

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

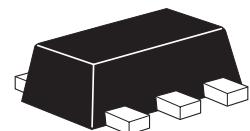
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ZXTP2009Z

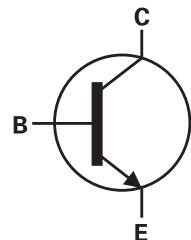

40V PNP HIGH GAIN LOW SATURATION MEDIUM POWER TRANSISTOR IN SOT89

SUMMARY

$BV_{CEO} = -40V$: $R_{SAT} = 29m\Omega$; $I_C = -5.5A$

DESCRIPTION

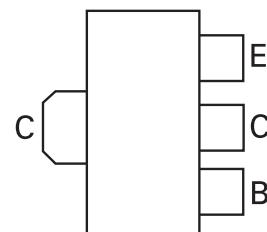
Packaged in the SOT89 outline this new low saturation 40V PNP transistor offers low on state losses making it ideal for use in DC-DC circuits, line switching and various driving and power management functions.


FEATURES

- Extremely low equivalent on-resistance
- 5.5 amps continuous current
- Up to 15 amps peak current
- Very low saturation voltages < -60mV @ -1A

SOT89

APPLICATIONS


- DC - DC converters
- MOSFET gate drivers
- Charging circuits
- Power switches
- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXTP2009ZTA	7"	12mm	1,000 units

