

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

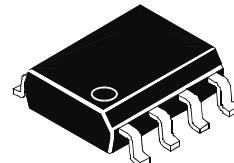
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZXMD65P02N8


DUAL 20V P-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

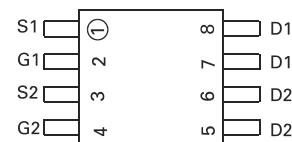
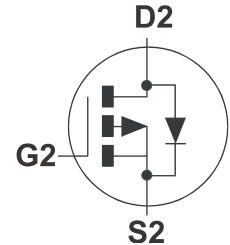
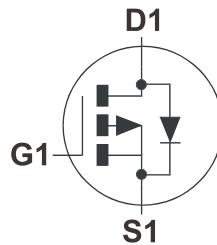
$V_{(BR)DSS} = -20V$; $R_{DS(ON)} = 0.050\Omega$; $I_D = -5.1A$

DESCRIPTION

This new generation of high density MOSFETs from Zetex utilises a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

SO8

FEATURES




- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- Low profile SOIC package

APPLICATIONS

- DC - DC Converters
- Power Management Functions
- Disconnect switches
- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXMD65P02N8TA	7"	12mm	500 units
ZXMD65P02N8TC	13"	12mm	2500 units

Top View

DEVICE MARKING

- ZXMD
65P02

ZXMD65P02N8

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	V_{DSS}	-20	V
Gate- Source Voltage	V_{GS}	± 12	V
Continuous Drain Current $V_{GS}=-4.5V$; $T_A=25^\circ C$ (b)(d) $V_{GS}=-4.5V$; $T_A=70^\circ C$ (b)(d) $V_{GS}=-4.5V$; $T_A=25^\circ C$ (a)(d)	I_D	-5.1 -4.1 -4.0	A
Pulsed Drain Current (c)(d)	I_{DM}	-18	A
Continuous Source Current (Body Diode)(b)(d)	I_S	-3.1	A
Pulsed Source Current (Body Diode)(c)(d)	I_{SM}	-18	A
Power Dissipation at $T_A=25^\circ C$ (a)(d) Linear Derating Factor	P_D	1.25 10	W mW/°C
Power Dissipation at $T_A=25^\circ C$ (a)(e) Linear Derating Factor	P_D	1.75 14	W mW/°C
Power Dissipation at $T_A=25^\circ C$ (b)(d) Linear Derating Factor	P_D	2.0 16	W mW/°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(d)	$R_{\theta JA}$	100	°C/W
Junction to Ambient (a)(e)	$R_{\theta JA}$	71.4	°C/W
Junction to Ambient (b)(d)	$R_{\theta JA}$	62.5	°C/W

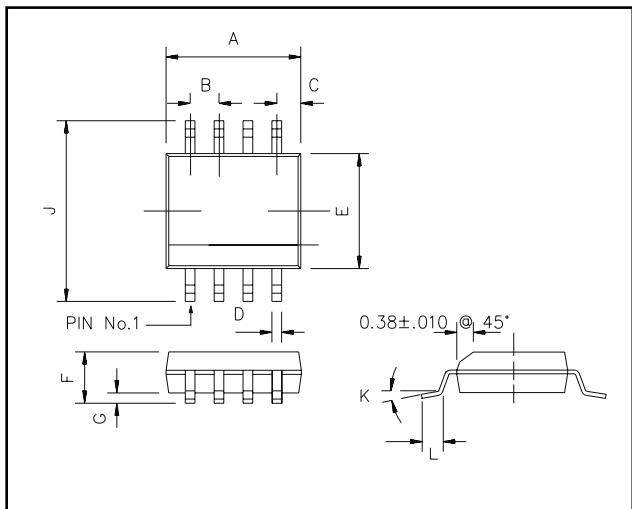
NOTES

- (a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions
- (b) For a device surface mounted on FR4 PCB measured at $t \leq 10$ secs.
- (c) Repetitive rating 25mm x 25mm FR4 PCB, $D = 0.05$, pulse width $10\mu s$ - pulse width limited by maximum junction temperature.
- (d) For device with one active die.
- (e) For device with two active die running at equal power.

