

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZXMP6A13F

60V P-CHANNEL ENHANCEMENT MODE MOSFET

Product Summary

V _{(BR)DSS}	Max R _{DS(on)}	Max I _D T _A = 25°C
-60V	400mΩ @ V _{GS} = -10V	-1.1A
	600mΩ @ V _{GS} = -4.5V	-0.9A

Description

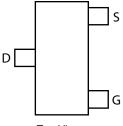
This MOSFET utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed, making it ideal for high-efficiency power management applications.

Applications

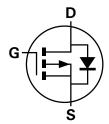
- DC DC converters
- Power management functions
- · Relay and solenoid driving
- Motor control

Features

- Fast switching speed
- Low input capacitance
- Low gate charge
- Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- PPAP capable (Note 4)


Mechanical Data

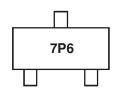
- Case: SOT23
- Case Material: Molded Plastic, UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 63
- Weight: 0.008 grams (approximate)


SOT23

Top View

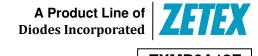
Top View Pin Out

Equivalent Circuit


Ordering Information (Notes 4 & 5)

Product	Compliance	Marking	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXMP6A13FTA	AEC-Q101	7P6	7	8	3000 Units
ZXMP6A13FQTA	Automotive	7P6	7	8	3000 Units

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen and Antimony free, "Green" and Lead-Free.
- 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- Automotive products are AEC-Q101 qualified and are PPAP capable. Automotive, AEC-Q101 and standard products are electrically and thermally the same, except where specified.
- 5. For packaging details, go to our website at http://www.diodes.com

Marking Information

7P6 = Product Type Marking Code

ZXMP6A13F

Maximum Ratings (@ $T_A = +25^{\circ}C$, unless otherwise specified.)

Ch	aracteristic			Symbol	Value	Units
Drain-Source Voltage				V_{DSS}	-60	V
Gate-Source Voltage				V_{GS}	±20	V
Continuous Drain Current	V _{GS} = 10V	T _A = 70°C	(Note 7) (Note 7) (Note 6)	ΙD	-1.1 -0.8 -0.9	А
Pulsed Drain Current (Note 8)				I _{DM}	-4.0	Α
Continuous Source Current (Body Diode) (Note 7)				I _S	-1.2	A
Pulsed Source Current (Body Diode) (Note 8)				I _{SM}	-4.0	A

Thermal Characteristics (@TA = +25°C, unless otherwise specified.)

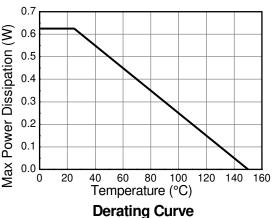
Characteristic	Symbol	Value	Unit
Power Dissipation (Note 6)	D-	625	mW
Linear Derating Factor	P _D	5	mW/°C
Power Dissipation (Note 7)	D-	806	mW
Linear Derating Factor	P _D	6.5	mW/°C
Thermal Resistance, Junction to Ambient (Note 6)	$R_{ heta JA}$	200	°C/W
Thermal Resistance, Junction to Ambient (Note 7)	$R_{\theta JA}$	155	°C/W
Thermal Resistance, Junction to Leads (Note 9)	$R_{ heta JL}$	194	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

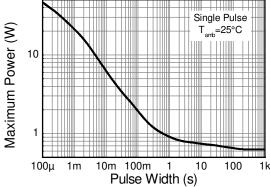
Notes:

- 6. For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions
- 7. For a device surface mounted on FR4 PCB measured at t ≤ 5 secs.

 8. Repetitive rating 25mm x 25mm FR4 PCB, D = 0.05 pulse width = 10µs pulse current limited by maximum junction temperature.
- 9. Thermal resistance from junction to solder-point (at the end of the collector lead).

Thermal Characteristics




D=0.1

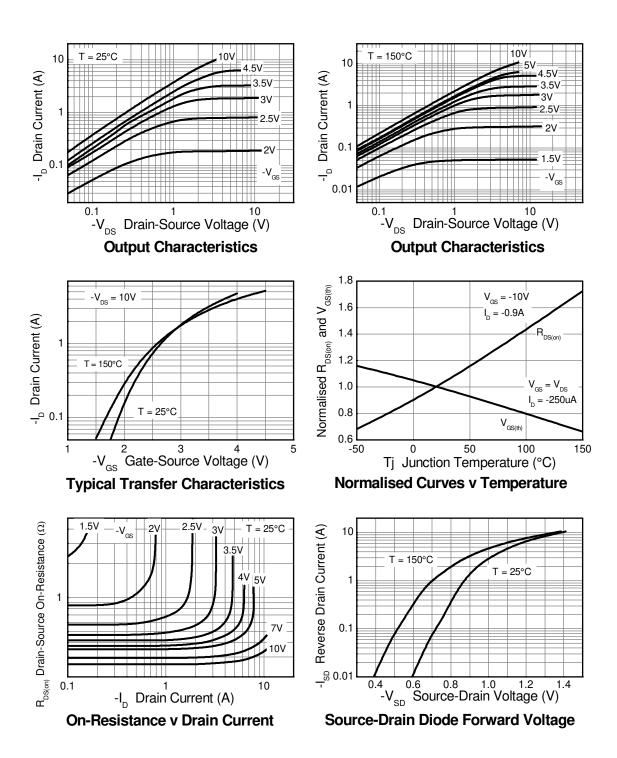
10m 100m

Pulse Width (s)