PINOUT

TOP VIEW

DEVICE MARKING

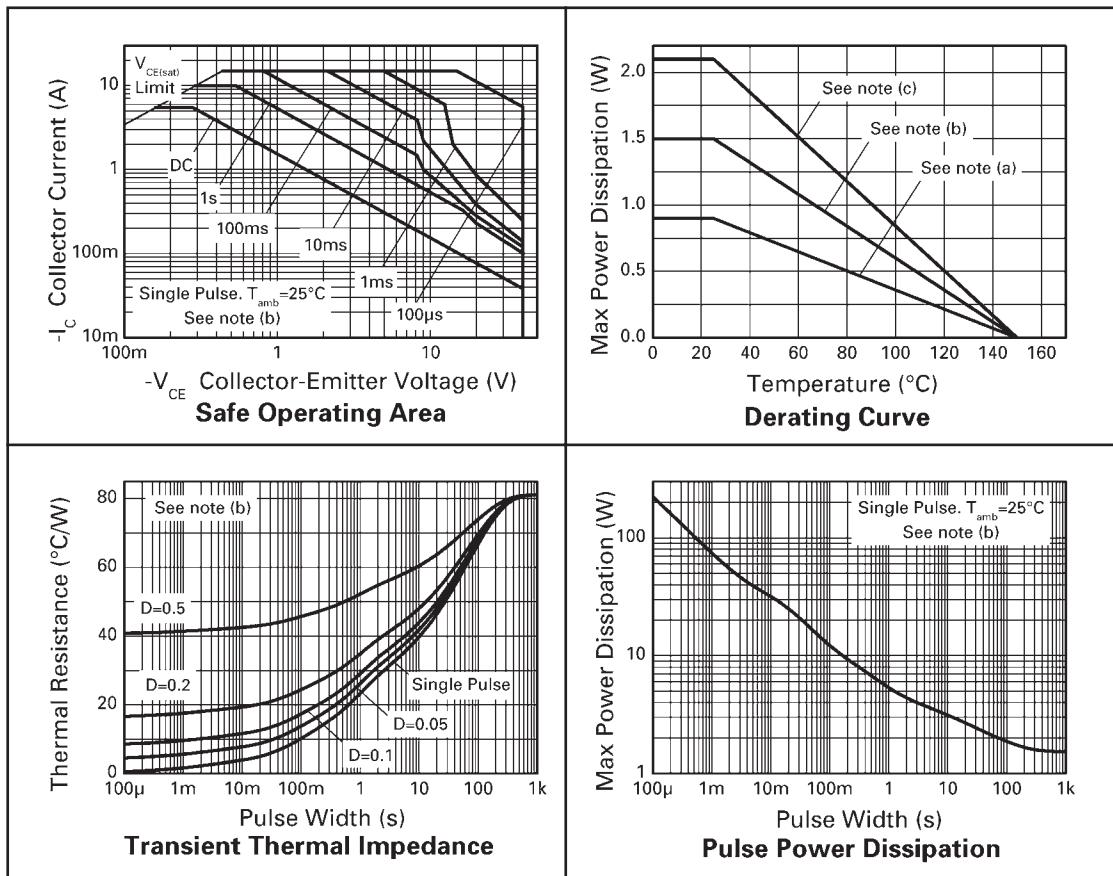
53Z

ZXTP2009Z

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Collector-base voltage	BV_{CBO}	-50	V
Collector-base voltage	BV_{CBS}	-50	V
Collector-emitter voltage	BV_{CEO}	-40	V
Emitter-base voltage	BV_{EBO}	-7.5	V
Continuous collector current ^(b)	I_C	-5.5	A
Peak pulse current	I_{CM}	-15	A
Power dissipation at $T_A = 25^\circ C$ ^(a)	P_D	0.9	W
Linear derating factor		7.2	$mW/^\circ C$
Power dissipation at $T_A = 25^\circ C$ ^(b)	P_D	1.5	W
Linear derating factor		12	$mW/^\circ C$
Power dissipation at $T_A = 25^\circ C$ ^(c)	P_D	2.1	W
Linear derating factor		16.8	$mW/^\circ C$
Power dissipation at $T_A = 25^\circ C$ ^(d)	P_D	3	W
Linear derating factor		24	$mW/^\circ C$
Operating and storage temperature range	T_j, T_{stg}	-55 to 150	°C

THERMAL RESISTANCE


PARAMETER	SYMBOL	VALUE	UNIT
Junction to ambient ^(a)	$R_{\Theta JA}$	139	°C/W
Junction to ambient ^(b)	$R_{\Theta JA}$	83	°C/W
Junction to ambient ^(c)	$R_{\Theta JA}$	60	°C/W
Junction to ambient ^(d)	$R_{\Theta JA}$	42	°C/W

NOTES

- (a) For a device surface mounted on 15mm x 15mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (b) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (c) For a device surface mounted on 50mm x 50mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (d) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB measured at $t < 5$ secs.