ZXMD65P02N8

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^\circ C$ unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
STATIC						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	-20			V	$I_D = -250\mu A, V_{GS} = 0V$
Zero Gate Voltage Drain Current	I_{DSS}			-1	μA	$V_{DS} = -16V, V_{GS} = 0V$
Gate-Body Leakage	I_{GSS}			-100	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$
Gate-Source Threshold Voltage	$V_{GS(th)}$	-0.7			V	$I_D = -250\mu A, V_{DS} = V_{GS}$
Static Drain-Source On-State Resistance (1)	$R_{DS(on)}$			0.050 0.080	Ω	$V_{GS} = -4.5V, I_D = -2.9A$ $V_{GS} = -2.5V, I_D = -1.5A$
Forward Transconductance (1)(3)	g_{fs}		8.5		S	$V_{DS} = -10V, I_D = -2.9A$
DYNAMIC (3)						
Input Capacitance	C_{iss}		960		pF	$V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$
Output Capacitance	C_{oss}		480		pF	
Reverse Transfer Capacitance	C_{rss}		240		pF	
SWITCHING(2) (3)						
Turn-On Delay Time	$t_{d(on)}$		6.6		ns	$V_{DD} = -10V, I_D = -2.9A$ $R_G = 6.0\Omega, V_{GS} = -5V$
Rise Time	t_r		29.9		ns	
Turn-Off Delay Time	$t_{d(off)}$		57.9		ns	
Fall Time	t_f		63.2		ns	
Total Gate Charge	Q_g		20		nC	$V_{DS} = -10V, V_{GS} = -4.5V$ $I_D = -2.9A$
Gate-Source Charge	Q_{gs}		1.8		nC	
Gate Drain Charge	Q_{gd}		10		nC	
SOURCE-DRAIN DIODE						
Diode Forward Voltage (1)	V_{SD}			0.95	V	$T_j = 25^\circ C, I_S = -2.9A, V_{GS} = 0V$
Reverse Recovery Time (3)	t_{rr}		39.2		ns	$T_j = 25^\circ C, I_F = -2.9A, dI/dt = 100A/\mu s$
Reverse Recovery Charge(3)	Q_{rr}		28.8		nC	


(1) Measured under pulsed conditions. Width=300 μs . Duty cycle $\leq 2\%$.

(2) Switching characteristics are independent of operating junction temperature.

(3) For design aid only, not subject to production testing.

ZXMD65P02N8

PACKAGE DIMENSIONS

DIM	Millimetres		Inches	
	Min	Max	Min	Max
A	4.80	4.98	0.189	0.196
B	1.27 BSC		0.05 BSC	
C	0.53 REF		0.02 REF	
D	0.36	0.46	0.014	0.018
E	3.81	3.99	0.15	0.157
F	1.35	1.75	0.05	0.07
G	0.10	0.25	0.004	0.010
J	5.80	6.20	0.23	0.24
K	0°	8°	0°	8°
L	0.41	1.27	0.016	0.050

Zetex plc.
Fields New Road, Chadderton, Oldham, OL9-8NP, United Kingdom.
Telephone: (44)161 622 4422 (Sales), (44)161 622 4444 (General Enquiries)
Fax: (44)161 622 4420

Zetex GmbH
Streifeldstraße 19
D-81673 München
Germany
Telefon: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49

Zetex Inc.
47 Mall Drive, Unit 4
Commack NY 11725
USA
Telephone: (631) 543-7100
Fax: (631) 864-7630

Zetex (Asia) Ltd.
3701-04 Metroplaza, Tower 1
Hing Fong Road,
Kwai Fong, Hong Kong
Telephone: (852) 26100 611
Fax: (852) 24250 494

These are supported by
agents and distributors in
major countries world-wide
©Zetex plc 2000
Internet <http://www.zetex.com>

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

PROVISIONAL ISSUE A - MAY 2001