

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MPPS™ Miniature Package Power Solutions DUAL 20V PNP LOW SATURATION SWITCHING TRANSISTOR

SUMMARY

 $V_{CEO} = -20V$; $R_{SAT} = 64m\Omega$; $I_{C} = -3.5A$

DESCRIPTION

Packaged in the innovative 3mm x 2mm MLP (Micro Leaded Package) outline, these new 4th generation low saturation dual transistors offer extremely low on state losses making them ideal for use in DC-DC circuits and various driving and power management functions.

Additionally users gain several other key benefits:

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

PCB area and device placement savings

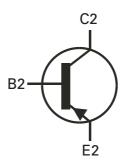
Lower package height (nom 0.9mm)

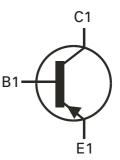
Reduced component count

FEATURES

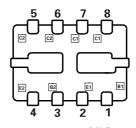
- Low Equivalent On Resistance
- Extremely Low Saturation Voltage (-220mV @ -1A)
- h_{FE} characterised up to -6A
- I_C = -3.5A Continuous Collector Current
- 3mm x 2mm MLP

APPLICATIONS


- DC DC Converters (FET Drivers)
- · Charging circuits
- · Power switches
- Motor control
- LED Backlighting circuits


ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZXTD2M832TA	7''	8mm	3000
ZXTD2M832TC	13′′	8mm	10000


DEVICE MARKING D22

3mm x 2mm (Dual die) MLP

PINOUT

3mm x 2mm MLP underside view

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	LIMIT	UNIT	
Collector-Base Voltage	V _{CBO}	-25	V	
Collector-Emitter Voltage	V _{CEO}	-20	V	
Emitter-Base Voltage	V _{EBO}	-7.5	V	
Peak Pulse Current	I _{CM}	-6	A	
Continuous Collector Current (a)(f)	I _C	-3.5	А	
Base Current	IB	-1000	mA	
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	P _D	1.5 12	W mW/°C	
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2.45 19.6	W mW/°C	
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	P _D	1 8	W mW/°C	
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	P _D	1.13 9	W mW/°C	
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.7 13.6	W mW/°C	
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P _D	3 24	W mW/°C	
Operating and Storage Temperature Range	T _i :T _{stg}	-55 to +150	°C	

THERMAL RESISTANCE

I HENIVIAL RESISTANCE						
SYMBOL	VALUE	UNIT				
$R_{\theta JA}$	83.3	°C/W				
$R_{\theta JA}$	51	°C/W				
$R_{\theta JA}$	125	°C/W				
$R_{\theta JA}$	111	°C/W				
$R_{\theta JA}$	73.5	°C/W				
$R_{\theta JA}$	41.7	°C/W				
	$R_{\theta JA}$ $R_{\theta JA}$ $R_{\theta JA}$ $R_{\theta JA}$ $R_{\theta JA}$	R _{θJA} 83.3 R _{θJA} 51 R _{θJA} 125 R _{θJA} 111 R _{θJA} 73.5				

Notes

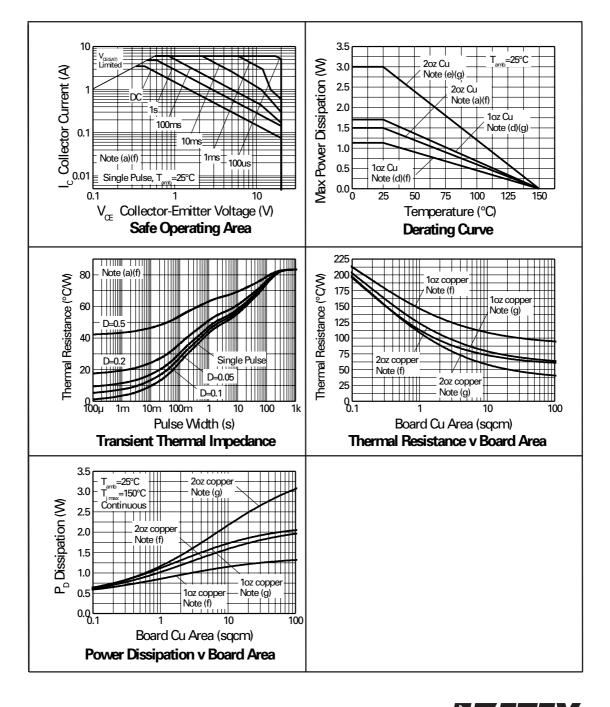
(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