ZXTP2009Z

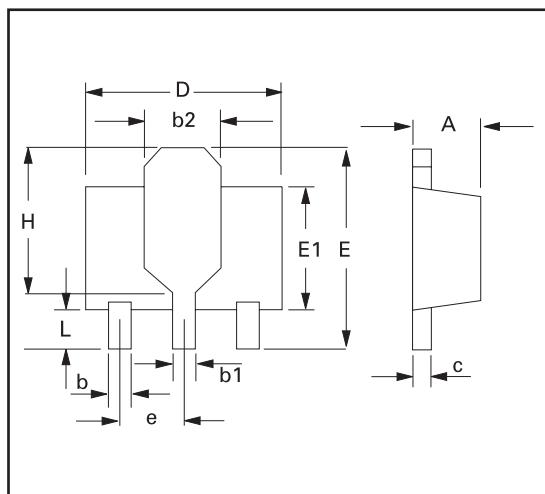
CHARACTERISTICS

ZXTP2009Z

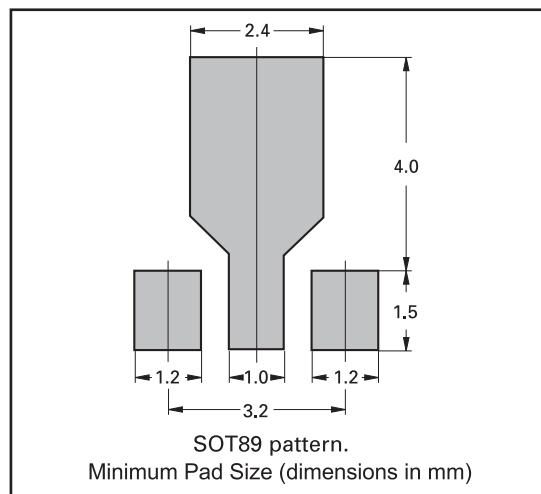
ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^\circ\text{C}$ unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Collector-base breakdown voltage	BV_{CBO}	-50	-90		V	$I_C=-100\mu\text{A}$
Collector-emitter breakdown voltage	BV_{CES}	-50	-90		V	$I_C=-100\mu\text{A}$
Collector-emitter breakdown voltage	BV_{CEO}	-40	-58		V	$I_C=-10\text{mA}^*$
Emitter-base breakdown voltage	BV_{EBO}	-7.5	-8.3		V	$I_E=-100\mu\text{A}$
Collector cut-off current	I_{CBO}		<1	-20	nA	$V_{\text{CB}}=-40\text{V}$
Collector cut-off current	I_{CES}		<1	-20	nA	$V_{\text{CB}}=-32\text{V}$
Emitter cut-off current	I_{EBO}		<1	-20	nA	$V_{\text{EB}}=-6\text{V}$
Collector-emitter saturation voltage	$V_{\text{CE}(\text{SAT})}$		-15 -44 -50 -120 -70 -125 -130 -162	-30 -60 -70 -165 -80 -175 -175 -185	mV	$I_C=-0.1\text{A}, I_B=-10\text{mA}^*$ $I_C=-1\text{A}, I_B=-100\text{mA}^*$ $I_C=-1\text{A}, I_B=-50\text{mA}^*$ $I_C=-1\text{A}, I_B=-10\text{mA}^*$ $I_C=-2\text{A}, I_B=-200\text{mA}^*$ $I_C=-2\text{A}, I_B=-40\text{mA}^*$ $I_C=-3.5\text{A}, I_B=-175\text{mA}^*$ $I_C=-5.5\text{A}, I_B=-550\text{mA}^*$
Base-emitter saturation voltage	$V_{\text{BE}(\text{SAT})}$		-820 -1000	-900 -1075	mV	$I_C=-2\text{A}, I_B=-40\text{mA}^*$ $I_C=-5.5\text{A}, I_B=-550\text{mA}^*$
Base-emitter turn-on voltage	$V_{\text{BE}(\text{ON})}$		-778 -869	-850 -950	mV	$I_C=-2\text{A}, V_{\text{CE}}=-2\text{V}^*$ $I_C=-5.5\text{A}, V_{\text{CE}}=-2\text{V}^*$
Static forward current transfer ratio	H_{FE}	200 200 170 110	390 350 290 175	550		$I_C=-10\text{mA}, V_{\text{CE}}=-2\text{V}^*$ $I_C=-0.5\text{A}, V_{\text{CE}}=-2\text{V}^*$ $I_C=-2\text{A}, V_{\text{CE}}=-2\text{V}^*$ $I_C=-5.5\text{A}, V_{\text{CE}}=-2\text{V}^*$
Transition frequency	f_T		152		MHz	$I_C=-50\text{mA}, V_{\text{CE}}=-10\text{V}$ $f=100\text{MHz}$
Output capacitance	C_{OBO}		53		pF	$V_{\text{CB}}=-10\text{V}, f=1\text{MHz}^*$
Switching times	t_d t_r t_s t_r		18 17 325 60		ns	$I_C=-1\text{A}, V_{\text{CC}}=-10\text{V},$ $I_{B1}=I_{B2}=-100\text{mA}$
Switching times	t_d t_r t_s t_r		55 107 264 103		ns	$I_C=-2\text{A}, V_{\text{CC}}=-30\text{V},$ $I_{B1}=I_{B2}=-20\text{mA}$

* Measured under pulsed conditions. Pulse width $\leq 300\mu\text{s}$; duty cycle $\leq 2\%$.


ZXTP2009Z

TYPICAL CHARACTERISTICS



ZXTP2009Z

PACKAGE OUTLINE

PAD LAYOUT DETAILS

Controlling dimensions are in millimeters. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millimeters		Inches		DIM	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
A	1.40	1.60	0.550	0.630	e	1.40	1.50	0.055	0.059
b	0.38	0.48	0.015	0.019	E	3.75	4.25	0.150	0.167
b1	-	0.53	-	0.021	E1	-	2.60	-	0.102
b2	1.50	1.80	0.060	0.071	G	2.90	3.00	0.114	0.118
c	0.28	0.44	0.011	0.017	H	2.60	2.85	0.102	0.112
D	4.40	4.60	0.173	0.181	-	-	-	-	-

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH Streifeldstraße 19 D-81673 München Germany	Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY 11788 USA	Zetex (Asia) Ltd 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong	Zetex Semiconductors plc Zetex Technology Park Chadderton, Oldham, OL9 9LL United Kingdom
Telephone: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europesales@zetex.com	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usasales@zetex.com	Telephone: (852) 26100 611 Fax: (852) 24250 494 asisales@zetex.com	Telephone (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

ISSUE 1 - JUNE 2005