cycle \leq 2%.
- (2) Switching characteristics are independent of operating junction temperature.
- (3) For design aid only, not subject to production testing.

ADVANCE INFORMATION

N-CHANNEL TYPICAL CHARACTERISTICS



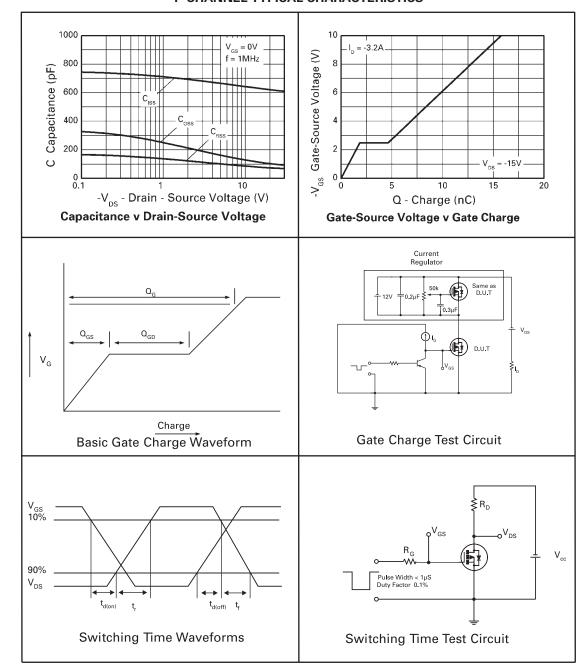
ADVANCE INFORMATION


ZXMC3A17DN8

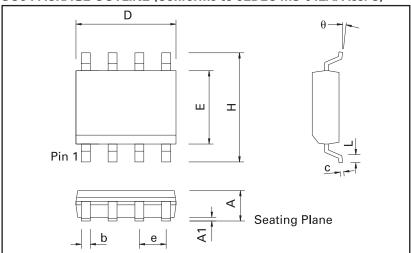
N-CHANNEL TYPICAL CHARACTERISTICS

ADVANCE INFORMATION

P-CHANNEL TYPICAL CHARACTERISTICS



ADVANCE INFORMATION


ZXMC3A17DN8

P-CHANNEL TYPICAL CHARACTERISTICS

SO8 PACKAGE OUTLINE (Conforms to JEDEC MS-012AA Iss. C)

Controlling dimensions are in millimeters. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millin	neters	Inc	hes	DIM	Millimeters		Inches	
DIIVI	Min	Max	Min	Max	DIIVI	Min	Max	Min	Max
А	1.35	1.75	0.053	0.069	е	1.27	BSC	0.050	BSC
A1	0.10	0.25	0.004	0.010	b	0.33	0.51	0.013	0.020
D	4.80	5.00	0.189	0.197	С	0.19	0.25	0.008	0.010
Н	5.80	6.20	0.228	0.244	θ	0°	8°	0°	8°
Е	3.80	4.00	0.150	0.157	h	0.25	0.50	0.010	0.020
L	0.40	1.27	0.016	0.050	-	-	-	-	-

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters		
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc		
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park		
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL		
Germany	USA	Hong Kong	United Kingdom		
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444		
Fax: (49) 89 45 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446		
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com		

These offices are supported by agents and distributors in major countries world-wide.

For the latest product information, log on to $\underline{www.zetex.com}$

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.