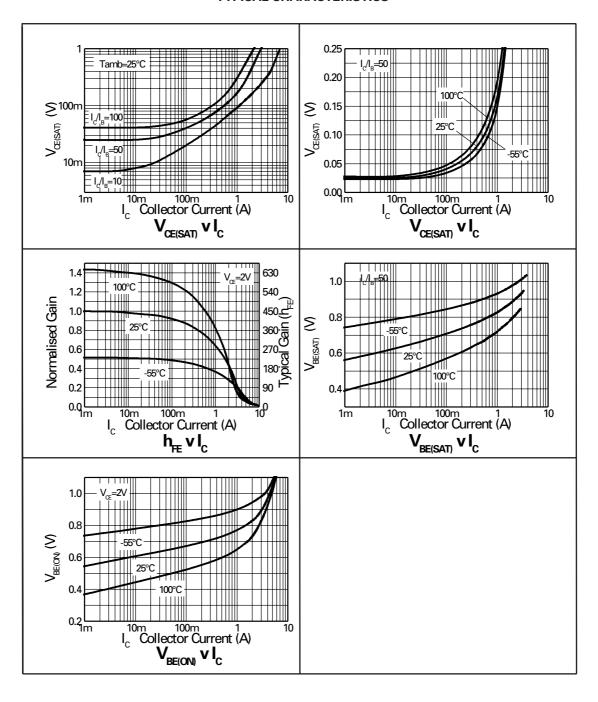
(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.


(f) For a dual device with one active die.(g) For dual device with 2 active die running at equal power.

(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.

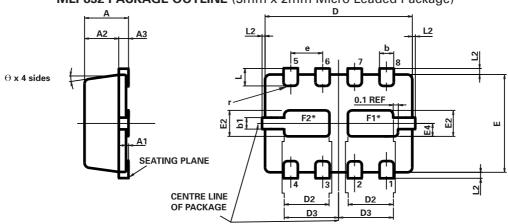
(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-25	-35		V	Ι _C =-100μΑ
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-20	-25		V	I _C =-10mA*
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-7.5	8.5		V	I _E =-100μA
Collector Cut-Off Current	I _{CBO}			-25	nA	V _{CB} =-20V
Emitter Cut-Off Current	I _{EBO}			-25	nA	V _{EB} =-6V
Collector Emitter Cut-Off Current	I _{CES}			-25	nA	V _{CES} =-16V
Collector-Emitter Saturation	V _{CE(sat)}		-19	-30	mV	I _C =-0.1A, I _B =-10mA*
Voltage			-170	-220	mV	I _C =-1A, I _B =-20mA*
			-190	-250	mV	I _C =-1.5A, I _B =-50mA*
			-240	-350	mV	I _C =-2.5A, I _B =-150mA*
			-225	-300	mV	I _C =-3.5A, I _B =-350mA*
Base-Emitter Saturation Voltage	V _{BE(sat)}		-1.01	-1.075	V	I _C =-3.5A, I _B =350mA*
Base-Emitter Turn-On Voltage	V _{BE(on)}		-0.87	-0.95	V	I _C =-3.5A, V _{CE} =-2V*
Static Forward Current Transfer	h _{FE}	300	475			I _C =-10mA, V _{CE} =-2V*
Ratio		300	450			I _C =-0.1A, V _{CE} =-2V*
		150	230			I _C =-2A, V _{CE} =-2V*
		15	30			I _C =-6A, V _{CE} =-2V*
Transition Frequency	f _T	150	180		MHz	I _C =-50mA, V _{CE} =-10V f=100MHz
Output Capacitance	C _{obo}		21	30	pF	V _{CB} =10V, f=1MHz
Turn-On Time	t _(on)		40		ns	V _{CC} =-10V, I _C =1A
Turn-Off Time	t _(off)		670		ns	I _{B1} =I _{B2} =20mA

^{*}Measured under pulsed conditions. Pulse width=300 $\mu s.$ Duty cycle $\leq 2\%$



TYPICAL CHARACTERISTICS

ZETEX

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

*Exposed Flags. Solder connection to improve thermal dissipation is optional.

F1 at collector 1 potential F2 at collector 2 potential

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

	MILLIN	IETRES	INC	HES		MILLIMETRES		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	DIM	MIN.	MAX.	MIN.	MAX.
Α	0.80	1.00	0.031	0.039	е	0.65	REF	0.025	6 BSC
A1	0.00	0.05	0.00	0.002	E	2.00	BSC	0.0787	7 BSC
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
А3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2		0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075	BSC	0.002	9 BSC
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex Semiconductors plc 2007

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Balan-straße 59	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1	Zetex Technology Park
D-81541 München	Hauppauge, NY11788	Hing Fong Road	Chadderton
Germany	USA	Kwai Fong Hong Kong	Oldham, OL9 9LL United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (631) 360 2222	Telephone: (852) 26100 611	Tel: (44) 161 622 4444
Fax: (49) 89 45 49 49	Fax: (631) 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