Transient Thermal Impedance

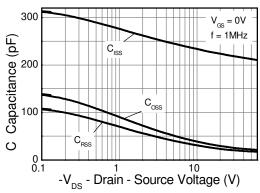
Pulse Power Dissipation

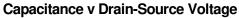
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

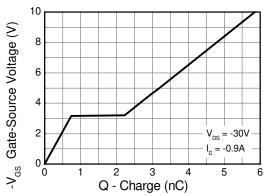

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV_{DSS}	-60	_	_	V	$I_D = -250 \mu A, V_{GS} = 0 V$	
Zero Gate Voltage Drain Current	I _{DSS}	_	_	-0.5	μΑ	$V_{DS} = -60V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_	_	±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(th)}$	-1.0	_	-3.0	V	$I_D = -250 \mu A, \ V_{DS} = V_{GS}$	
Static Drain-Source On-Resistance (Note 10)	Pag (av)			0.400	Ω	$V_{GS} = -10V, I_D = -0.9A$	
Static Drain-Source On-Nesistance (Note 10)	R _{DS (ON)}			0.600	32	$V_{GS} = -4.5V, I_D = -0.8A$	
Forward Transconductance (Notes 10 and 12)	9 _{fs}	_	1.8	_	S	$V_{DS} = -15V, I_D = -0.9A$	
Diode Forward Voltage (Note 10)	V_{SD}		-0.85	-0.95	V	$T_J = 25$ °C, $I_S = -0.8$ A, $V_{GS} = 0$ V	
Reverse Recovery Time (Note 12)	t _{rr}	_	21.1	_	ns	$T_J = 25^{\circ}C$, $I_F = -0.9A$,	
Reverse Recovery Charge (Note 12)	Q_{rr}	_	19.3	_	nC	$di/dt = 100A/\mu s$	
DYNAMIC CHARACTERISTICS (Note 12)							
Input Capacitance	C _{iss}		219	_		V _{DS} = -30V, V _{GS} = 0V f = 1.0MHz	
Output Capacitance	Coss		25.7	_	pF		
Reverse Transfer Capacitance	C _{rss}	_	20.5	_			
Turn-On Delay Time (Note 11)	t _{D(on)}	_	1.6	_			
Turn-On Rise Time (Note 11)	t _r	_	2.2	_		$\begin{split} V_{DD} &= \text{-}30\text{V}, \ I_D = \text{-}1\text{A}, \\ R_G &\cong 6.0\Omega, \ V_{GS} = \text{-}10\text{V} \end{split}$	
Turn-Off Delay Time (Note 11)	t _{D(off)}	_	11.2	_	ns		
Turn-Off Fall Time (Note 11)	t _f	_	5.7	_			
Total Gate Charge (Note 11)	Q_g	_	2.9	_	nC	$V_{DS} = -30V, V_{GS} = -4.5V,$ $I_{D} = -0.9A$	
Total Gate Charge (Note 11)	Qg	_	5.9	_		V 20V V 40V	
Gate-Source Charge (Note 11)	Q_{gs}	_	0.74	_	nC	$V_{DS} = -30V, V_{GS} = -10V,$	
Gate-Drain Charge (Note 11)	Q_{gd}		1.5	_		$I_D = -0.9A$	

Notes:

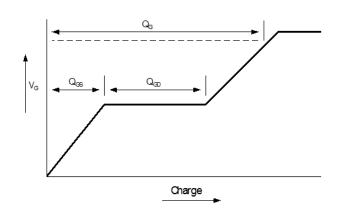
- 10. Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤ 2%.
 11. Switching characteristics are independent of operating junction temperature.
 12. For design aid only, not subject to production testing.

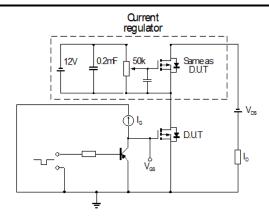



Typical Characteristics

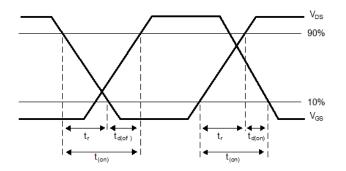


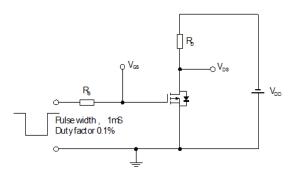
Typical Characteristics - continued





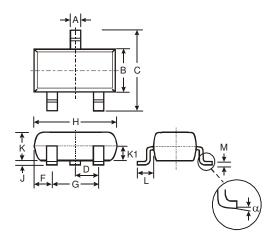
Gate-Source Voltage v Gate Charge


Test Circuits


Basic gate charge waveform

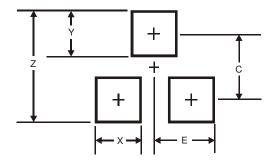
Gate charge test circuit

Switching time waveforms



Switching time test circuit

Package Outline Dimensions


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

SOT23						
Dim	Min	Max	Тур			
Α	0.37	0.51	0.40			
В	1.20	1.40	1.30			
С	2.30	2.50	2.40			
D	0.89	1.03	0.915			
F	0.45	0.60	0.535			
G	1.78	2.05	1.83			
Н	2.80	3.00	2.90			
J	0.013	0.10	0.05			
K	0.903	1.10	1.00			
K1	-	-	0.400			
L	0.45	0.61	0.55			
М	0.085	0.18	0.11			
α	0°	8°	-			
All Dimensions in mm						

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Dimensions	Value (in mm)		
Z	2.9		
Х	0.8		
Υ	0.9		
С	2.0		
Е	1.35		

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDING TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com